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Abstract: The knowledge of a critical set together with its image provides a wealth of
information about the global geometry of mappings from the plane to the plane. In this
note, we describe some properties satisfied by the critical sets and indicate how they can
be useful in the explicit construction of the critical sets and in the solution of F (x) = y.

In this note2, we describe a theoretical setup to study the problem of solving F (x) = y
for a large class of mappings F from the plane to the plane. The motivation to consider
this problem came from the one dimensional Riemann problem, that is, a conservation law

Ut + f(U)x = 0, f : R2 → R2

with initial condition

U(0, x) =
{
U0 for x < 0,
U1 for x > 0.

An elementary shock-wave solution of the Riemann problem is given by

U(t, x) =
{
U0 for x− st < 0,
U1 for x− st > 0.

whenever the Rankine-Hugoniot condition

f(U1)− f(U0) = s(U1 − U0)

holds. The search for elementary shock-wave solutions then leads us to the following
question: for given s ∈ R and U0 ∈ R2, how many values of U1 ∈ R2 are there so that
(s, U0, U1) gives rise to an elementary shock-wave solution, and how does this number vary
as (s, U0) vary?

Rewriting the Rankine-Hugoniot equation as

f(U1)− sU1 = f(U0)− sU0

and setting Fs = f − sI, one sees that (s, U0, U1) gives rise to an elementary shock-wave
solution of the Riemann problem if and only if U1 is a solution of the non-linear equation

Fs(U) = Fs(U0).
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Solving F (x) = y in the plane

Thus the above question naturally induces the following problem.

Problem 1: Given F : R2 → R2 and y ∈ R2, how many solutions does the equation
F (x) = y have, and how does the number of solutions vary with y?

The theoretical considerations in this note are also being used in the construction of a
program to solve the equation F (x) = y numerically, for a rather general class of mappings
F described below. The key point is that the topological arguments not only provide a
satisfactory counting of the solutions of the equation, but also show us how to implement
routines which obtain initial conditions for local iterations (like Newton’s method) which
indeed converge to the desired solutions. Details of the program will be described elsewhere
[MST].

In [MT] it is proved that, for F in a suitable class of C∞ “nice” mappings of the plane
into itself, all the information needed to answer Problem 1 is given by the action of F on
the set of critical points. Nice mappings will be defined later; over compact domains, nice
mappings are generic. Rather surprisingly, not any set of curves in the plane, together with
a putative set of image curves, can be the critical set of a nice mapping in the plane. Some
obvious restrictions arise from considerations of differential topology. In the seventies,
Blank and Troyer ([B],[T]) obtained necessary and sufficient conditions for a set of curves
to be the image of the boundary under an immersion of an n-holed disk in the plane.
From their work, we derive a satisfactory answer to the following problem, which appears
naturally in the computation of the critical set of a given nice mapping F .

Problem 2: Given a set C ′ of critical points of F , is there a nice mapping G such that G
agrees with F in a neighborhood of C ′ and C ′ is the whole critical set of G?

At the end of this note, we make some comments about a delicate issue in the project:
given a nice mapping F and some curves which are shown, by making use of the appropriate
tests, to be all the critical curves of some nice mapping G, how can we be sure that there
are no other critical curves?

In this text, we provide no proofs (to be found in the references) and frequently avoid
a complicated (and precise) description of the results by making use of examples, which
are supposed to convey the spirit of the techniques employed. We would like to thank the
referee for his comments, indicative of a careful reading.

We begin by recalling some standard definitions. A mapping F from the plane to
itself is said to be proper if the inverse image of any compact set in the plane is compact.
Clearly, F : R2 → R2 is proper if and only if the mapping goes to infinity at infinity, and
so F can be extended continuously from the Riemann sphere to itself by defining the value
of the extension F̃ at infinity to be infinity. Continuous proper mappings F from the plane
to itself have a topological degree, which coincides with the degree of the extension F̃ [M].
A point in the domain of F is regular if the differential DF at this point is invertible.
Points which are not regular are called critical, and their images are the critical values of
F . The set of critical points, denoted by C(F ) or simply C, and its image under F are
called the critical sets of F . Points which are not critical values are called regular values.
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To explain how all the information we need to solve the equation F (x) = y, for F in a
suitable class of C∞ mappings, is given by the critical sets of F , we consider the mapping
F : R2 → R2 given by

F (u, v) = (−6u4 − 6u2v2 + uv3 + 6v4 − u, 25

24
u4 + u3v + u2v2 +

1

6
uv3 − v4 − v).

This mapping is proper and its critical sets C and F (C) are given in Figure 1, while the
pre-image F−1(F (C)) is given in Figure 2. We use the same letter to denote a set and its
image under F .

Now, if we denote by T∞ the unbounded component of R2 − F (C) and by T0 and
T1 the bounded ones, we will have, from the properness of F , that F restricted to any
connected component of F−1(Tα), α = 0, 1,∞, is a covering mapping and the action of F
is described in Figure 2. So, in particular, F restricted to any connected component of
F−1(Ti), i = 0, 1, is a diffeomorphism onto Ti and F−1(T∞) covers T∞ twice. Hence the
equation F (x) = y has 2, 4 or 6 solutions depending on whether y belongs to T∞, T0 or T1

respectively. Indeed, as proved in [MT], for a nice F , the number of solutions of F (x) = y,
for y varying in the plane, can be obtained simply from knowledge of C and F (C). The
additional knowledge of F−1(F (C)) gives us information about where to look for initial
conditions for a possible iterative method to solve the equation numerically.

In order to state the hypothesis on F , we recall the concept of Whitney singularities
[W]. A fold point of F (resp., cusp point) is a critical point x for which there are local
orientation preserving diffeomorphisms around x and F (x) onto neighborhoods of the origin
of the plane in which F takes the form (1) (resp., (2)) below.

F (u, v) = (u, v2) (1)

F (u, v) = (u, av3 − uv), a = ±1 (2)

By a celebrated theorem of Whitney [W], generically in an appropriate topology in
the space of smooth mappings from the plane to itself, critical points are either folds or
cusps. Mappings satisfying the three conditions below will be called nice.

(a) F is a smooth proper mapping from the plane to itself.

(b) C = C(F ) is bounded and each critical point is a fold or a cusp point.

(c) Images of critical curves may only intersect at a finite number of points, and the
pre-image of such a point meets C(F ) at exactly two fold points.

With the techniques employed in [W], one shows that nice mappings are generic in
the class of smooth proper mappings with bounded critical set (in a suitable Cr topology).
The requirement that each critical point is a Whitney singularity implies that zero is a
regular value of detDF . Thus, from condition (b), the set of critical points C is a finite
disjoint union of simple closed curves and there is only a finite number of cusp points.
Condition (a) implies that F has a topological degree d = degF . This degree is given by
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the number of solutions xj of the equation F (x) = y for any regular value y, counted with
the sign of detDF (xj) [M]. Since by (b) the set of critical points C is compact, we have
that R2 − F (C) has exactly one unbounded connected component T∞. Clearly, F−1(T∞)
is the unbounded connected component of R2 − F−1(F (C)), so the local orientation of F
at any solution of F (x) = y for y in T∞ has to be the same. Thus, the number of solutions
of this equation for y in T∞, which is positive, equals the absolute value of the topological
degree of F . In particular, d 6= 0.

From (b), the restriction of F to any critical curve Γi , F (Γi) , is a continuous locally
injective curve and we can define the turning number, τ(F |Γi) of F (Γi) as the Brouwer
degree of the mapping

ϑ 7→ F (γ(ϑ+ δ))− F (γ(ϑ))
|F (γ(ϑ+ δ))− F (γ(ϑ))|

,

where γ : S1 → R2 is a regular orientation preserving parametrization of Γi and δ is
any small positive angle for which F |[γ(ϑ),γ(ϑ+δ)] is injective for all ϑ ∈ S1. Condition
(c) implies that we can compute the turning number τ(F |Γi) from the Seifert circles of
F (Γi) as follows. Consider the orientation induced in the curve F (Γi) by the positive
(counterclockwise) orientation of Γi . Now change slightly the curve F (Γi) near self-
intersection points as in Figure 3. Then F (Γi) splits into a disjoint union of oriented
simple curves – the turning number is the number of such simple curves counted with a
sign defined by their orientation.

Since critical points are fold or cusp points, we can orient the image F (Γi) of each
critical curve Γi so that a small disk around any fold point in Γi is sent by F to the left
side of the oriented curve F (Γi) . In particular, each image F (x) of a cusp point x ∈ Γi
points to the right side of the oriented curve F (Γi) (see Figure 4). This orientation will be
said to be given by the sense of folding. The turning w(Γi) of the curve F (Γi) oriented by
the sense of folding is defined by w(Γi) = ±τ(F |Γi). This sign is positive if this orientation
agrees with the one induced by F on F (Γi) from the positive orientation on Γi .

The three results below are stringent relations among the numbers defined so far (see
[MT] for proofs).

Theorem A: Let F be a nice mapping. Then

|degF | = k − 2w + 1 > 0,

where k is the number of cusp points and w =
∑

Γi⊂C w(Γi).

Let F : R2 → R2 be a nice mapping and C ′ =
⋃n
i=1 Γi a union of critical curves of

F . Let Γ0 be a circle around C ′ and suppose that Γ0 ∩ C(F ) = ∅. Let D0 be the open
disk bounded by Γ0 . Let w(Γ0) be the turning number of F (Γ0) oriented so that a small
neighborhood in D0 of a point in Γ0 is sent by F to the left side of F (Γ0), and w(Γi) for
i = 1, . . . , n be the turning of F (Γi) oriented by the sense of folding.

Proposition [MT]: If D0 ∩ C(F ) = C ′ then

w(Γ0) = k − 2w(C ′) + 1,

4



Solving F (x) = y in the plane

where w(C ′) =
∑n
i=1 w(Γi) and k is the number of cusp points in C ′.

Corollary: If C ′ = C(F ) then |degF | = w(Γ0).

We show by an example how to solve Problem 2. Suppose we have found a critical
curve Γ1 of a nice mapping F such that the image curve oriented by the sense of folding
and the behavior of F in a neighborhood of Γ1 are given in Figures 5 and 6 respectively.

Since w(Γ1) = 1 and Γ1 has one cusp point, we conclude from Theorem A that Γ1

cannot be the whole critical set of F , so we have to look for more critical curves.

Suppose we find another critical curve Γ2 as in Figure 7, close to which the local
behavior of F is given in Figure 8.

From Theorem A we learn that if Γ1 ∪ Γ2 is a critical set of a nice mapping G then
|degG| = 1. So, if we take a circle around the curves in the range, its pre-image is a
simple, closed regular curve Γ0 around the critical curves Γ1 and Γ2 as in Figure 9. By
the proposition and corollary above, w(Γ0) = 1. The orientation in F (Γ0) means that any
point in the open disk bounded by Γ0 is sent by F to the left side of F (Γ0) .

Clearly the problem of existence of a nice mapping G as required is then reduced
to the following question. Is there an extension G of F |Γ0∪Γ1∪Γ2

to the closed disk D0

bounded by Γ0 such that G is an immersion outside the curves Γ1 and Γ2 and preserves
the behavior of F near Γ1 ∪ Γ2 ? To answer this question, first observe that this problem
decouples in similar problems. Let C ′ = Γ0 ∪ Γ1 ∪ Γ2 and g = F |C′ .

(i) For i = 1, 2, can g|Γi be extended to the closed disk Di bounded by Γi , as an
immersion in Di and such that the extension preserves the behavior of F |Di near Γi ?

(ii) Can g be extended to A = D0 − (D1 ∪D2) as an immersion outside of the boundary
of A preserving the behavior of F |A near ∂A?

Clearly, for i = 1, 2, g|Γi has an extension as a diffeomorphism from Di onto the open
disk bounded by F (Γi) . To give an answer to (ii), we use a slight adaptation of a criterion
introduced by Blank [B] and Troyer [T]. To explain how to do this, we consider first a
simpler problem. Suppose that Γ is a critical curve of a nice mapping H and that h = H|Γ
acts as in Figure 10.

The problem is to decide if there exists an extension of h to the closed disk D bounded
by Γ as an immersion in D, having x and y as cusp points, and such that a small neighbor-
hood in D of a point in Γ−{x, y} is sent to the left side of the oriented curve h(Γ). Proceed
as follows. Let T∞ be the unbounded connected component of R2 − h(Γ). Choose a point
pi in each bounded connected component of R2 − h(Γ). Let ri be a proper embedding of
the non-negative real axis into the plane with ri(0) = pi (called a ray from pi) such that
the rays r1, . . . , rm do not contain intersection points of h(Γ), cut h(Γ) transverswally and
are pairwise disjoint. Now assign to each intersection of a ray with the curve a positive or
a negative sign, depending on whether the curve crosses the ray from right to left (that is,
pi is on the left side of the curve) or the curve crosses the ray from left to right. Complete
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the set of rays by choosing for each cusp point x a ray from h(x) assigning to this point a
negative sign (see Figure 11).

Now construct a word (the Blank word for the oriented curve h(Γ)) by following the
orientation of the curve h(Γ) and collecting the intersection points with the rays, keeping
track of signs and rays. Clearly the word is defined up to cyclic permutation. In this
example, a Blank word is given by

BW = r+
1 r

+
2 r

+
3 r

+
4 r

+
5 r

+
6 r

+
7 r

+
3 r

+
4 r

+
5 r

+
2 r

+
3 r
−
5 r

+
6 r
−
7 .

We say that a Blank word admits a simplification if there exists a pair r+
i , r

−
i such

that (after a cyclic permutation if necessary) there are no letters with negative exponent
between r+

i and r−i . If this is the case, a simplified Blank word is obtained by eliminating
the subword r+

i . . . r
−
i (or r−i . . . r

+
i ). We say that a Blank word groups (or has a grouping)

if there are successive simplifications such that the final Blank word has no letters with
negative exponents. In the example, a possible choice of simplification is

BW → r+
1 r

+
2 r

+
3 r

+
5 r

+
6 r

+
7 r

+
3 r

+
4 r

+
6 r
−
7 → r+

1 r
+
2 r

+
3 r

+
5 r

+
6

and so the Blank word of the example groups. The fact that the Blank word groups,
together with the fact that the turning number minus the number of cusps equals one,
is sufficient (and necessary!) to guarantee the existence of the desired extension. The
complete description of Blank’s criterion can be found in [B], while the mild extension
being used is in [MST].

Returning to the example given in Figure 9, we follow (a slight modification of) a
procedure due to Troyer ([T]) which is the analogue of Blank’s criterion to the case where
the domain of the extension being sought consists of more than one curve. We begin
by constructing rays as before (see Figure 12), and collecting one word for each curve
g(Γi), i = 0, 1, 2. A Blank word for g(C ′) is a single word obtained as the adjunction of a
cyclic permutation of each word. In the example, denoting by BW (Γi) the Blank word of
g(Γi), i = 0, 1, 2, we have

BW (Γ0) = a+b+c+d+e+f+q+r+,

BW (Γ1) = d+e+f+c−,

BW (Γ2) = c+d+f−q+r−a−,

so a possible Blank word for g(Γ0 ∪ Γ1 ∪ Γ2) is

BW (Γ0 ∪ Γ1 ∪ Γ2) = d+e+f+c−c+d+f−q+r−a−a+b+c+d+e+f+q+r+

which has a grouping. As before, since w(Γ0)+w(Γ1)+w(Γ2)−(number of cusp points) =
−1, and a Blank word groups, we can guarantee the existence of the desired extension.
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Let A1, . . . , Am be the connected components of D0 − C ′, with the notation defined
above. Then for each p = 1, . . . ,m, the boundary of Ap is ∂Ap = Γp0 ∪ (

⋃np
i=1 Γpj ) where

Γp0 is the exterior boundary of Ap, that is, Ap is contained in the disk bounded by Γp0 .
As in the example, the problem of existence of a nice mapping G which agrees with F in
C ′, has the same behavior as F in a neighborhood of C ′ and such that C(G) = C ′ can be
reduced to the existence of extensions of F |∂Ap to Ap as an immersion in Ap preserving
the behavior of F in a neighborhood of ∂Ap in Ap. So we have to make a distinction among
the cusps in ∂Ap in such a way as to select the ones which are detected by the action of F
in Ap. Let Di be the open disk bounded by the critical curve Γi . A cusp point x ∈ Γi will
be called inward if, for each sufficiently small neighborhood U of x, F maps U ∩Di onto
a neighborhood of F (x). It is clear from the local form (2) that if a cusp point x is not
inward, then F maps (R2 −Di) ∩ U onto a neighborhood of F (x). In this case, x is said
to be an outward cusp point. In other words, the fact that x is a cusp point is detected by
the action of F in Di or in R2 −Di if x is an inward or outward cusp respectively. These
cases correspond to Figures 13 (a) and (b).

Clearly, for the problem of existence of the desired extension of F |∂Ap, we have to
consider as cusp points only the inward cusp points of Γp0 , and the outward cusp points
of Γpj , j = 1, . . . , np. So, for each p, construct a set of rays for the curves F (∂Ap) oriented
by the sense of folding considering only the cusps described above. In Figures 14 (a) and
(b), we draw the rays associated to the components A1 and A2 for F given in Figure 1.

For each p, construct the Blank word of F (Γpj ), j = 0, . . . , np and consider the set of
Blank words for F (∂Ap). For each p, let kp = k∗p0 +

∑np
j=1 k

∗
pj , where k∗p0 and k∗pj are,

respectively, the number of inward and outward cusps in the corresponding curve.

Theorem B: ([MST]) C ′ is the set of critical points of a nice mapping G which agrees
with F in a neighborhood of C ′ if and only if

(i) kp − (
∑np
j=0 w(Γpj ))− np + 1 = 0 for p = 1, . . . ,m, and

(ii) for each p = 1, . . . ,m, there exists a Blank word for F (∂Ap) which has a grouping.

Moreover, if (i) and (ii) are satisfied, then |degG| = w(Γ0).

Remark: Condition (i) simply says that for each p, χ(Ap) = w(∂Ap) − kp, where χ(Ap)
is the Euler characteristic of Ap, which is 1− np.

We are still left with the following intriguing issue: once we found a (sub)set of critical
curves of the mapping F which is indeed the critical set of a mapping G (since it satisfies
the tests described above), how can we be sure that F does not have other critical curves?
The answer is obvious: this cannot be guaranteed by mere topological arguments.

The problem is already present in the one dimensional case in two different versions:
how can we be sure, given a mapping from the line to itself that we know all its zeros, or
all the zeros of its derivative? There are two obvious difficulties: a computer program will
search for zeros in a bounded set and not beyond a certain level of refinement within this
set. Implicitly, we assume the knowledge of a priori estimates which guarantee that there
are no zeros outside the set being scanned and that, within this set, the mapping does not
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oscillate so much as to generate additional zeros. Thus, unless the program itself generates
the required estimates, it cannot certify that all zeros will be found.

We provide two classes of examples in which the set of critical curves is not found
completely. The reader will have no trouble in convincing himself that the examples are
typical. In Figure 15, the knowledge of the critical curve Γ together with the behavior of
the mapping F at infinity (its degree) is not enough to decide whether the critical set of
F is (a) or (b). The problem is that one can draw a curve γ around the remaining critical
curves in (b) for which F (γ) is a simple closed curve: if you never enter the disk D bounded
by γ you will never distinguish between the complicated behavior of F in D described in
(b) and the simple one (a diffeomorphism) shown in (a). So, unless the original search for
critical curves spontaneously browsed through D, the topological arguments presented in
this note would not indicate that D should be searched for critical points.

The other example is shown in Figure 16. Knowing curve Γ and the degree of F would
not induce the program to search for the (possibly missing) two critical curves. The reason
is that the image of a simple curve tightly surrounding Γ has the same topological behavior
as the image of a large circle: both are taken to (isotopic) curves of equal turnings. So,
again, from the topological information, both situations are undistinguishable.
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