[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Teorema de Fermat
Sauda,c~oes,
O seu problema encontra-se no seguinte contexto: Fermat pensava que os
n�meros F_i=2^{2^i}, chamados n�meros de Fermat, eram primos para
i=0,1,2.... E ficaram conhecidos como os primos de Fermat.
Tudo vai bem para i=0,1,2,3,4. Para i=5, acho que foi Euler que mostrou que
F_5 n�o � primo.
A demonstra��o � interessante e segue a linha indicada no email abaixo.
Transcrevo a observa��o retirada da solu��o do exerc�cio 28 do Manual de
Indu��o que por sua vez foi retirada de
<Coxeter, H.S.M., Introduction to Geometry>.
O n�mero 641 = 5^4 + 2^4 = 5*2^7 + 1, dividindo tanto a = 5^4*2^{28} +
2^{32} quanto
b = 5^4*2^{28} - 1, divide sua diferen�a, que � precisamente F_5.
Assim, a - b = F_5 = 641(2^{28} - 5^3*2^{21} + 5^2*2^{14} - 5*2^7 + 1) =
641*6 700 417. CQD
Entretanto, o seguinte resultado � v�lido: 2^n +1 poder� ser um n�mero primo
somente se n=2^i . Logo, 2^n + 1 � um n�mero composto para todo n >=3 e n =!
2^i, i = 2,3,...
Os "primos" de Fermat aparecem no estudo de Gauss sobre os pol�gonos
construt�veis. Ver para isso Coxeter e <Wagner, E., Constru��es
Geom�tricas.>
Abra�os,
Lu�s
-----Mensagem Original-----
De: Eduardo Grasser <grasser@prt15.gov.br>
Para: <obm-l@mat.puc-rio.br>
Enviada em: Domingo, 1 de Abril de 2001 09:47
Assunto: Teorema de Fermat
Estava eu conversando com o pai de uma amiga minha e ele disse que
haveria um Teorema de Fermat relacionado com o problema
provar pelo teorema de fermat que 2^2^5 + 1 n�o � primo.
dicas 641 = 2^4 + 5^4 = 5*2^7 + 1
ficou-me claro que o 2^2^5 + 1 � divis�vel por 641 e que eu precisava
provar isso:
2^32 + 1 =
2^32 + (5*2^7)^4 - (5*2^7)^4 + 1 =
2^28(2^4 + 5^4) - ((5*2^7)^4 - 1)
641*2^28 - (5*2^7 + 1)(5*2^7 - 1)((5*2^7)^2 + 1)
641(2^28 - (5*2^7 -1)((5*2^7)^2 + 1)
provei, mas n�o usei o teorema (ou usei implicitamente). Algu�m pode me
ajudar?