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Homotopy and cohomology of spaces
of locally convex curves in the sphere

Nicolau C. Saldanha

July 23, 2004

Abstract

We discuss the homotopy type and the cohomology of spaces of lo-
cally convex parametrized curves γ : [0, 1] → S2, i.e., curves with positive
geodesic curvature. The space of all such curves with γ(0) = γ(1) = e1 and
γ′(0) = γ′(1) = e2 is known to have three connected components X−1,c,
X1, X−1. We show several results concerning the homotopy type and co-
homology of these spaces. In particular, X−1,c is contractible, X1 and X−1

are simply connected, π2(X−1) contains a copy of Z and π2(X1) contains
a copy of Z2. Also, Hn(X1, R) and Hn(X−1, R) are nontrivial for all even
n. More, dim H4n−2(X1, R) ≥ 2 and dimH4n(X−1, R) ≥ 2 for all positive
n.

1 Introduction

A curve γ : [0, 1] → S2 is called locally convex if its geodesic curvature is always
positive, i.e., if det(γ(t), γ′(t), γ′′(t)) > 0 for all t. Let X be the space of all locally
convex curves with prescribed initial point and initial direction: γ(0) = e1 and
γ′(0) = c0e2 for some c0 > 0. We define XQ ⊂ X to be the spaces of curves
with prescribed final point and final direction. More precisely, for Q ∈ SO(3),
XQ is the set of γ ∈ X for which γ(1) = Qe1 and γ′(1) = c1Qe2 for some c1 > 0.
In particular, XI is the set of closed parametrized curves of positive geodesic
curvature with a prescribed base point and base direction. The topology in these
spaces of curves can be taken to be C∞, Ck for some k ≥ 2 or Hk (as in Sobolev
spaces) for some k ≥ 2: it actually makes very little difference since it is easy to
smoothen out a curve while keeping its geodesic curvature positive. In this paper
we discuss the homotopy type and cohomology of the spaces XQ. The topology
of these spaces has been discussed, among others, by Little ([7]), B. Shapiro, M.
Shapiro and Khesin ([9], [10], [8]) but, as far as we could ascertain, the main
results presented here are new.
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Let YQ be the set of parametrized curves γ : [0, 1] → S2 with γ′(t) 6= 0 for
all t, γ(0) = e1, γ′(0) = c0e2, γ(1) = Qe1, γ′(1) = c1Qe2 (c0, c1 > 0). Clearly
XQ ⊂ YQ. For each γ ∈ YQ, define Γ : [0, 1] → SO(3) by

(
γ(t) γ′(t) γ′′(t)

)
= Γ(t)R(t),

R(t) being an upper triangular matrix with positive diagonal (the left hand side
is the 3 × 3 matrix with columns γ(t), γ′(t) and γ′′(t)). In other words,

Γ(t) =
(
γ(t) γ̂′(t) γ(t) × γ̂′(t)

)
.

Recall that the universal (double) cover of SO(3) is S3 ⊂ H, the group of quater-
nions of absolute value 1: define Γ̃ : [0, 1] → S3 by Γ̃(0) = 1, Π ◦ Γ̃ = Γ where
Π : S3 → SO(3) is the canonical projection. This defines an injective map from
YQ to Zz ∪ Z−z, where z is a quaternion with |z| = 1, Π(z) = Q and Zz is the
set of continuous maps α : [0, 1] → S3 with α(0) = 1 and α(1) = z. Clearly
each Zz is homotopically equivalent to Z1 = ΩS3, the space of continuous maps
α : [0, 1] → S3 with α(0) = α(1) = 1. From the Hirsch-Smale theorem ([11], [6]),
the map YQ →֒ Zz ∪ Z−z is a homotopy equivalence. In particular, YQ has two
connected components, each one mapped to one of Zz and Z−z: call them Yz and
Y−z.

Theorem 1 The inclusion iQ : XQ → YQ is homotopically surjective. More
precisely, for any compact space K and any function f : K → YQ there exists
g : K → XQ and a homotopy H : [0, 1] × K → YQ with H(0, ·) = f and
H(1, ·) = g.

Theorem 1 implies that XQ has at least two connected components, one in
each of Y±z. Actually, we shall describe a set A ⊂ S3 with the following propo-
erties. If z 6∈ A, then X ∩ Yz is connected: we call this set Xz. If z ∈ A, then
X ∩ Yz has two connected components Xz and Xz,c: the inclusion Xz ⊂ Yz is
homotopically surjective and Xz,c is contractible. These facts will be proved in
theorems 6 and 7. Since A and −A = {−z, z ∈ A} will turn out to be disjoint,
XQ may have two or three components, depending on Q. In [7], Little proved
that XI has three connected components. B. Shapiro, M. Shapiro and Khesin
studied the connected components of other XQ and studied a similar problem in
higher dimensions ([8], [9], [10]).

We know that H∗(Yz, R) = H∗(ΩS3, R) = R[x] where x ∈ H2(ΩS3, R). The-
orem 1 implies that the map H∗(iz) : H∗(Yz, R) → H∗(Xz, R) is injective and
therefore dim Hn(Xz, R) > 0 for all even n. In particular, Xz is not homotopically
equivalent to a finite CW-complex.

The two spaces X1 and X−1 are the objects of central interest in this paper.
We just saw that their homotopy and cohomology is at least as large as that of
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ΩS3, and we shall see that the inclusion Xz ⊂ Yz is not a homotopy equivalence
in either case. On the other hand, the maps πn(iz) : πn(Xz) → πn(Yz) are
isomorphisms for n ≤ 1.

Theorem 2 The spaces X1 and X−1 are simply connected.

The maps πn(iz) : πn(Xz) → πn(Yz) and, more generally, [K, iz] : [K, Xz] →
[K, Yz] are surjective. The choice of the map g in theorem 1 is uniform up to
homotopy: intuitively, g is obtained from f adding many small positively oriented
loops along each γ = f(k) so that the geodesic curvature of γ becomes positive
(see figure 6). This defines maps wz,K : [K, Yz] → [K, Xz] such that [K, iz]◦wz,K is
the identity. In particular we have injective maps wz,Sn : πn(Yz) → πn(Xz) which
allow us to identify πn(Yz) with a subgroup of πn(Xz). Let Gn,z be the kernel of
πn(iz): we have a natural isomorphism between πn(Xz) and πn(Yz) ⊕ Gn,z.

For γ1 ∈ YI and γ2 ∈ YQ, set (γ1∗γ2)(t) = γ1(2t) for t ≤ 1/2 and (γ1∗γ2)(t) =
γ2(2t− 1) for t ≥ 1/2, thus defining ∗ : YI × YQ → YQ. For k > 0, let νk ∈ XI be
given by

νk(t) =

(
1 + cos(2πkt)

2
,

√
2 sin(2πkt)

2
,
1 − cos(2πkt)

2

)
.

Define pk
Q : XQ → XQ by pk

Q(γ) = νk ∗ γ. It turns out that pQ = p1
Q takes Xz to

X−z and vice versa.

Theorem 3 The maps pQ and p3
Q are homotopic. Furthermore, given f : Sn →

XQ and H : Bn+1 → YQ with f(s) = H(s) for all s ∈ Sn there exists H̃ : Bn+1 →
XQ with H̃(s) = pQ(f(s)) for all s ∈ Sn.

Let pk
z be the restriction of pk

Q to Xz ⊂ XQ. It follows from theorem 3 that
the map πn(p2

z) : πn(Xz) → πn(Xz) is a projection and that the kernel of πn(p2
z)

is Gn,z. We do not know what the groups Gn,z are: we know, however, that they
are nontrivial.

Theorem 4 If −z ∈ A then there exist functions fz : S2 → Xz and gz : Xz → S2

such that gz ◦ fz is homotopic to the identity. Also, gz ◦ p2
z is constant. In

particular, Gn,z = πn(S2) ⊕ ker(πn(gz)).

We can also say something about the cohomology of Xz.

Theorem 5 If (−1)nz ∈ A then dim H2n(Xz, R) ≥ 2.
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This work was motivated by the study of the differential equation of order 3:

u′′′(t) = h1(t)u
′(t) + h0(t)u(t), t ∈ [0, 2π]. (†)

The set of pairs of potentials (h0, h1) for which equation (†) admits 3 linearly
independent periodic solutions is homotopically equivalent to XI . This appears
to be the same motivation as that of B. Shapiro and M. Shapiro for studying these
same spaces. This topological study of differential equations is continuation of
the work done together with Dan Burghelea and Carlos Tomei in [4] and [5].

The author would like to thank Dan Burghelea for helpful conversations. The
author acknowledges the hospitality of The Mathematics Department of The Ohio
State University during the winter quarter of 2004 and the support of CNPq,
Capes and Faperj (Brazil).

2 The homotopy type of YQ

The results in this section are not new are are presented to fix notation and for the
convenience of the reader; see [1] for more information concerning the geometry
of curves in the sphere.

Recall that the unit tangent bundle of S2 is SO(3): indeed, the base point,
the unit tangent vector and the cross product of the two are the columns of an
orthogonal matrix. Also, π1(SO(3)) = Z/(2) and the universal (double) cover of
SO(3) is S3 ⊂ H, the group of quaternions of absolute value equal to 1. We fix
notation by taking the projection Π : S3 → SO(3) to be given by

Π(a+ bi+ cj +dk) =




a2 + b2 − c2 − d2 −2ad + 2bc 2ac + 2bd
2ad + 2bc a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2


 .

For an immersion γ : [0, 1] → S2, define Γ : [0, 1] → SO(3) by

(
γ(t) γ′(t) γ′′(t)

)
= Γ(t)R(t),

R(t) being an upper triangular matrix with positive diagonal (the left hand side
is the 3 × 3 matrix with columns γ(t), γ′(t) and γ′′(t)). In other words,

Γ(t) =
(
γ(t) γ̂′(t) γ(t) × γ̂′(t)

)
.

If γ(0) = e1 and γ′(0) = ce2, c > 0, define Γ̃ : [0, 1] → S3 by Γ̃(0) = 1, Π ◦ Γ̃ = Γ.

For instance, if θ ∈ (0, π), set

γ(t) = νθ(t) =
(
cos2 θ + sin2 θ cos(2πt), sin θ sin(2πt), cos θ sin θ(1 − cos(2πt))

)
.
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The curve γ is a circle in a plane passing through e1, parallel to e2 and making
an angle θ with e3. Notice that ν, as defined in the introduction, is νπ/4, that
νθ ∈ XI for θ < π/2 and that νπ/2 is a geodesic. A simple computation yields

Γ(t) =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ






1 0 0
0 cos(2πt) − sin(2πt)
0 sin(2πt) cos(2πt)






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




and Γ̃(t) = exp(πℓt) where ℓ = cos(2θ)i + sin(2θ)k. In particular, Γ̃(1) = −1 for
all θ.

The map φ taking γ to Γ defines a map from YQ to ZQ, the set of maps
f : [0, 1] → SO(3) with f(0) = I and f(1) = Q. Notice that ZQ is naturally
identified with Zz ∪ Z−z where z and −z are the two preimages of Q under Π
and Zz is the set of maps f : [0, 1] → S3 with f(0) = 1 and f(1) = z. Clearly,
ZQ is homotopically equivalent to ΩSO(3) = ZI and each Zz is homotopically
equivalent to ΩS3 = Z1.

Recall that πn(ΩS3) = πn+1(S
3): this implies that each Zz is connected and

simply connected with π2(Zz) = Z. Also, H∗(Zz, R) = H∗(ΩS3, R) = R[x] where
x ∈ H2(ΩS3, R) satisfies xn 6= 0 for all n (see, for instance, [2]).

The Hirsch-Smale theorem proves that φ : YQ → ZQ is a homotopy equiv-
alence: this fact admits a direct, simple proof in our special case but we do
not discuss it. As a consequence, each Yz is connected and simply connected,
π2(Yz) = Z and H∗(Yz, R) = R[x].

As in the introduction, define pk
Q : YQ → YQ by pk

Q(γ) = νk ∗γ. Notice that pk
Q

as defined here is trivially homotopic to the composition of k copies of pQ = p1
Q,

justifying the notation. The fact that ν ∈ Y−1 implies that pQ : YQ → YQ takes
Yz to Y−z and vice-versa.

Lemma 2.1 The function p2
Q : Yz → Yz is homotopic to the identity.

Proof: First notice that p2
Q is homotopic to γ 7→ (νǫ ∗ νπ−ǫ) ∗ γ for any ǫ > 0.

Figure 1: How to eliminate two small loops of opposite curvature.

Figure 1 shows how to move from that to a reparametrization of γ where a
time slightly longer than 1/2 is spent in a short initial segment. The figure shows
only the beginning of γ: we do not think a formula is necessary or helpful. �
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3 Convex curves and

the connected components of XQ

Given a parametrized curve of positive geodesic curvature γ : [0, 1] → S2, let
Vγ ⊆ R3 be the closure of the set of all positive linear combinations a1γ(t1) +
· · · + anγ(tn), where a1, . . . , an are positive real numbers and t1, . . . , tn ∈ [0, 1].
The set Vγ is either a closed convex cone or R3. We say that γ is convex if γ is
simple and the image of γ is contained in the boundary of Vγ.

Let XQ,c ⊂ XQ be the set of convex curves γ : [0, 1] → S2 with γ(0) = e1,
γ′(0) = c0e2, γ(1) = Qe1 and γ′(1) = c1Qe2 (c0, c1 > 0). For z with Π(z) = Q,
define Xz = (XQ − XQ,c) ∩ Yz: we shall prove in theorem 7 that each Xz is
connected. For Q = I, this is proved in [7]. In particular, ν ∈ XI,c, ν2n ∈ X1 and
ν2n+1 ∈ X−1 for n a positive integer.

We show how to decide, given Q, whether XQ,c is empty or not. The criterion
is harder to state than to prove, so instead of proclaiming a proposition we
explain the criterion together with its justification. We split our discussion into
three cases: Qe1 = e1, Qe1 = −e1 and Qe1 and e1 linearly independent.

If Qe1 = e1, let α ∈ (−π, π] be the angle from Qe2 to e2. If α < 0 then
XQ,c = ∅: the points γ(t) fot t near 0 or 1 cannot possibly be in the boundary of
Vγ if γ ∈ XQ (see figure 2, (a): the region within the dashed line must belong to
Vγ). Similarly, if α = π (see figure 2, (b)). On the other hand, if 0 ≤ α < π, it is
easy to construct γ ∈ XQ,c (see figure 2. (c)).

(a) (b) (c)

γ

Figure 2: How to decide if XQ,c = ∅ if Qe1 = e1.

If Qe1 = −e1, we always have XQ,c = ∅. Indeed, if a convex cone contains
both e1 and −e1, it must be bounded by two half-planes and there is no curve
of positive geodesic curvature contained the intersection of these halfplanes with
the unit sphere.

Finally, consider the case when e1 and Qe1 are linearly independent. Draw
the shortest geodesic δ from e1 to Qe1: notice that δ is contained in Vγ for any
γ ∈ XQ. Let v0 and v1 be the tangent vectors to δ at e1 and Qe1 (see figure 3).
Let α0 (resp. α1) be the angle from e2 to v0 (resp. from v1 to Qe2), αi ∈ (−π, π].
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If α0 ≤ 0 or α1 ≤ 0 then XQ,c = ∅ (see figure 3, (b): the region within the dashed
line must belong to Vγ). On the other hand, if α0 > 0 and α1 > 0 then it is easy
to construct γ ∈ XQ,c: just keep close to δ (see figure 3, (c)).

α
0

δ

α
1

δ δ

γ

(a) (b) (c)

Figure 3: How to decide if XQ,c = ∅ if e1 and Qe1 are linearly independent.

Let A ⊂ S3 be the set of quaternions z for which there exists a convex curve
in Yz. The paragraphs above give a description of A. The set A is neither closed
nor open and its interior is given by

{a + bi + cj + dk | b, d > 0, bd > |ac|}.

The sets A and −A are disjoint, but their closures are not.

Theorem 6 Given Q ∈ SO(3), the set XQ,c ⊂ XQ is either empty or a con-
tractible connected component of XQ.

Proof: Assume that Q is such that XQ,c 6= ∅. It is not hard to see that both XQ,c

and its complement (in XQ) are open: we must prove that XQ,c is contractible
(and in particular that it is connected).

From the discussion above, in all cases there exists v ∈ S2, v ⊥ e1, v ⊥ Qe1

such that 〈v, γ(t)〉 > 0 for all γ ∈ XQ,c, t ∈ (0, 1). Indeed, if Qe1 = e1 we may
take v = e3 and if Qe1 6= e1 we take v to be one of the vectors perpendicular to
the geodesic δ.

Let p be the plane {u|〈v, u〉 = 1}. For each γ ∈ XQ,c, use radial projection
to define a curve γ̂ : (0, 1) → p such that γ̂(t) is a positive multiple of γ(t). This
defines a bijection from XQ,c to the set of curves of positive curvature in the
plane with prescribed asymptotic behavior when t tends to 0 or 1 (γ(0) and γ(1)
indicate the asymptotic direction and γ′(0) and γ′(1) indicate the asymptotic line
or lack thereof). By putting axes in an appropriate position, the image of γ̂ is the
graph of a convex function from R to R (with prescribed asymptotic behavior).
The parametrization of the curve does not affect the homotopy type of the space
of curves, and we therefore have a homotopy equivalence between XQ,c and a
convex space: this proves its contractibility. �
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4 Construction of f
[n]
z : (S2)n → Xz

We now give an explicit generator for π2(Y1). This function actually has the from
f1 : S2 → XI ⊂ YI and will play an important part throughout the paper. Let

α0(s, t) = (sin s cos t, sin s sin t, cos s),

α1(s, t) = (− sin t, cos t, 0),

α2(s, t) = (− cos s cos t,− cos s sin t, sin s),

gs(t) =

√
2

2
(α0(s, t) + cos 3t α1(s, t) + sin 3t α2(s, t)) .

The curve g0 is a circle drawn 4 times and the curve gπ is a circle drawn 2 times.
A computation verifies that det(gs(t), g

′
s(t), g

′′
s (t)) > 0 for all s and t. Let Γs(t)

be defined as above. It easy to verify that

Γs(t + (2π/3)) =



−1/2 −

√
3/2 0√

3/2 −1/2 0
0 0 1


Γs(t)

for all s and t. Finally, let f1 : [0, 2π] × [0, π] → XI be defined by

f1(s1, s2)(t) = (Γs2(s1/3))−1Γs2(t + (s1/3))e1, s2 ∈ [0, π]

If s2 = 0 or π, the value of s1 is irrelevant for the value of f1: actually, f1(s1, 0) =
ν4 and f1(s1, π) = ν2. Also, the remark above shows that f1(0, s2) = f1(2π, s2)
for all s2. Performing these identifications, the domain of f1 becomes the sphere
S2.

If we follow the identification of π2(YI) with π3(SO(3)) described in the previ-
ous section, we see that in order to verify that f1 is indeed a generator of π2(YI,+)
we have to compute the topological degree of the function f̃1 : S2 × S1 → S3

which is the double cover of f̂1 : S2 × S1 → SO(3) given by

f̂1(s, t) =
(
f1(s)(t) ̂(f1(s))′(t) f1(s)(t) × ̂(f1(s))′(t)

)
:

the absolute value of the degree of f̃1 is 1, confirming that it is a generator. In
order to see that, it suffices to verify that j ∈ S3 is a regular value with a single
preimage under f̃1; we skip the details.

Figure 4 should give a rough idea of the image of a line (s1, ·) under f1. The
fat dot in the figure is e1; between the second and third images most of the curve
went around the sphere. Figure 5 shows the image of a line (·, s2): the first and
last curves are intentionally equal: this is a closed curve in XI .

More generally, we construct, for each z ∈ −A, a function fz : S2 → Xz which
is a generator of π2(Yz). Here, instead of a formula, we indicate the construction
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Figure 4: The image of a line under a generator of π2(YI,+).

Figure 5: The image of a circle under a generator of π2(YI,+).

in figure 19. The dashed line is an arbitrary curve δ : [0, 1] → S2 with δ(0) = Qe1

(Πz = Q) and δ(1) = e1 such that γ ∗ δ is convex for γ ∈ X−z,c. The top and
bottom lines are adjacent, forming a cylinder. The curves shown are all contained
in a relatively small portion of the sphere and in the transition from the third
to the fourth column, most of the curve passed around the back of the sphere.
The way to define fz in each of the 24 squares in this grid should be visually
obvious (perhaps with a little effort). The octagons on the right and left can
likewise be filled in a natural way, having in mind that the center of each octagon
is approximately a circle drawn two or four times. The function f1 constructed
above is a special case of fz.

Finally, for a positive integer n and z = (−1)nz′, z′ ∈ A, let γ0 ∈ Xz′,c be
fixed but arbitrary, Γ̃0 : [0, 1] → S3 ⊂ H be the associated function. For i =
1, 2, . . . , n set z′i = (Γ̃0((i − 1)/n))−1Γ̃0(i/n) and zi = −z′i so that z′ = z′1z

′
2 · · · z′n

and z = z1z2 · · · zn. Notice that z′i ∈ A. Set Qi = Π(zi) = Π(z′i) and define

f
[n]
z : (S2)n → Xz by

f [n]
z (s1, s2, . . . , sn) = fz1(s1) ∗ (Q1fz2(s2)) ∗ · · · ∗ (Q1Q2 · · ·Qn−1fzn

(sn)).

Here we are stretching a bit our original definition of ∗: if γ1, γ2 : [0, 1] → S2

satisfy γ1(1) = γ2(0) then

γ1 ∗ γ2(t) =

{
γ1(2t), t ≤ 1/2,

γ2(2t − 1), t ≥ 1/2.

Also, for γ ∈ X and Q ∈ SO(3), Qγ is the function from [0, 1] to S2 defined by
(Qγ)(t) = Q(γ(t)).
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The following lemma is a simple consequence of the existence of f1.

Lemma 4.1 Let n1, n2 > 1 and θ1, θ2 ∈ (0, π/2). Then νn1
θ1

and νn2
θ2

are in the
same connected component of XI if and only if n1 and n2 have the same parity.

Proof: First notice that if n1 and n2 have different parities then νn1

θ1
and νn2

θ2

are in different connected components of YI and therefore with stronger reason
in different connected components of XI .

Our function f1 shows that ν2 and ν4 are in the same connected component;
it follows from that that, for any n > 0, ν2+n ∼ νn ∗ν2 and ν4+n ∼ νn ∗ν4 are also
in the same connected component. The value of θ can be changed continuously
and is therefore not a problem. The result follows. �

Recall that it follows from the results of the previous section that ν ∈ X−1,c

is not in the same connected component of XI as ν3 ∈ X−1.

5 Proof of theorem 1

For γ ∈ YQ and corresponding Γ : [0, 1] → SO(3), define Fn,θ(γ)(t) = Γ(t)ν2n
θ (t).

Intuitively, for small values of θ, Fn,θ(γ) is obtained from γ by attaching 2n
positively oriented small loops along γ (see figure 6).

Figure 6: A curve γ (thicker) and F9,θ(γ).

Lemma 5.1 Let θ ∈ (0, π/2), let K be a compact set and let f : K → YQ a
continuous function. Then, for sufficiently large n, Fn,θ ◦ f is a function from K
to XQ.

Proof: Let C > 1 be a constant such that |Γ′(t)| < C and |Γ′′(t)| < C for any
γ = f(k), k ∈ K. Let ǫ > 0 be such that if |v1 − ν ′

θ(0)| < ǫ and |v2 − ν ′′
θ (0)| < ǫ

then det(νθ(0), v1, v2) > 0. Notice that this implies that if |v1 − ν ′
θ(t)| < ǫ and

|v2 − ν ′′
θ (t)| < ǫ then det(νθ(t), v1, v2) > 0. Take n > 20C/ǫ.
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For γ = f(k), write

γ̃(t) = (Fn,θγ)(t) = Γ(t)ν2n
θ (t) = Γ(t)νθ(2nt)

so that

γ̃′(t) = Γ′(t)νθ(2nt) + 2nΓ(t)ν ′
θ(2nt)

γ̃′′(t) = Γ′′(t)νθ(2nt) + 4nΓ′(t)ν ′
θ(2nt) + 4n2Γ(t)ν ′′

θ (2nt)

and therefore, after a few manipulations,
∣∣∣∣
γ̃′(t)

2n
− Γ(t)ν ′

θ(2nt)

∣∣∣∣ < ǫ,

∣∣∣∣
γ̃′′(t)

4n2
− Γ(t)ν ′′

θ (2nt)

∣∣∣∣ < ǫ

or, equivalently,
∣∣∣∣
(Γ(t))−1γ̃′(t)

2n
− ν ′

θ(2nt)

∣∣∣∣ < ǫ,

∣∣∣∣
(Γ(t))−1γ̃′′(t)

4n2
− ν ′′

θ (2nt)

∣∣∣∣ < ǫ.

It follows that

det

(
νθ(2nt),

(Γ(t))−1γ̃′(t)

2n
,
(Γ(t))−1γ̃′′(t)

4n2

)
> 0

and therefore that det(γ̃(t), γ̃′(t), γ̃′′(t)) > 0, which is what we needed. �

Theorem 1 now follows directly from the next lemma.

Lemma 5.2 Let θ ∈ (0, π/2), let K be a compact set, f : K → YQ. Then, for
sufficiently large n, the image of Fn,θ ◦ f is contained in XQ and there exists
H : [0, 1] × K → YQ such that H(0, ·) = f and H(1, ·) = Fn,θ ◦ f .

Proof: We know from lemma 2.1 that f if homotopic to f1, f1(k) = ν2n
θ ∗ f(k)

so all we have to do is construct a homotopy between Fn,θ ◦ f and f1. Intuitively,
this is done by pushing the loops towards t = 0. More precisely, if γ = f(k),
k ∈ K, let

H1(s, k)(t) =

{
ν2n

s (t), t ≤ s/2,

Γ((2t − s)/(2 − s))ν2n
s (t), t ≥ s/2

and

H2(s, k)(t) =





ν2n
s ((2t)/(2 − s)), t ≤ 1/2,

Γ(2t − 1)ν2n
s ((2t)/(2 − s)), 1/2 ≤ t ≤ 1 − s/2,

γ(2t − 1), t ≥ 1 − s/2.

Estimates similar to those of the proof of lemma 5.1 guarantee that H1(s, k) ∈ XQ

and H2(s, k) ∈ YQ for sufficiently large n. �
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6 Proof of theorem 3 and construction of wQ,K

Lemma 6.1 Let θ ∈ (0, π). Let K be a compact space and f : K → YQ a
continuous map. Then, for sufficiently large n, if n1, n2 ≥ n then Fn1+n2,θ ◦f and
ν2n1

θ ∗ (Fn2,θ ◦ f) are homotopic in the space of functions from K to XQ.

Proof: This is a pushing-the-loops argument similar to what was done in the
proof of lemma 5.2. More precisely, for each γ = f(k) first go from Fn1+n2,θ(γ) =

Γ ·ν2(n1+n2)
θ to Γ ·(ν2n1

θ ∗ν2n2
θ ): this involves a reparametrization and the estimates

in the proof of lemma 5.1 guarantee that we remain inside XQ for sufficiently large
n1 and n2. Next do

H(s, k)(t) =

{
(ν2n1

θ ∗ ν2n2
θ )(t), t ≤ s/2,

Γ((2t − s)/(2 − s))(ν2n1
θ ∗ ν2n2

θ )(t), t ≥ s/2.

Again, the estimates in lemma 5.1 show that we remain inside XQ throughout
the process. �

The function wQ,K : [K, YQ] → [K, XQ] is defined to take f : K → YQ to
Fn,θ ◦ f : K → XQ, where θ is arbitrary and n is taken to be sufficiently large.
The following lemma shows that wQ,K is well defined.

Lemma 6.2 Let θ1, θ2 ∈ (0, π/2). Let K be a compact set and f : K → YQ

a continuous function. Then, there exists N such that, if n1, n2 > N then the
functions Fn1,θ1 ◦f and Fn2,θ2 ◦f have images contained in XQ and are homotopic
in the class of functions from K to XQ.

Proof: Take n = ⌊min(n1, n2)/2⌋. Use lemma 6.1 to obtain homotopies from

Fni,θi
◦ f to ν

2(ni−n)
θi

∗ (Fn,θi
◦ f). Lemma 4.1 gives us a homotopy from ν

2(n1−n)
θ1

to ν
2(n2−n)
θ2

. A homotopy from Fn,θ1 ◦ f to Fn,θ2 ◦ f is obtained just by changing
the value of θ, finishing the proof. �

We next show that if f : K → XQ then wQ,Kf = p2
Qf = ν2 ∗ f (the equalities

here being in [K, XQ]: homotopies and not equalities as funcions).

Lemma 6.3 Let θ ∈ (0, π). Let K be a compact space and f : K → XQ a
continuous map. Then, for sufficiently large n, Fn,θ ◦ f and ν2 ∗ f are homotopic
in the space of functions from K to XQ.

Proof: Write n = n1 + n2. From lemma 6.1, Fn,θ ◦ f is homotopic to ν2n1
θ ∗

(Fn2,θ ◦ f). From lemma 4.1, that is homotopic to ν2 ∗ (Fn2,θ ◦ f). We now push
the loops from the second interval to the first. More precisely, for any k ∈ K, set
γ = ν2 ∗ f(k) and corresponding Γ so that

(ν2 ∗ (Fn2,θ ◦ f))(t) =

{
Γ(t)e1, t ≤ 1/2,

Γ(t)ν2n2
θ (2t − 1), t ≥ 1/2.
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Set

H(s, k)(t) =





Γ(t)e1, t ≤ (1 − s)/2,

Γ(t)ν2n2
θ (2t − 1), (1 − s)/2 ≤ t ≤ (2 − s)/2,

Γ(t)e1, t ≥ (2 − s)/2.

This is a homotopy from ν2 ∗ (Fn2,θ ◦ f) to (Fn2,θ ◦ ν2) ∗ f : at any point the
curvature is positive either because n2 is large, using estimates similar to those of
5.1, or because our curve is simply ν2∗f(k), which is known to be in XQ. Finally,
changing the value of θ yields a homotopy from Fn2,θ ◦ν2 to Fn2,π/4 ◦ν2 = ν2(1+n2)

and lemma 4.1 gives us a homotopy from that to ν2. �

Proof of theorem 3: The fact that p2
Q and p4

Q are homotopic follows from

lemma 4.1. Given H : Bn+1 → YQ, define H̃(s) = Fn,θ(H(2s)) for |s| ≤ 1/2
where, as usual, θ ∈ (0, π/2) and n is sufficiently large. Use now lemma 6.3 for
K = Sn to define H̃ for 1/2 < |s| < 1. �

7 Reidemeister moves and

the connectivity of Xz

A double point of a curve γ ∈ YI is a pair (t0, t1), 0 ≤ t0 < t1 < 1, with
γ(t0) = γ(t1). Similarly, a triple point is a triple (t0, t1, t2), 0 ≤ t0 < t1 < t2 < 1,
such that γ(t0) = γ(t1) = γ(t2). A double point (t0, t1) is a self-tangency if γ′(t0)
and γ′(t1) are parallel; otherwise the double point is transversal. We call a curve

generic if it has neither triple points nor self-tangencies and define Y
(0)
I ⊂ YI to be

the set of generic curves. For z = ±1, set also Y
(0)
z = Y

(0)
I ∩ Yz, X

(0)
I = XI ∩ Y

(0)
I

and X
(0)
z = X

(0)
I ∩ Xz. It is clear that Y

(0)
z and X

(0)
z are open and dense in Yz

and Xz, respectively. Also, Y
(0)
z and X

(0)
z are disconnected since the number of

double points does not change in a connected component of these sets. In other
words, the complement of Y (0) has codimension 1.

A triple point (t0, t1, t2) is generic if the vectors γ′(t0), γ′(t1) and γ′(t2) are two
by two linearly independent. A self-tangency (t0, t1) is generic if the curvatures

of γ at t0 and t1 are distinct. A curve γ ∈ YI −Y
(0)
I belongs to Y

(1)
I if it has either

a unique generic triple point or a unique generic self-tangency (but not both).

The complement of Y
(0)
I ∪Y

(1)
I ⊂ YI has codimension 2. We define X

(1)
I , Y

(1)
z and

X
(1)
z in the obvious way.

The passage from one connected component of Y (0) to another through an
element of Y (1) is a Reidemeister move ([3]). Reidemeister moves of type I are not
allowed in YI ; Reidemeister moves of types II and III correspond to generic self-
tangencies and generic triple points, respectively. If the curve is in XI ⊂ YI , one of
the possibilities for orientations near a generic self-tangency is ruled out. Figure 7
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shows the possible Reidemeister moves, or, equivalently, shows the neighborhood
of a generic self-tangency or generic triple point.

Figure 7: Reidemeister moves: type II on first line, type III on second line.

An arc of a curve γ ∈ XI is a pair (t−, t+) such that either (t−, t+) or (t+, t−)
is a transversal double point. Intuitively, we think of the arc as the restric-
tion of γ to [t−, t+] or [0, t+] ∪ [t−, 1]. An arc is positive (resp. negative) if
det(γ(t−), γ′(t+), γ′(t−)) > 0 (resp. < 0). An arc is simple if one of the following
two conditions holds:

1. 0 ≤ t− < t+ < 1 and the restriction of γ to [t−, t+) is injective;

2. 0 ≤ t+ < t− < 1 and the restriction of γ to [0, t+) ∪ [t−, 1) is injective.

Figure 8 shows examples of simple arcs.

(b)(a)

Figure 8: A simple positive arc and a simple negative arc.

The function H constructed in the following lemma is the fundamental build-
ing block in the proof that the spaces X±1 are connected and simply connected.

Lemma 7.1 Let (t−, t+) be a simple positive arc of γ0 ∈ XI. Then there exists
an open neighborhood V of γ0 and continuous functions t−, t+ : V → S1 such
that (t−(γ), t+(γ)) is a simple positive arc of γ for all γ ∈ V . Furthermore, there
exists H : [0, 1] × V → XI with H(0, γ) = γ and H(1, γ) = ν2 ∗ γ for all γ.
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Proof: First assume 0 < t− < t+ < 1. In this case, H(s, γ) coincides with
γ outside (t− − ǫ, t+ + ǫ) and H(s, γ)(t) for t− − ǫ < t < t+ + ǫ is indicated in
figure 9. Let us follow the process: the arc is first shrunk (a), then pushed along
a geodesic all the way, until it comes back (b). This creates two chunks of curve
which are very nearly geodesics: these two chunks are then shrunk (c), obtaining
two new positive simple arcs which can be deformed so that we have a copy of
ν2

θ (for small θ) somewhere in the middle of the curve (d). Finally, that copy of
ν2

θ can be pushed back to t = 0, proving the lemma in this case.

(a) (b) (c) (d)

2ν

Figure 9: How to create a copy of ν2
θ in a curve which has a small loop.

If t− = 0 or t+ < t−, we forget about the base point and perform the con-
struction above to obtain H̃(s, γ) : [0, 1] → S2. Define Q(s, γ) to be the matrix

in SO(3) with first two columns equal to H̃(s, γ)(0) and ̂H̃(s, γ)′(0) and set
H(s, γ) = (Q(s, γ))−1H̃(s, γ). �

Lemma 7.2 Let (t−, t+) be a simple negative arc of γ0 ∈ XI . Then there exists
an open neighborhood V of γ0 and continuous functions t−, t+ : V → S1 such that
(t−(γ), t+(γ)) is a simple negative arc of γ for all γ ∈ V . Furthermore, there
exists H : [0, 1] × V → XI with H(0, γ) = γ and H(1, γ) = ν2 ∗ γ for all γ.

Proof: Shrink the negative simple arc as in figure 10. This creates a simple
positive arc: apply lemma 7.1 and then unshrink. �

Figure 10: How to create a simple positive arc in a curve with a simple negative
arc.

In the next result we become more general and consider again curves in Xz

for z 6= ±1.
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Lemma 7.3 Let γ ∈ XQ − XQ,c. Then there exists γ1 ∈ XQ and a path in XQ

from γ to ν2 ∗ γ1.

Proof: Assume without loss of generality that γ is generic, i.e., that all self
intersections (if any such exist) are transversal double (not triple) points in the
interior (i.e., not in the endpoints). We may furthermore assume that θ(t) 6= ±e1

for t ∈ (0, 1).

If γ is not injective, there exists a simple arc and we use the construction in
lemma 7.1 or 7.2. If γ is simple but not convex, let t1 ∈ (0, 1) be the largest
number for which the restriction of γ to [0, t1] is convex. We want to prove that
this can happen in the two ways illustrated if figure 11 (a) and (b). Let θ(t)
be the argument of the vector obtained from the second and third coordinates
of γ(t): thus θ(t) is increasing for small t and its limit when t tends to 0 is 0.
As long as θ′(0) ≥ 0 and θ(t) ≤ π, γ restricted to [0, t] is convex: indeed, the
image of this interval under γ is a graph of a function: one value of x (the e1

coordinate) for each argument between 0 and θ(t). In this case Vγ|[0,t]
∩ S2 is

the region “under” this graph (see figure 11 (c)): since the boundary is a locally
convex simple closed curve this set is indeed convex.

0

t

(a) (c)(b)

t

1

1

Figure 11: How to create a self-intersection in a non-convex curve.

Thus t1 is the first number for which either θ′(t) = 0 (case (a)) or θ(t) = π
(case (b)). In either case it is easy to deform γ in the interval [0, t1+ǫ] as indicated
in figure 11. The new (thinner) curve is very near a geodesic from e1 to γ(t1 + ǫ).
In either case we create self-intersections, reducing the problem to the previous
case. �

Theorem 7 For any z ∈ S3 the set Xz is connected.

Proof: Let γ1, γ−1 ∈ Xz. From lemma 7.3, each γi is in the same connected
component as some ν2 ∗ γ̃i: we must prove that ν2 ∗ γ̃1 and ν2 ∗ γ̃−1 are in the
same connected component of Xz. Since Yz is connected, there exists h : B1 =
[−1, 1] → YQ,+ with h(−1) = γ̃−1, h(1) = γ̃1. From theorem 3, there exists
h̃ : [−1, 1] → XQ with h̃(−1) = ν2 ∗ γ̃−1, h̃(1) = ν2 ∗ γ̃1. �
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The construction in the proof of lemma 7.3 is not at all uniform. This is
not something which can be fixed with a more careful argument: a uniform
construction would prove the inclusions Xz ⊂ Yz to be homotopy equivelences.
In the following sections we show that this is not the case.

8 Proof of theorem 2

In this section, let z = ±1.

Lemma 8.1 Let z = ±1. All generic curves γ ∈ Xz have simple arcs. Further-
more, if γ0 ∈ X

(1)
z (a Reidemeister move) then there exists an open neighborhood

V ⊂ Xz of γ0 and continuous functions t−, t+ : V → S1 such that (t−(γ), t+(γ))
is a simple arc for all γ ∈ V .

Proof: We define a generalized arc to be a pair (t−, t+) where t− 6= t+ and
γ(t−) = γ(t+). We identify the generalized arc (t−, t+) with the interval [t−, t+]
or with the set [0, t+] ∪ [t−, 1], depending on whether t− < t+ or t+ < t− and we
order generalized arcs by inclusion.

Any curve in γ ∈ Xz has self intersections. If γ is generic or a Reidemeister
move of type III then all generalized arcs are arcs and their number is finite; in
particular, there exists a minimal arc with respect to inclusion. A minimal arc is
clearly a simple arc.

Assume now that γ is a Reidemeister move of type II with self-tangency
(t0, t1). Consider the two generalized arcs (t0, t1) and (t1, t0). If either is non
minimal then it contains a minimal arc and we are done. If both are simple,
they must intersect each other, otherwise we would have a Reidemeister move
from a simple closed curve in X−1,c to a curve in X−1, contradicting theorem 6.
Let (t2, t3) be this intersection: it contains neither (t0, t1) nor (t1, t0). A minimal
generalized arc contained in (t2, t3) is therefore a simple arc.

In any of these cases the neighborhood V and the functions t−, t+ : V → S1

are constructed exactly as in lemma 7.1 or lemma 7.2. �

Lemma 8.2 Let z = ±1. Let γ ∈ Xz be a generic curve with two simple arcs
(ta,−, ta,+) and (tb,−, tb,+). Let δa, δb : [0, 1] → Xz be the paths δ(s) = H(s, γ)
constructed in lemma 7.1 or 7.2, so that δa(0) = δb(0) = γ and δa(1) = δb(1) =
ν2 ∗ γ. Then the two paths δa and δb are homotopic with fixed endpoints in Xz.

Proof: Notice that the statement includes the case ta,± = tb,±. This is not
quite trivial because there is an ambiguity at the end of the construction of H
in lemma 7.1: we did not specify which way the copy of ν2 would roll back the
base point. Thus, we have to prove that the map δγ : S1 → Xz taking s1 to γ
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with a copy of ν2
θ attached at the point γ(s1) is homotopic to a point. If θ is

small enough, the copy of ν2
θ can be attached to any point of δ(s), for any s,

thus proving that δγ is homotopic to ν2 ∗ δγ. Since Yz is simply connected, δγ is
homotopic to a point in Yz; from theorem 3, ν2 ∗ δγ is homotopic to a point in
Xz, proving the lemma in this special case.

We next consider the case when a third simple arc (tc,−, tc,+) exists which
is disjoint from the first two. Since the arcs (ta,−, ta,+) (resp. (tb,−, tb,+)) and
(tc,−, tc,+) are disjoint, we may perform the construction in lemma 7.1 or 7.2
independently, thus defining δac : [0, 1]2 → Xz (resp. δbc : [0, 1]2toXz) with
δac(s, 0) = δa(s) (resp. δbc(s, 0) = δb(s)) and δac(s, 1) = ν2∗δa(s) (resp. δbc(s, 1) =
ν2 ∗ δb(s)). We also have δac(0, s1) = δbc(0, s1) and δac(1, s1) = δbc(1, s1): thus, δa

and δb are homotopic with fixed endpoints if and only if ν2 ∗ δa and ν2 ∗ δb are,
and this again follows from the simple connectivity of Yz and theorem 3.

Next we consider the case when the two arcs (ta,−, ta,+) and (tb,−, tb,+) are
non-disjoint positive arcs. In this case both δa and δb begin by performing a
Reidemeister move of type III: this makes the two arcs disjoint and guarantees
the existence of a third disjoint arc, thus reducing the problem to the previous
case, as shown in figure 12.

Figure 12: Two non-disjoint positive arcs become disjoint

If one of the two initial arcs is negative, the construction in lemma 7.2 creates
a positive arc and a second spare positive arc, thus again reducing the problem
to the previous cases.

Figure 13: If there are exactly two arcs then the argument works

We are left with only one situation to consider: the two arcs (ta,−, ta,+) and
(tb,−, tb,+) are positive, disjoint, and are the only arcs in γ. This guarantees
that, up to a deformation, γ is the curve in figure 13. Again, both δa and δb

begin by parforming a sequence of Reidemeister moves with the same result (up
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to deformation), shown in figure 13. This has four disjoint positive arcs, again
reducing to previous cases. �

Lemma 8.3 Let h : S1 → Xz be a continuous function. There exists a continu-
ous function H : [0, 1] × S1 → Xz with H(0, s) = h(s) and H(1, s) = ν2 ∗ (h(s))
for all s.

Proof: We may assume without loss of generality that h(s) is generic for all
but a finite number of values of s = s1, . . . , sN and that these are Reidemeister
moves. Cover S1 by small open sets whose image under h is contained in an open
neighborhood V as in lemma 7.1 or 7.2: these two results allow us to contruct H
except for thin neighborhoods of finitely many transition points from one arc to
another. These transition points may be assumed not to be Reidemeister moves.
Lemma 8.2 now guarantees that these holes can be plugged. �

Proof of theorem 2: Take h : S1 → Xz. Since Yz is simply connected, h is
homotopic to a point in Yz. From theorem 3, p2

z ◦ h is homotopic to a point in
Xz. From lemma 8.3, h is homotopic to p2

z ◦ h in Xz. Thus, h is homotopic to a
point in Xz. �

9 Stars, trefoils and

the proof of theorem 4

A star is a curve γ in the same connected component of X
(0)
1 as one of the infinite

family of curves given in figure 14. More precisely, a star has 2k+1 double points;
if k > 0, their images in the sphere are the vertices of a convex polygon and, for
any pair of adjacent vertices, there are two arcs of γ joining them.

Figure 14: Stars (k = 0, 1, 2, 3, . . .).

Let T 0 be the closure (in X1) of the set of stars and let T 1 be its boundary.

A curve γ ∈ X1 is called a trefoil if:

1. γ has a generic triple point (t0, t1, t2);

2. γ has no self-tangencies and no double points besides (t0, t1), (t0, t2) and
(t1, t2);
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3. the restriction of γ to each of [t0, t1], [t1, t2] and [t2, 1 + t0] is convex.

The restriction to [t2, 1 + t0] is defined by γ(t + 1) = γ(t). The fourth curve in
figure 4 and all the curves in figure 5 are trefoils.

Lemma 9.1 The set T 1 is the set of trefoils and is a manifold of codimension 1.

Proof: We have to show that the only Reidemeister moves from a star to a
generic γ which is not a star pass through a trefoil. In order to do this, we
classify all possible Reidemeister moves starting at a star. Figure 15 shows how
a Reidemeister move of type II takes a star to another star (changing the value
of k) and how a Reidemeister move of type III takes a star (k = 1) to a generic
curve which is not a star passing through a trefoil. We prove that these are the
only possible moves.

Figure 15: Reidemeister moves starting at a star.

The only possible star from which a Reidemeister move of type III is possible
is the one shown in figure 15 (k = 1): indeed, a Reidemeister move of type III is
quite impossible if the curve does not form a combinatorial triangle. In order to
see that the only possible Reidemeister moves of type II are those indicated in
figure 15, notice that if γ is a star, its image is trapped in the union of triangles
shown in figure 16 (where straight lines indicate geodesics in the sphere). �

Figure 16: A star is trapped in a union of triangles.

Let T̃ 1 ⊂ X1 be an open tubular neighborhood of T 1 and ΠT 1 : T̃ 1 → T 1 a
projection onto T 1. We know from lemma 9.1 that X1 − T̃ 1 has two connected
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components: T 0 − T̃ 1 and X1 − (T 0 ∪ T̃ 1). Let g1,a : X1 → [0, π] be a continuous
function with g1,a(γ) = 0 (resp. π) for γ ∈ T 0 − T̃ 1 (resp. X1 − (T 0 ∪ T̃ 1)). We
may assume without loss of generality that g1,a(γ) ≤ π/2 if and only if γ ∈ T 0.
Finally, let g1 : X1 → S2 be defined by

g1(γ) = (sin(g1,a(γ)) cos θ, sin(g1,a(γ)) sin θ, cos(g1,a(γ))

where, for γ ∈ T̃ 1, we have θ = 2πt0/(1 + t0 − t2), (t0, t1, t2) being the triple
point of the trefoil ΠT 1(γ). For γ 6∈ T̃ 1, θ is undefined but this does not affect
the definition of g1.

Lemma 9.2 The function g1 ◦ f1 : S2 → S2 has topological degree ±1.

Proof: It is enough to look at the unique preimage of (1, 0, 0), indicated by the
first and last curves in figure 5: the function g1 ◦f1 is injective on a neighborhood
of this point. �

The sign of the degree depends on the choice of orientation for these two
copies of S2: the domain of f1 and the image of g1; we may therefore assume that
these orientations were chosen so that the degree is 1 and then these two copies
of S2 were identified by an orientation preserving homeomorphism.

We wrote this section of z = 1 only, but everything applies to any z ∈ −A:
just attach an arc δ at the end to make the curves closed. The definitions of star
and trefoil are based on these closed curves γ ∗δ and we thus define gz : Xz → S2.
The second column of figure 19 consists of trefoils and it is clear that gz takes
the region to the left of this circle to (·, ·, +), the region to the right to (·, ·,−)
and that this circle is taken to the circle (·, ·, 0) by a function of degree 1.

Proof of theorem 4: All we still have to do is prove that gz ◦ p2
z is constant:

indeed, no curve of the form p2
z(γ) = ν2 ∗ γ will be near a star or trefoil and

therefore gz(p
2
z(γ)) = (0, 0,−1) for all γ ∈ Xz. �

Notice that this implies that fz and p2
z ◦ fz are not homotopic.

10 Flowers and the proof of theorem 5

For z ∈ A and Q = Π(z), let θM ∈ (0, π] be defined as follows: if Qe1 = e1, then
θM is the argument of (x2, x3) where (0, x2, x3) = −Qe2; if Qe1 6= e1, then θM

is the argument of (x2, x3) where Qe1 = (x1, x2, x3). A curve γ ∈ X(−1)kz is a
flower of 2k + 1 petals if there exist 0 = t0 < t1 < t2 < · · · < t2k < t2k+1 = 1 and
0 = θ0 < θ1 < θ2 < · · · < θ2k < θ2k+1 = θM such that:

1. γ(t1) = γ(t2) = · · · = γ(t2k) = e1;

2. the only double points of γ are of the form (ti, tj), i < j;
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3. the argument of (xi,2, xi,3) is θi, where (0, xi,2, xi,3) = (−1)iγ′(ti);

4. the restriction of γ to an interval of the form [ti, ti+1] is convex.

Thus a flower of 1 petal is a convex curve and a flower of 3 petals is a trefoil with
the triple point at e1. Figure 17 shows other examples of flowers. Notice that if
γ is a flower than γ(t) 6= −e1 for all t. For k > 0, let F2k ⊂ X(−1)kz be the set of
flowers of 2k + 1 petals.

Figure 17: Examples of flowers.

Lemma 10.1 The set F2k is closed (as a subset of X(−1)kz and a submanifold of
codimension 2k. Furthermore, the normal bundle to F2k in X(−1)kz is trivial.

Proof: Any flower γ has as open neighborhood of curves γ̃ as shown in figure 18:
an arc from t = 0 to t̃1, with γ̃(t̃1) = (cos η̃1, sin η̃1, 0), another arc from there to
t̃2, with γ̃(t̃2) = (cos η̃2, sin η̃2, 0), and so on, and a final arc from t̃2k to t2k+1 = 1.
This defines a submersion E from this neighborhood of γ to (a neighborhood of
the origin in) R2k taking γ̃ to (η̃1, η̃2, . . . , η̃2k). Notice that γ̃ ∈ F2k+1 if and only
if E(γ̃) = 0.

θ1

e1

θ2
~~

Figure 18: A curve near a flower.

This construction is uniform: E is a submersion from a tubular neighborhood
of F2k to R2k. This proves our claims. �
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The intersection number with F2k is therefore well defined and can be inter-
preted as an element f2k ∈ H2k(X(−1)kz, Z). We may also consider f2k to be the
Poincaré dual of F2k.

Proof of theorem 5: We claim that f2k · f [k]

(−1)kz
= ±1 where f

[k]
z : (S2)k → Xz

was constructed in section 4 (we will again not bother with checking orien-
tations which we can define as we prefer anyway). Indeed, there is a single
(s1, s2, . . . , sk) ∈ (S2)k such that f [n](s1, s2, . . . , sk) is a flower: each si ∈ S2 has
to be taken to be the only point such that (in the notation of section 4) fzi

(si) is a
trefoil with the triple point at (Q1Q2 · · ·Qi−1)

−1e1, which is a point on the dashed
line in figure 19. It is not hard to check that this intersection is transversal. This
proves that f2k 6= 0.

On the other hand, there is obviously no flower in the image of ν2 ∗ f
[k]

(−1)kz

and therefore f2k · (ν2 ∗ f1) = 0.

Let x ∈ H2(Y(−1)kz) = H2(ΩS3) be as in section 2 and let x̃ = (H2(i))(x) ∈
H2(X(−1)kz). We know from theorem 1 that H∗(i) : H∗(Y(−1)kz) → H∗(X(−1)kz)

is injective and therefore 0 6= x̃k ∈ H2k(X(−1)kz). By lemma 2.1, x̃k · f
[k]

(−1)kz
=

x̃k · (ν2 ∗ f
[k]

(−1)kz
) and therefore f2k and x̃k are linearly independent. �

We conclude by computing the product between the identified elements of
H∗(Xz, R).

Proposition 10.2 For z ∈ A, let x̃, f4, f8, . . . ∈ H∗(Xz, R) be defined as above.
Then x̃fi = fifj = 0 for all i, j.

Similarly, for z ∈ −A, let x̃, f2, f6, . . . ∈ H∗(Xz, R) be defined as above. Then
x̃fi = fifj = 0 for all i, j.

Proof: The product fifj can be interpreted in terms of the intersection between
Fi and Fj. Since Fi ∩ Fj = ∅ for i 6= j it follows that fifj = 0 in this case.
Also, since the normal bundle to Fi is trivial, we can uniformly push Fi in some
direction to obtain another manifold F ′

i homologic to Fi and disjoint from it: thus
f2
i = 0.

In order to discuss the products x̃fi, we recall the definition of x̃. If K is a
closed oriented surface and f : K → Xz is a continuous function with f(s) = γ
then define f̃ : K × [0, 1] → S3 by f̃(s, t) = Γ̃(t). Let δ : [0, 1] → S3 be an
arbitrary curve with δ(0) = z, δ(1) = 1 and define f̂ : K × S1 → S3 (where
S1 is [0, 1] with identified endpoints) by f̂(s, t) = f̃(s, 2t) for t ∈ [0, 1/2] and
f̂(s, t) = δ(2t − 1) for t ∈ [1/2, 1]. The product x̃ · f is the topological degree
of f̂ : this can be computed using any point of S3 and counting its preimages
under f̂ with sign. If we take that point to be j ∈ S3 and thus obtain a 2-cocycle
representing x̃. Notice that having Γ̃(t) = j implies γ(t) = −e1. Since we can
not have γ(t) = e1 for a flower, the support of this cocycle is disjoint from Fi and
therefore x̃fi = 0 for all i. �
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Figure 19: The function fz : S2 → Xz, −z ∈ A.
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