Some remarks on self-affine tilings

Derek Hacon, Nicolau C. Saldanha, J. J. P. Veerman

Abstract: We study self-affine tilings of R® with special emphasis on the two-
digit case. We prove that in this case the tile is connected and, if n < 3, is a
lattice-tile.

0. Introduction

The present article is devoted to the study of certain tilings of R” defined by “gener-
alized decimal expansions” in which the base 10 and the digits 0,...,9 are replaced by an
integer n X n matrix A and a finite subset D of Z". The expansions in question are of the

form
Z Ai’Uz’

—oo<i<N

where N € Z and all the v; belong to D. To guarantee convergence, A is assumed to be
expanding (i.e. all its eigenvalues have modulus greater than 1). Since A is an integer
matrix, it follows that its determinant is +q where ¢ is a positive integer. D is required
to consist of exactly ¢ elements, one for each coset of AZ™ in Z™ (in the terminology of
[LW1], D is a standard digit set). We assume for simplicity that 0 belongs to D.

Corresponding to the integer and fractional parts in the usual decimal expansion,
define I to consist of all sums of the form vg + - - - + A*v;, (where k > 0 and v; € D) and Q
to be the set of all infinite sums A~ 'v_; + A™2v_5 +--- (v; € D). In the usual decimal
expansion, @ is the unit interval and I = {0,1,2,...}. The set I + @ tiles some subset of
R"™ and we may enlarge I to obtain a set G’ so that G’ + @ is a tiling of R™ (1.13). In fact,
G' C G =1 — I, the set of differences of elements of I. The following example, although
simple, illustrates several features of the general case: if n =1, A =3 and D = {0,4,11}
then I = {0,4,11,12,16,...} and R is tiled by the translates of Q by Z (see the end of
section 1). It turns out that G’ is a lattice if G = I — I is one also; in this case, G' = G. If
G is a lattice, we call @) a lattice-tile. Grochenig and Haas ([Gr], [GrH]) have shown that
for n = 1, G is always a lattice. On the other hand, an example due to Lagarias and Wang
([LW1], Example 2.3) shows that, for n > 1, G is not always a lattice.

Section 1 consists mostly of a review of basic results on self-affine tilings of R™. This
section overlaps substantially with results of other authors (see [B], [GrM], [Ke], [V] and the
pre-prints [GrH], [LW1], [LW2], [LW3]); we take this opportunity of thanking the referee
for drawing our attention to a number of these references. In section 2 we investigate
certain aspects of the case ¢ = 2: we prove that () is always connected and that, for n < 3,
G is a lattice. Finally, in section 3, we derive an algorithm for checking if G is a lattice
given A and D (see [V] for another algorithm).

All three authors receive support from CNPq and MCT, Brazil.
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1. Basic Results

In this section we establish some basic results on tilings of R” which are self-affine in
the terminology of [LW1]. Some of these results are due independently to other authors;
we refer the reader to the references given in the introduction.

Let A be an expanding integer n xn matrix (i.e. all of whose eigenvalues have modulus
greater than 1). Then, of course, det A = +q where ¢ is a positive integer. Reducing A to
Jordan canonical form, one has:

Lemma 1.1: For any bounded set B the diameter of A~*B tends to 0 as k — oo. u

We also suppose given (or choose) a set D of ¢ elements of Z™ such that:
(1) 0 belongs to D.

(2) The elements of D are distinct modulo AZ"™, in the sense that if r,s € D and r — s €
AZ™ then r = s.

It follows that Z™ is the disjoint union of the ¢ cosets r + AZ™ (r € D). Here we
denote by X + Y the set of all sums =z + y where x € X, y € Y. Infinite sums are defined
if all sets contain 0. Thus, if 0 € X for all k, X7 + X3 + - - - is the increasing union of the
X1+ -4 X for all k.

Since Z™ = D + AZ™, one has Z™ = D + AD + A2Z™ and so on. We write
I=D+AD+ A’D+---.

This representation of I is unique, for if r; + --- + A*r, = 51 +--- + AFsy, then r{ = s;
modulo AZ™, so r; = s1. Similarly ro = s9,...,7% = Sg.
Example 1.2: Forn =1, A=3 and D = {0,4,11} we have I = {0,4,11,12,16,...}.
Definition 1.3: If Z C R" define 7Z = A~Y(D + Z).

Then 77 = Qi + A7*Z where Qi = 7%({0}) = A™'D + --- + A7*D. Clearly
Q1 C Q2 C --- and AQy; C A?Qy C --- C I. Notice that the compact set |J, Q is

invariant under 7. Following [H] (compare [F2] and [LW1]), we examine how 7 acts on the
compact subsets of R™ in order to characterize this set.

Definition 1.4: H(X) is the space of compact non-empty subsets of a metric space X,
equipped with the Hausdorff metric:

d(K, L) = inf{e | K C N.(L), L C N, (K)}

where N (K) is the open e-neighbourhood of K.

It is well known that if X is complete so is H(X). Clearly, 7 maps H(R") into itself.
By 1.1, some power 7V of 7 is a contraction mapping. Let @ be the unique fixed point of
7. Since 7N7Q = 7Q, one has 7Q = Q, by uniqueness. If K € H(R") and 7K = K then
VK = K so that K = Q, again by uniqueness. We have proved:

Lemma 1.5: 7: H(R") — H(R™) has a unique fixed point Q. -
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Furthermore, for any K € H(R"), Q = limg_,o 7FK, the limit being in the Hausdorff
metric: consider the subsequences of the form k = jN + kg, k¢ fixed, j — oo. For example,
taking K = {0}, @ = U, Qr and the finite sets Q are approximations to @ (in the
Hausdorff metric).

We next ask how R® may be represented in terms of I and (). We first show that
R™ = Z" + @, in other words, that 7Q) = T" where 7 : R® — T" is the quotient map onto
the n-torus T" = R"/Z". Since AZ™ C Z", A induces a map A : T" — T". Now At
acts on subsets of T" in the obvious way, taking B to A~!B. Clearly we obtain a map
W : H(T") — H(T™). Also w induces = : H(R®) — H(T™), which is continuous; indeed, =
decreases distances. Since the digits form a complete set of representatives modulo AZ",
T = Wm.
Lemma 1.6: Z"+ Q@ =R".

Proof: Let K € H(R") be such that 7K = T. Then 7Q = wlimg 7*K = limy 77*K =
limg WrnK =T. -
The above lemma implies the following result (compare Theorem 1.1 in [LW1]).

Corollary 1.7: (@ has non-empty interior.

Proof: Follows from 1.6 by Baire’s theorem. u
We next look at the self-similarity properties of @ (compare [F2]). Let | X| be Lebesgue
measure of X; all sets considered will be measurable.

Definition 1.8: Z; and Z, overlap iff |Z1 N Zs| > 0. A sum X + Y does not overlap iff
the sets x +Y do not overlap for x € X.

Lemma 1.9: Qi + A~*Q does not overlap.

Proof: (@ contains at most ¢* points and |[A=*Z| = ¢~*|Z| for any Z. Since Q = 7FQ,
the lemma follows. u
Corollary 1.10: I + @) does not overlap.

Proof: If u,v € I and u # v then, for some k, where u,v € A*Qy. Since, by 1.9,
A%y + A=*Q and A=Fv + A=F(Q do not overlap neither do u + @ and v + Q. -

Definition 1.11: If X, H,Y C R" are measurable sets, where X is bounded with non-
empty interior, we shall say that H+ X is a tiling of Y if Y = H+ X and H + X does not
overlap.

Definition 1.12: G=1—-1.

From 1.7, and the self-similarity of @ (1.9), we can recover the following tiling property
(see [GrH]).

Proposition 1.13: There exists a subset G’ of G such that G'+Q tiles R™. Furthermore,
G'-G CQ@.

Proof: From 1.7, () has non-empty interior. Since A is expanding, given r there exists
k. such that a ball of radius r + diam(Q) fits inside A* Q. But A*Q = A* Q). + Q, and
this sum is non-overlapping by 1.9. Thus, for some element v, of A¥ Q. , G, + Q tiles (a
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superset of) a ball of radius r around the origin, where G, = A Q. — v, C G. Consider
such G, for all positive integers 7.

We now have tilings of arbitrarily large regions around the origin; using these, we
assemble a tiling of R™. Given any positive integer s, the intersections of G, with By, the
ball of radius s around the origin, can only produce finitely many different sets. Thus,
there is an infinite subsequence of values of r for which these intersections are all equal.
Starting with s = 1, we take a subsequence G1,G1, ... of G1,Ga, ..., all meeting B; in the
same set. For s = 2, we take a subsequence G3,G3, ... of GI,G1, ... all meeting B, in the
same set. We repeat the process for s = 3,4,5,.... Define G’ to be the set of elements of
G belonging to all but finitely many of the sets G1,G2,G3, .. .: by construction, G’ + Q is
a tiling of R™.

To prove the last assertion, we observe that G, — G, = Qk, — Qr, C I —1 = G and
therefore G’ — G’ C G, since any finite subset of G’ is contained in some G,.. -
Next consider how 7 acts on the (measurable) subsets of Q.
Definition 1.14: 7, = Z5 means |Z1 U Zy| = |Z1 N Zs|.
Definition 1.15: A subset Z of Q is T-invariant iff Z = 77.
Lemma 1.16: IfZ C @ then |7Z| = |Z]|.
Proof: Let Y = Q\Z. Then, by definition of 7, |7Z| < |Z| and |7Y| < |Y|. But
TZUTY =7Q =Q = ZUY so that |[7Z] = |Z|. -
Thus, if Z C 77 or if 77 C Z then Z is 7-invariant. We now have the following
ergodicity result (see the end of this section).
Proposition 1.17: The measure of any T-invariant subset of Q) is either 0 or |Q)|.

Proof: Suppose that Z is 7-invariant and |Z| > 0. It follows directly from the Lebesgue
density theorem that we may choose a point x at which Z is dense, i.e., such that

Z N N
L 120 N()]

=1.
N0 |[Ne(z)]

Thus, given 0 > 0, we have, for ¢ > 0 sufficiently small,

|Z N Ne()]

Q) =0

For k large enough, the diameter of A=*(Q will be small enough, in comparison with ¢, to
ensure the existence of v € x such that

ZN(v+ A7FQ)
QN (v+ AFQ)

1

Indeed, by 1.9, the tiny sets v + A~*Q, for v in some subset of Q, cover N,(z), except for
a narrow margin around the boundary of N(z) (of negligible size), without overlapping;
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if the above ratio were smaller than 1 —§ for all such v the ratio in the previous inequality
would be smaller than 1 — §/2, a contradiction.

By hypothesis, Z = 7*Z. Hence Z = Qp+A%Z. By 1.9, (Qp+A*Z)N(v+A7FQ) =
v+ A~*Z. Hence .
Z] v+ A Z‘>1—(5.

QI v+ A-kRQ[ —
Since § > 0 is arbitrary, we are done. u
Corollary 1.18: Except on a set of measure zero, w : Q — T" is £ to 1 for some fixed
integer £.

Proof: Let Q%) = {z € Q| 4+ Z" meets Q in at least k points (including z)}. Clearly,
Q=0QWD>Q® D ..., and Q™ is empty for large k (since Q is bounded) and the Q*)
are all measurable.

To verify that Q®) C 7Q®) for all k, let z,y € Q such that x —y € Z™. Since
Q = 71Q, we have z = A~ (2’ +7),y = A7 (y + s) for some z',y' € Q and r,s € D.
Clearly, ' — 4’ € Z™ and if ' = ¢’ then r — s € AZ™ so that r = s and, therefore, z = v.
This proves that Q®) C 7Q®*) and that Q¥ is 7-invariant for all k. By 1.17, |Q®)| is 0
or |Q|; take £ to be the largest value of k for which |Q®)| = |Q]. -

Notice that in this proof we only use the fact that (D — D) N AZ™ = {0}; see [LW1]
for more general digit sets.

Corollary 1.19: The Lebesgue measure of (Q is always an integer. u

Corollary 1.20: The boundary of () has measure zero.
Proof: By 1.7 [IntQ| > 0. Also 7(IntQ) C Int@ by definition of 7. Now apply 1.17. g

We now show that if G is a lattice, then G’ = G.
Proposition 1.21: G is a lattice if and only if G + Q) tiles R™.

Proof: First assume G to be a lattice. Let v and w be distinct points of G. By hypothesis,
v—w =x—1y where z,y € I. By 1.10, x + Q) and y + () do not overlap so neither do v+ Q
and w + Q.

Conversely, if G + @@ does not overlap then G = G’ since G’ + @ is a tiling. Thus, by
1.13, G — G C G and G is a lattice. u
From 1.13 and 1.21 we have:
Theorem 1.22: If G is a lattice then G + @ is a tiling and the Lebesgue measure of ()
is equal to the index of G in Z". -
We may deduce a criterion for G to be a lattice.
Lemma 1.23: IfGNQ =7Z"N(Q then G = Z".

Proof: Define C : Z" — Z™ by C(v) = A7'(v + r) where r is the unique element of D
such that v +r € AZ™. Clearly, C~'G C G. For any v € Z" and any k > 1 we have,
by definition, C*(v) € 7%({v}). But Q = limy 7%({v}) and Z" is discrete, so eventually
C*(v) € Q. By hypothesis, C*(v) € G, i.e., v € C7*G. Hence v € G, as required. -
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Returning to Example 1.2, we show that G =Z forn =1, A =3 and D = {0,4, 11}.
It is easy to see from the definition that @ is contained in [0,11/2]. We generate all integers
in this interval:

0543125302
and
0455

Here aLcmeansc:?;a—l—b. For example, 2 =4-3% —11-32+0-3' —7-3° We thus
have GNQ = {0,1,2,3,4,5} =ZNQ and, by 1.23, G = Z. From Theorem 1.22, Z + Q@ is
a tiling and |Q| = 1.

Let G be the lattice generated by G; thus, G is a lattice iff G = G. As we shall see in
Section 3, G is easily computable.
Proposition 1.24: G is a lattice if and only if GNQ =GN Q.

Proof: Trivially, if G is a lattice then GNQ = GN Q. Conversely, assume GNQ = GNQ:
since Q is bounded and G’ + Q@ = R™, G’ is not contained in a proper vector subspace of
R™. By definition, AG C G so AG C G. Now G C Z" and spans R” since G’ does hence G
is isomorphic to Z™. Also D C G (since D C G) and the elements of D are distinct modulo
AZ"™ and hence modulo AG (since G C Z"). Therefore, D contains precisely one element
in each coset of AG in G and C : G — G as in the proof of 1.23 is well defined. Now follow
the proof of 1.23 with G instead of Z". -

The question whether or not G is a lattice has been settled in various cases. In
dimension 1, Grochenig and Haas prove:
Theorem 1.25: ([Gr]) If n = 1 then G is always a lattice.

On the other hand, one has the following example due to Lagarias and Wang:
Example 1.26: ([LW1]) G is not a lattice in the case

A:<§ ;) D = {(0,0), (3,0), (0, 1), (3, 1)} .

For the reader’s convenience, we include a proof of 1.25 which is based on arguments in
[Gr] and [GrH]. We first present a series of auxiliary definitions and results. Consider the n
dimensional case for a moment. We denote the coefficient of z* = 2 ... 2k~ k€ Z" in a
Laurent series g € R[z1,27 ", ..., zn, 22 '] by x&(g). The key to the proof is the introduction
of the polynomial T' defined by xx(T) = |Q N (k + Q)|. Clearly, T is constant iff Z™ + @
does not overlap.
Definition 1.27: The tiling polynomial T is defined by xx(T) = |Q N (k + Q).
Definition 1.28: Ifg =Y axz* theng = arz~*.

The notation comes from g(z) = g(z) when |z| = 1.
Definition 1.29: D=}, , 24,

Lemma 1.30: xx(qT) = xax(DDT) for all k € Z".
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Proof: We recall that ¢ = |det A|. Since @ = 7Q (1.5) and by 1.9, we have xx(¢T) =
Q@ Nk + Q| = [AQ N Ak + AQ| = [ATQN Ak + ATQ| = D+ QNAk+D+ Q| =
Yoaaep | @TQNAk+d +Q| =324 yep |@NAk+d —d+ Q| = xar(DDT), by definition
of D and T. -

Definition 1.31: § is given by xx(9) = xax(DDg).
Thus, the lemma above may be rewritten as T = qT. Notice that, since D is a
complete set of residues modulo AZ™, we have 1 = q.
Returning to the 1-dimensional case, we take A = q.
Lemma 1.32: For |z| =1, q§(z) =Y, 9(w)|D(w)[>.
Proof: Write § = DDg. Then §(z) may be written in the form §(27) + zg1(2%) + -+ +

2971 g, 1(2%) for appropriate gi,...,g4-1. So if w? = z then g(w) = §(z) + wgi(2) +-- -+
w? g, 1(2). But Y, ., w? =0for 0 < j < q. It follows that ¢g(z) = ,_, 7(w). m

Taking g =1 and g = T, we obtain, for |z| =1,

Y D) =q* (1)

wili=z

and

Y [Dw)*(T(w) = T(2)) =0. (2)

wi=z

Since x_x(T) = xx(T), the restriction of T' to the unit circle S' = {z | |z| = 1} is real
valued.

Lemma 1.33: IfT is non-constant then ged(D) > 1.

Proof: The set E of extrema of T in S! is finite and consists of at least two points. Also,
if 2 € E, then, for all y € S, T'(2) — T'(y) has the same sign. Let z # 1, z € E. Then, by
(1) and (2), there is some wg, w§ = z, for which T'(wg) = T'(z) and therefore wy € E. For
each z there is at least one such wy and different values of z correspond to different wy;
finiteness of E' then guarantees that, given z, there is exactly one such wy and therefore
T(w) # T(z) if w # wp and w? = z. Again from (2), |D(w)| = 0 for such w and, from (1),
|D(wp)| = q and therefore wd = 1 for all d € D (since 0 € D). It follows that w(g)Cd(D) =1
implying ged(D) > 1 since wi = z # 1. -

Proof of Theorem 1.25: By the previous lemma, if gcd(D) = 1 then Z + @ does not
overlap. Since Z + @Q = R (1.6), Z + Q is a tiling. But G C Z and G + Q is a tiling; it
follows that G = Z and G = Z is a lattice. -

We close this section by describing briefly how the results of this section are related
to the study of expanding toral epimorphisms ([Kal], [M]). Katznelson determined which
toral epimorphisms are Bernoulli in terms of the eigenvalues of A, where A is the integral
matrix representing the epimorphism A. From Katznelson’s theorem and the classification
of Bernoulli shifts by their entropy it follows that any expanding toral epimorphism is
equivalent to the shift of type (1/q,...,1/q), where ¢ = |det(A)|. In fact, the generalized
decimal expansion (base A) provides an equivalence between A on T" and a one-sided
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Bernoulli shift. From the fact that Q = A='D + A~1Q is non-overlapping it follows that
one may define (almost everywhere on @) the shift S by S(z) = Az — r where r is such
that © € A='r + A~1Q. It is easily verified that m 0 S = A o 7 whenever S is defined.
By 1.22, 7 : @ — R" /G is an equivalence between (Q,S) and (R"/G, A) provided G is a
lattice. In particular, when G is a lattice, Proposition 1.17 can be deduced from the known
fact ([M]) that A is ergodic.

2. The two digit case

Throughout this section we assume A to be an expanding n X n integer matrix with
g = | det(A)| = 2 so that D consists of two digits, 0 and v (say). The case ¢ = 2 has
certain special features which we explore in this section. We begin by showing that Q is
connected by constructing a space-filling curve in . We then prove two theorems (2.10
and 2.12) which guarantee that in many cases G is a lattice.

From 1.9, we have Q = Qi + A~*Q. Thus Q is the union of 2* k-pieces, each of the
form w + A7*Q (where w € Qy).

Lemma 2.1: The intersection of the two 1-pieces of () is non-empty.

Proof: Assume for a contradiction that the two 1-pieces A=) and A= 'v + A~1Q are
disjoint. Then the four 2-pieces of @ are also disjoint and, in general, the 2F k-pieces are
all disjoint. We know that () has non-empty interior and therefore contains a ball, which
is covered by k-pieces whose diameter can be taken to be smaller than that of the ball.
This contradicts the fact that the ball is connected. m

We construct a surjective continuous function « : [0, 1] — @ by first defining it on the
6-adic numbers in [0, 1] and then passing to the limit.
Definition 2.2: J, =[0,1]NZ/6*F = {0,1/6%,...,1}.
Definition 2.3: ~: J; — @ is admissible iff:
(1) There is at least one point of v(Ji) in the interior of each k-piece.

(2) For any two consecutive points r, s of Jy, there is some k-piece containing both ~(r)
and 7(s).
Lemma 2.4: Any admissible v : Ji, — QQ extends to an admissible ¥ : Jy11 — Q.

Proof: Let ag, a1, as,as,aq4,as,ae be consecutive points of Ji1 with ag, as € Jx. By (2),
~v(ag) and 7y(ag) both lie in some k-piece. This k-piece is the union of two (k + 1)-pieces,
Py and Py, say. Arbitrarily choose ¥(a1),%(a3),(as) € Py N Py (which is non-empty by
Lemma 2.1), 4(az2) € Int(FPy) and F(a4) € Int(P1). This defines 4, which is easily seen to
be admissible. u

Theorem 2.5: Ifq = 2 then @) is path-connected. Moreover, there exists a continuous
surjective map vy from [0,1] to Q.

Proof: Start by defining v(0) and «(1) arbitrarily. Use the previous lemma to define
~ on the union of all Ji. The function v is uniformly continuous because steps of size
6~% correspond to arcs contained in a k-piece and the diameter of a k-piece tends to zero.
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Thus, 7 can be continuously extended over [0,1]. Furthermore, + is surjective because its
image is dense, since it contains points in the interior of each k-piece for all k. u

Another interesting feature of the case ¢ = 2 is that it allows us to produce many
examples of expanding matrices A such that, for all digit sets, G is a lattice. In particular,
this is true for n < 3.

Let A be an expanding matrix with ¢ = |det(A)| = 2. The lattice G consists of all
vectors of the form g(A)v where g € Z[z]. Also, since G has rank n, g(A)v = 0 if and only
if g(A) = 0. We thus identify G with Z[A] which is, by definition, the ring of all matrices
of the form g(A), where g € Z[x]. The characteristic polynomial p4 of A is irreducible in
Z[z]: if it could be factored, one of the factors would have constant term 1 and its roots
could not have modulus greater than 1. Therefore, p4 is also the minimal polynomial of
A and g(A) = 0 if and only if ¢ is a multiple of p4. A polynomial f of degree less than or
equal to n — 1 is said to be reduced. Every element of Z[A] may be written uniquely as
f(A), where f is reduced. The set G corresponds to the set of all polynomials (reduced or
not) with coefficients 0, 1 or —1. We have therefore proved the following result:

Proposition 2.6: G is a lattice if and only if every reduced polynomial f can be written
as g + pah, where the coefficients of g are 0, 1 or —1. In particular, if G is a lattice for
some choice of D, then G is a lattice for all D.

We call a polynomial expanding if all its roots lie outside the unit circle. For a given
degree n, there exist only a finite number of expanding polynomials with integer coefficients
and constant term +2 since the other coefficients of the polynomial are bounded, being
functions of the roots. Thus, up to conjugation by an integer invertible matrix, there exist
only a finite number of n X n expanding matrices with ¢ = 2.

Define the reduced polynomial g4 by
pa(r) =2 — zqa(2);

thus, the relation pa(A) = 0 becomes ga(A) = 2471, We give Z[A] the (Manhattan)
norm |f(A)| = |an_1|+ - -+ |ag| where f(x) = a,_12" 1 +-- -+ ap is reduced. Using the
relation 21 = Aga(A), it is clear that, for reduced f, f(A) € AZ[A] if and only if f(0) is
even. We now define a carrying operation C : Z| A] — Z[A] (compare 1.23). If f is reduced
then there is a unique € = 0, 1 or —1 such that

(i) f =29+ 2c+ € where g € Z[x] and ¢ € Z,
(ii) [2¢+ €| = |2¢| + |e].
Definition 2.7: With the above notation, C(f) is the (reduced) polynomial g + cq4.

Lemma 2.8: If|qa| < 2 then |C(f)| < |f| and equality implies f(A) = Ah(A) for some
h.

Proof: Clearly, in (i) above, deg(g) < n — 2. Thus |f|| = |zg| + [2¢+ €| = |g| + |2¢| + |€]
and |C(f)] = llg + cqa| < lgl+ [2c|. Thus [C(f)] < |f] - le[ and so, if |C(f)| = | f] then
e=0and f(M) = Ag(A) + cAga(A). -

Lemma 2.9: If g(A) may be written as A¥gy(A) for all k, then g(A) = 0.
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Proof: We have gi(A) = A=%g(A). By 1.1 gi(A) — 0. Since Z[A] is a lattice, eventually
gx(A) = 0. Hence g(A) = 0. -

Theorem 2.10: Let A be an expanding matrix with ¢ = | det(A)| = 2. Let g4 be defined
by pa(xz) = 2 —xqa(x) where p4 is the characteristic polynomial of A. If |ga| < 2 then G
is a lattice for all digit sets D.

Proof: For any f, |[C*(f)| is eventually constant by 2.8 (since |ga| < 2). By 2.8 and
2.9, |C*(f)| is eventually zero. But if h = C(g) belongs to G then so does g since, by
definition, g(A) = Ah(A) + €l. Since 0 € G, we conclude that f(A) € G. Thus G = G and
G is a lattice. u

We now obtain a criterion for a polynomial of the form +2* + 2* — 2 to be expanding.
Not all such are expanding (for example, 22 + z — 2 is not) but we do have the following
simple test.

Lemma 2.11: Let p = 6z° + ez® — 2 where £ > k > 0, § = +1 and € = +1. If the
equations 62° = 1 and ex* =1 have no common solution in C then p is expanding.

4 k
Furthermore, &12=2

Proof: Suppose p(a) = 0 and |a| < 1. Then |[§af| < 1 and |ea®| < 1. Hence dof = 1
and ea® = 1, as required.

is expanding where ¢ = ged(4, k).

Let now g = zf + ¥ — 2. It is easily seen that g does not have any multiple roots. If
4 k
g(e) =0 and |a| <1 then of = a* = 1. Hence o = 1. Thus 22 =2 s expanding. -
Theorem 2.12: If A has characteristic polynomial % where ¢ = ged(4, k) then G
is a lattice. The same is true if we replace A by —A.

xl+zk—2

e~ are prime. Let

Proof: Since 2 + 2* — 2 has no repeated roots, z¢ — 1 and p =

Z be the ¢ X ¢ matrix

0 0 1
1 0
1 0

The minimum polynomial of Z is ¢ — 1. Let

A0
w=(5 2)

which we write as A @ Z. For f(M) € Z[M] define C(f(M)) as before, namely as
M=Yf(M)—el), that is A7(f(A)—el)® Z~1(f(Z) —el). Observe that the ¢ we get from
Z[M] need not be the € we would get for C' on Z[A]. Lemma 2.8 continues to hold since no
assumption concerning eigenvalues was made there. As for 2.9, suppose g(M) = Mtg;(M)
for all 4. Since g(M) = g(A) ® g(Z) we have g(A) = A’g;(A) for all i and, therefore,
g(A) = 0 since A is expanding. Thus any f(A) belongs to G and G = Z[A] is a lattice. g

As an application, we have:
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Theorem 2.13: Ifq=2 and n < 3 then G is a lattice.

Proof: For ¢ = 2, n = 2 there are six possibilities; their characteristic polynomials are:
X2-2, X242, X2 -X+2,X%24+X+2,X2-2X+2,X%24+2X +2. All but the last two are
covered by Theorem 2.10; X? 4+ 2X + 2 follows from 2.12 (for ¢ = 1) and X? — 2X + 2 by
replacing A by —A. Similarly, for n = 3 we have fourteen possibilities: X3+ 2, X3 — X +
2, X34+ X242 X3 -X?2 - X4+2,X34+X?24+X+2,X3-2X+2 X342X?24+2X+2and
seven more obtained by reversing the signs of the even degree terms. The only cases not
covered by Theorem 2.10 or 2.12 are X3 - X2 - X +2 X34+ X2 - X -2, X3-2X +2 and
X3 —2X — 2 and these four cases are easily checked by the algorithm of the next section.

3. Computations

Let A be a fixed n x n integer expanding matrix and D be a set of ¢ = |det(A)|
elements of Z", including 0, such that the difference of two distinct elements of D is never
in AZ™. We next describe an algorithm to determine if in this situation G is a lattice.

Let G’ be the lattice generated by D, AD, ..., A" 1D; we claim that G = G’ where G
is the smallest lattice containing D with AG C G. Indeed, since D, AD,..., A" 'D C G,
it follows that G’ C G. On the other hand, if u € G’ it follows that Au € G’ (since the
minimum polynomial of A has degree at most n) and therefore Au + v — v’ € G’ for any
v,v' € D. Thus, AG' C G and G C G'.

It is now easy to check whether G = Z": start with the vectors D, AD, ..., A" 'D and
try to get the canonical basis by linear combinations. By a linear change of coordinates,
we can assume G = Z".

We would now like to consider a bounded set X with the property that if Au+v—2v' €
X then u € X, or, equivalently, that 7X C X. Such sets clearly exist (e.g., X = Q) but
they are not always easy to obtain. In particular, for certain matrices A, X may not
be taken as a round ball or cube around the origin, however large. We could work with
somewhat more complicated bounded sets but we prefer to work instead with two sets.
Let therefore 0 < N; < N5 be such that:

i. @ C[—Ny, Nq]™,

ii. if u ¢ [—Na, N3]™ then the forward orbit of u by w — Aw + v —v', v,v" € D, never
enters [— Ny, N1|™.

It is easy to see that N7 and Ny as above exist and we now show, given A and a
bound on the size of the elements of D, how to obtain such numbers. Let 4,, and £3; be
two positive numbers with the following properties: 1 < 4, < 37 and for any eigenvalue A
of A, £, < |A| < £pr; since A is an expansion, it is clearly possible to choose such numbers.
We can now choose an invertible matrix M with £, |u| < |[MAM ~u| < £ps|ul for all w.
Defining |u| = |Mu|, this becomes £, |u| < |Au| < €pr|u|. Thus, if r = max,ep |v|, we
have |u| < 7/(£,, —1) for all u € Q and we can take any N; such that the cube [~ Ny, Ny]*
contains all points u with |u| < r/(¢;y, —1). Once Ny is fixed, take any Ny such that all u
with |u] < max,e;_n, ;¢ Jw] belong to the cube [—Na, Na]*.

11



Figure 1

Figure 2

After N7 and N» have been chosen, reserve a bit of memory for every integral element
of the cube [—Ns, Na]™ to indicate whether that element is known to be in G. Start
with only the bit for the zero vector turned on. Perform then the following process: for

12



each vector u whose associated bit is on, turn on all vectors of the form Au 4+ d; — ds,
di,ds € D. A second bit associated to each vector indicates whether this process has
already been carried out for it. The process stops when no vector has only one of the two
associated bits turned on; let G, be the set of vectors marked at the end. The properties of
N7 and N, guarantee, however, that G, N [Ny, N1]” = G N[Ny, N1]" (notice, however,
that we usually do not have G, N [—Na, N2|® = G N [—Nz, N3]™). Since Q C [Ny, N1|"
and we assume G = Z", G is a lattice iff G, N[Ny, N1|™ = Z™ N [Ny, N1|".

This algorithm was applied to various random matrices and digit sets and G always
turned out to be a lattice. This suggests that the examples of Lagarias and Wang (where
G is not a lattice) must be relatively rare. Also, one example from each conjugacy class of
3 x 3 expanding integer matrices A with ¢ = |det(A)| = 2 was tested, thus completing the
proof that, for n < 3 and ¢ = 2, GG is a lattice.

Figure 3

We present pictures of various tiles in order to illustrate some of their properties.
Figure 1 shows @ for

A=(35)  P=10.0.0,0.0.1.0,1

notice that () is connected and simply connected; there are density points of ) on the
boundary. Figure 2 shows () for

3 0
A= (0 3> ’
D= {(_17 _1)7 (07 _1)7 (17 _1)7 (_27 0)7 (07 0)7 (27 0)7 (_17 1)7 (07 1)7 (17 1)};

13



notice that @) is connected but not simply connected. Figure 3 shows () for

a=(L3) P=1e0.00.L)

it is easy to show that () has infinitely many connected components, each with infinitely
many holes.
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