Spectra of Regular Polytopes
Nicolaw C. Saldanha and Carlos Tome:

Introduction

As is well known, the combinatorial problem of counting paths of length n between
two fixed vertices in a graph reduces to raising the adjacency matrix A of the graph to the
n-th power ([B], p. 11). For an undirected graph, A is symmetric and the problem above
simplifies considerably if its spectrum o(A) is known and contains few distinct elements.
Spectra of graphs, meaning spectra of the corresponding adjacency matrices, have been an
active subject for decades ([CDS]). In this paper, we compute the spectra with multiplicities
of the adjacency graphs of all regular polytopes in R"”, or, for brevity, spectra of polytopes.
We begin with a short theoretical set-up and then proceed to the computations.
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Theoretical Remarks

Let P be a regular polyhedron in R™ and let V' be its set of vertices. The symmetry
group G of P, which includes orientation preserving and orientation reversing isometries,
acts transitively on V. Given a vertex v of P, let H, be the subgroup of G fixing v. The
orbits of the action of H, on V will be called levels of V' with respect to v. Let A = Ap be
the adjacency matrix of P, with an eigenvalue A associated to an eigenvector u € U, the
vector space of functions from V to C. By the transitivity of G, we can assume u(v) # 0.
By averaging with respect to H,, we can take u to be non-zero and constant on levels.
Moreover, the subspace S C U of vectors taking constant values on levels is invariant under
A. In particular, A induces a linear transformation B from S to itself, and the spectra of

A and B coincide.

For convenience, we represent B by a matrix B by choosing a normalized (°° basis
of S consisting of vectors taking the value 1 in one level and 0 everywhere else. In this
basis, b; ;j is given by the number of neighbours in level j of an arbitrary element in level
. This implies that the sum of entries of any line of B is constant equal to the number
of neighbours of an arbitrary vertex. There are two other natural basis, differing from the
previous one by normalization: the ¢! basis, whose elements have entries adding to one and
the ¢2 basis, whose elements have Euclidean norm one. In the ¢2 basis, the transformation
B is symmetric, as can be seen by counting the edges between two given levels from the
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point of view of each level. In particular, B is diagonalizable as well as its restrictions B,

and B,.

In a language familiar to graph theorists, the multi-digraph associated with B is a
front divisor of the graph associated with A, i. e., the graph consisting of the vertices and
edges of P ([CDS]).

Whenever P has central symmetry, B shall also have central symmetry provided levels
are properly ordered. In this case, the linear involution R taking points to their antipodes
on S commutes with B and permutes elements of the chosen basis of S. The elgenspaces
S. and S, associated to +1 and —1 of R are invariant under B and for Be = B|5 and
B, = B|S we must have O'(B) = O'(B YU O'(Bo) since S = S, @® S

We remind the reader that the computation of a high power n of a diagonalizable
matrix M is easily performed once its spectrum (but not the multiplicities) is known.
Indeed, the matrix M™ equals p(M ), where p is any polynomial taking each eigenvalue
to its n-th power. In particular, any power of A, B, B, and B, can be computed from
a polynomial with integral coefficients of degree smaller than the number of its distinct
eigenvalues.

The symmetry of the polytope allows us to count paths of length n from one vertex
to another simply by looking at the first column of B™. Indeed, without loss, assume one
of the vertices to be v, the vertex at the top level. Then the number of paths of length
n from v to a vertex in level ¢ is given by the i-th element of the first column of B™.
The proof is similar to the usual argument which identifies entries of powers of adjacency
matrix to numbers of paths of prescribed length from one vertex to another. Also, B™ can
be obtained from B[' and B}, which simplifies computations even further.

We now indicate how to compute the multiplicities m; of the distinct eigenvalues A;
of A. Let ¢ be the number of closed loops of length &k, with base point v. Then

V|-l = te(A%) = Y~ mAlb,
Xi#E N

Once the \; are known, the m; are solutions of a linear system obtained by inserting small
values of k.

We can also study the eigenspaces in U of the adjacency matrix A; remember that
all vector spaces are complex. Representation theory now comes in naturally, since these
eigenspaces are invariant under the action of the full symmetry group. Do the eigenspaces
break into smaller group invariant subspaces? This is of course equivalent to asking whether
the action restricted to the eigenspaces is irreducible. For eigenvalues of A which have
multiplicity one as eigenvalues of B, this is true. Indeed, the averaging process described
above can be performed within any invariant subspace, yielding a non-trivial subspace
in the quotient S. If all eigenspaces are irreducible, the multiplicities of the eigenvalues
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correspond to the dimensions of the irreducible parts of the representation of the symmetry
group in U. These dimensions could of course have been computed using the character
table of the group, but linear algebra obtains the answer in a computationally simpler way.

Eigenvalues

The list of all regular polytopes in all dimensions is well known ([C]) and we shall
almost always use Schlafli symbols to denote them. In dimension 2 we have the regular
n-gons {n}, for n > 3. In dimension 3 we have the tetrahedron {3,3}, the octahedron
{3,4}, the cube {4,3}, the icosahedron {3,5} and the dodecahedron {5,3}. In dimension
4 we have six polytopes denoted by {3,3,3}, {3,3,4}, {4,3,3}, {3,4,3}, {3,3,5} and
{5,3,3}. In dimensions 5 and larger we have only three polytopes: {3,...,3}, {3,...,3,4}
and {4,3,...,3} where the dots stand for a sequence of 3’s. The first of these generalizes
the tetrahedron and shall be called 7;, where n is the dimension of the ambient space.
Likewise, the second and third generalize the octahedron and cube and shall be denoted
O,, and C,, respectively.

The spectrum of the regular n-gon is well known ([CDS]):2, 2 cos(27/n), 2 cos(4n/n),
...,2cos(2[F]7/n),with multiplicities 1,2,2,... ,where the last number is 1 or 2 depending

0 n
B_<1 n—1>'

The spectrum of P is therefore n, —1 and the multiplicities of these eigenvalues are 1 and

on the parity of n.

For P =T,, we have

n, respectively.

For P = O,,, we have

0 2n—-2 0
B=1|1 2n—-4 1
0 2n—-2 0

The spectrum of P is therefore 2n — 2, —2, 0 and the multiplicities of these eigenvalues
are 1, n — 1 and n, respectively.

For P = C,,, we have
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We could compute the spectrum of this matrix but it is much easier to notice that, if A,

is the matrix A for P = C,,,
An In

for an adequate labeling of the vertices. By induction, the spectrum of A, is n,n —
2,...,—n + 2,—n with multiplicities (3), (’f), . ,(n’il),@)

For P = {5, 3}, the dodecahedron, the set of 20 vertices breaks in six levels a, b, ¢,
—c, —b and —a with a clear geometric interpretation: hang the solid by a vertex v, and the
vertices group at different heights in sets of 1, 3, 6, 6, 3 and 1 elements. The two central
subsets are indeed levels, since H, = D3, the symmetry group of the triangle, contains
orientation reversing isometries.

In order to build the matrix B we have to find out in what level lie the neighbours of
each vertex. It is clear that the top vertex has all three neighbours in b. Also, a vertex in
b has one neighbour in a and two in ¢, and a vertex in ¢ has one neighbour in b, one in
cand one in —c. By symmetry, it is obvious what happens in levels —¢, —b and —a. We

then have
0 300 00
10 2 0 0 0
0 1.1 1 00
B = 0 01 1 10
0 00 2 01
00 00 30
and for the obvious choice of basis,
0 3 0 0 3 0
B.=|1 0 2 and B,=|1 0 2
0 1 2 0 1 0

with spectra 3,1, —2 and 0,v/5, —/5 respectively. The multiplicities of these eigenvalues
in A are 1, 5, 4, 4, 3, 3, in this order.

For P = {3,5}, the icosahedron, we have

0 5 0 5
Be—<1 4) and Bo—<1 0)

with spectra 5, —1 and /5, —/5 respectively. The multiplicities of these eigenvalues in A
are 1, 5, 3, 3, in this order.

There are two easy ways to compute the matrices B, B, and B, for P = {3,4,3}.
One way would be to study in some detail the combinatorial structure of the polytope,
as will be done in the next example. Another way would be to use the following simple

4



coordinates for the vertices ([C], p. 156): they are the 24 permutations of the coordinates
of the vectors (+1,0,0,0) and (:I:%,:I:%,:I:%,:I:%). From the coordinates, the adjacency
relations among levels are obvious and, for P = {3, 4, 3}, we have

0 8 0
B.=|1 4 3 and Bo:<(1) i)
0 8 0

with spectra 8,0, —4 and 4, 2 respectively. The multiplicities of these eigenvalues in A are
1,9, 2,4, 8, in this order.

In order to obtain B for P = {3, 3,5}, we build the polytope from one vertex outwards,
by adding pieces. We recall ([C], p. 153) that P has 120 vertices and 600 tetrahedral faces,
each edge being surrounded by five tetrahedra. It follows that there are twelve edges
incident to each vertex and that there are twenty tetrahedra around each vertex forming
an icosahedron. Notice that here, as for any regular polytope, we can think of G as acting
not only on vertices, but on k-dimensional faces. In this example, it may sometimes be
helpful to think of G as acting on tetrahedral faces. More precisely, there is a unique
element in G which takes one source tetrahedron to a target tetrahedron, with arbitrary
assignment of vertices.

We begin the construction by calling a the level consisting of the single vertex v. We
then surround v by twenty tetrahedra labelled «, which give us 12 new vertices in the new
level b. Notice that b is a level: indeed, it is easy to check that b is closed and transitive

under H,.

In Figure (1.I), we represent six of the twelve vertices in b. From the adjacency
relations among vertices in a and b, we learn that

The five triangular faces in the picture belong to five distinct tetrahedra labelled «. The
number of marks along an edge indicates the number of tetrahedra incident to that edge.
Next, we glue twenty new tetrahedra labelled 3 over the exposed faces of the tetrahedra
«, obtaining twenty vertices in a new level ¢ (Figure (1.II)). Again, c is a level, since there
is an obvious correspondence between the vertices in ¢ and the tetrahedra a. Now, add 30
tetrahedra labelled v as in Figure (1.II1), and edges between elements in b get completely
surrounded ( and omitted from the subsequent pictures ). From the construction so far we
see that

0 12 0
1 5 5
B: 0
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At this point, Figures (1.IV) to (1.VII) should be self-explanatory. In the process, we
obtained levels d and e, with 12 and 30 elements, and 60 tetrahedra labelled 6, 60 €’s, 60
(’s and 20 n’s.

We are almost halfway through. We can try to complete the polytope by glueing two
copies of Figure (1.VII) with levels a, b, ¢, d, e and —a, —b, ¢, —d, —e = e to each other
along the exposed n-faces. We need 60 additional tetrahedra 6 to accomplish this. We
insert them in Figure (1.VIII). Notice the presence of 12 vertices belonging to the level
—d. We have to check that we indeed have five tetrahedra around each edge. This follows
by adding the numbers attached to corresponding edges in Figures (1.VII) and (1.VIII).
We then have the following matrix B, with lines and columns corresponding to a, b, ¢, d,

e=—e, —d, —c, —b, —a:
0 12 0 0 0 00 0 O
1 5 510 00 0 O
0 3 333 00 0 O
01 505 10 0 O
B=]10 0 2 2 4 2 2 0 0
0 0 01 5 05 1 0
0 0 00 3 3 3 3 0
0 0 00015 5 1
0 0 000 0 0 12 0
From the usual procedure,
0 12 0 0 0 012 0 0
1 5 5 10 1 5 5 1
B.=10 3 3 3 3 and B, =
0 3 3 3
0 1 5 15 0 1 5 -1
0 0 4 4 4

with spectra 12,0,—3,2 + 2v/5,2 — 2v/5 and 3,—-2,3 + 35,3 — 3v/5 respectively. The
multiplicities of these eigenvalues in A are 1, 25, 16, 9, 9, 16, 36, 4, 4, in this order.

The computation of B for P = {5, 3,3} is somewhat cumbersome. The combinatorial
argument used in the case of {3,3,5} can be mimicked and the list of diagrams corre-
sponding to Figure 1 is about twice as long. Instead, for brevity, we compute B by making
use of appropriate coordinates for the vertices ([C], p. 240). The coordinates for the 600
vertices of P are listed schematically in Table 2, as well as the adjacency relations among
vertices.

The first and second columns in Table 2 contain the name and number of vertices of
a level. In order to obtain all vertices in one level from the vertex in the third column
of the table keep the entry before the semicolon fixed and permute the remaining entries
in all possible ways changing an even number of signs. There are also levels —a through
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Level # Coordinates Nerghbours
1 (a;z,2,) (byu,u,u), (byu,—u,—u), (by—u,u,—u), (b;—u,—u,u)

4 (b;u,u,u) (a;z,z,2), (¢;m,v,v), (¢;v,m,v), (¢;v,v,m)
12 (c;m v, ) (b u,u,u), (¢;m,—v,—v), (d;l,q,w), (d;1,w,q)
24 (d; w) (¢;m,v,v), (d q,l, w) (e;i,ry,—1), (g;9,p,1)
12 (ezr —r) (d,l,., ),( —q), (fin,n,—n), (i;e,r,—r)
4 (fin,n,—n) (e;e,r,—T), (era—r), (e;r,r,—1t), (ki k, k,—Fk)
24 (9:9,p.1) (d;l,q,w), (959,t,p), (hih,h,s), (I;d,q,w)

12 (h;h,h,s) (9:9.p:1), (9;p,9,1), (JJJJ) (p;g,9,t)

12 (i e,r,—1) (e;i,r,—r), (I;d,q,w), (I;d, —q), (n; f,n,—n)
4 (454,3:7) (h; ks, by s), (hhsh),( Shh) (s;h,hyh)

4 (kik,k,—k) (fin,n,—n), (n; —n), (n;n, f,—n), (n;yn,n, —f)
24 (4 d q,w) (9:9,p,1), (t e,r, =), (

m;e,v,v), (¢;d, 1, w)
12 (mene) (b w), (d,w,g), (m56—v,—0), (u;bu,u)

XK & < g =+ uw "#-Q”U:E.—pr'u..-.rgq O AT

12 (n;f,n,—n) (i5e,rm,—1), (kik,k,—k), (r;e,i,—r), (r;e,r,—1)

12 (pig,9.1) (hi b hos), (gid, Lw), (i1 d,w), (t9.9,p)

24 d Z Ll)) (Z;da%w) (pag 9, )7 (T,G,l,— )7 (U ¢, m, U)

24 (r,e &, —T) (n; fyn,—n), (¢;d,l,w), (r;i,e,—r), (— w,d, l,—q)

4 (S,h,h,h) (7575353); (t g,gap), (t;9,p,9), (P, 9,9)

12 (tig,9,p) (P19, 9:1), (sih, hyh), (wid, 1 q), (w;l,d,q)

12 (u;b,u,u) (m;c,v,v), (vie,m,v), (U c,v,m), (z;a,z,x)

24 (v;e,m,v) (¢ ,d,l,w) (u; b, u,u) (w; d ) (—v;e,m,—v)

24 (w;d,1,q) (t;9,9,p), (v;c,m v), (w; d ¢,0), (- T,e,tﬂ“)

6 (z;a,z,2)  (w;byu,u), (uyd,—u,—u), (—u;b,u,—u), (—u;b,—u,u)
where

a=4, b=1435 3854, ¢ =345 3618, d=1+5 ~ 3.236,

e=3, f= 15 x 2854 g =35 2618, h=i =5~ 2.236,
j=k=1=2 m=n="%55 1618 p=7 ~ 1382, ¢ = -1+ 5 ~ 1.236,
1, t=u= =155 20618, v =25~ 0382, w=2z = 0.

Table 2

—w (but —x = x); with vertices obtained by changing the signs of all coordinates of the
vertices of the corresponding positive level. The last column lists the four neighbours of
the chosen representative of the level. Different levels may well be at the same height.
From this information we construct the matrices B, B, and B, (Figs. 3 and 4).

The matrices B, and B, have spectra 4, 1, 0, —1, /5, —V/5, 5""2\/5, 5_2\/5, _3'5\/5,
—3-v5 —1+v21 —1-721 143v5  1-3v5  1+v5 1-+5 3+v13 3-V13
2 2 ’

’ 2 ) 2 ’ ) 2 ) 2 ) 2 2 2 ’

a, b, ¢ and —2
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Table 3

—14+ 2, =1 —+/2, d, e, f respectively, where a,b, ¢ are the roots of 2> — 2% — Tz +4 =0
and d, e, f are the roots of 3 —2? —72+8 = 0. These values were first obtained numerically
and the exact answers were guessed by matching algebraic conjugates. The fact that many
of these eigenvalues are not simple helped a lot; the multiplicities of these eigenvalues in
B, and B,are 1, 1,1, 1,1, 1,1, 1,1, 1,2, 2, 3,3, 3and 1, 1,1, 1, 1, 2, 2, 2, 2, 3, 3,
3, in this order. It was then a simple matter to check by exact arithmetic (since all our
candidate eigenvalues are algebraic integers) that our guesses were indeed correct. It is
rather surprising that all eigenvalues have such small algebraic degree. The multiplicities
of these eigenvalues in A are 1, 40, 18, 8, 24, 24, 9, 9, 30, 30, 16, 16, 25, 25, 25, 8, 4, 4, 24,
24, 16, 16, 48, 48, 36, 36, 36, in this order.

Eigenvectors

We now prove that, for any regular polytope in any dimension, the full symmetry
group acts irreducibly on all maximal eigenspaces in U.
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o oo0o0o002001O0O00O01O0 0 0O0O0 0 0
o oo060o0o10o0O0O0O0O0O02010O0 0 0O0O0 O 0
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o oo0o0oo0o0o00101O00O0O0O0 2 0O0O0 0 0
o oo0o0o0001O0O0O0OO0OO0ODO0OO0O2 0 01TQ0 0 0
o oo0o0oo0oo0o00O0O0OO0O10O01O0 1 0O0O01 0
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o oo0o0oo0o0o00O0OO0OO0OO0OO0OO0OO0OO0O-101T0 1 1

Table 4

In all cases except {5, 3, 3}, this follows directly from the fact that the spectrum of B is
simple, as can be verified by inspection case by case in the computations above. Indeed, as
seen in the theoretical remarks above, a decomposition of the eigenspace corresponding to
A in U into non-trivial invariant subspaces would give a decomposition of the eigenspace
corresponding to A in S into non-trivial subspaces. For the missing polytope, we have
twelve non-simple eigenvalues of B, with multiplicities 2 or 3. If one of the associated
eigenspaces were reducible, there would be a corresponding one dimensional subspace in
S. We explicitly rule out this possibility.

The symmetry group acts on U by permutations, and each element ¢ of the group
induces a map P, from S to itself as follows. Interpret a vector s € S as a vector in U,
and define P;(s) as what we obtain from s? by the usual averaging process. Notice that
P, depends only on the level to which the top vertex v is sent by g. We denote by B,
the transformation induced by an element taking the top vertex to the level z. We can
compute the entry 7, j of P, in the ¢! basis by considering any isometry @), that takes the
top vertex to the level z and then counting how many of the 24 elements of H, take a
fixed vertex in level j to a vertex which is taken by (), to level . Invariant subspaces of
U under the group action correspond to subspaces of S invariant under all P,. Therefore,
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a one dimensional subspace of S of this kind must be an eigenspace for all P,. If such a
common eigenspace existed, it would have to be in the kernel of all commutators [Py, P,]
for arbitrary levels y and z. We computed Py, and Pj and their commutator turned out to
be invertible when restricted to the maximal eigenspace of any non-simple eigenvalue.
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