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Abstract

We study the rate of convergence of Wilkinson’s shift iteration acting on
Jacobi matrices with simple spectrum. We show that for AP-free spectra
(i.e., simple spectra containing no arithmetic progression with 3 terms), con-
vergence is cubic. In order 3, there exists a tridiagonal symmetric matrix P0

which is the limit of a sequence of a Wilkinson iteration, with the additional
property that all iterations converging to P0 are strictly quadratic. Among
tridiagonal matrices near P0, the set X of initial conditions with convergence
to P0 is rather thin: it is a union of disjoint arcs Xs meeting at P0, where s

ranges over the Cantor set of sign sequences s : N → {1,−1}. Wilkinson’s step
takes Xs to X

s
′ , where s′ is the left shift of s. Among tridiagonal matrices

conjugate to P0, initial conditions near P0 but not in X converge at a cubic
rate.

Keywords: Wilkinson’s shift, QR algorithm, inverse variables, symbolic dynamics.
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1 Introduction

In this paper, we study of the asymptotics of the shifted QR iteration with the so
called Wilkinson’s shift, acting on Jacobi matrices. More precisely ([10], [4], [7]),
for an n × n real symmetric tridiagonal matrix T and a real number s, write, if
possible, the unique QR factorization T − sI = QR, where Q is orthogonal and R
is upper triangular with positive diagonal. Wilkinson’s shift strategy is the choice
of s = ω(T ) equal to the eigenvalue of the bottom 2× 2 principal minor of T which
is closest to the bottom entry Tnn. A Wilkinson step obtains a new matrix

W(T ) = Q∗TQ = RTR−1.

From both defining formulae, W(T ) is symmetric and upper Hessenberg, and thus,
must also be a real, symmetric tridiagonal matrix, with the same spectrum as T ,
as well as the signs of the nontrivial off-diagonal elements.

As is well known ([7]), if the iterates Tk = Wk(T ) of the Wilkinson step starting
from a Jacobi matrix with simple spectrum exist for arbitrary k, then their lowest
off-diagonal entry tend to 0: we are interested in the rate of convergence of this
sequence. It has been conjectured ([7], [4]) that the rate is cubic, i.e., for any Jacobi
matrix T there exists a constant C such that |(Tk+1)n,n−1| ≤ C|(Tk)n,n−1|3. As we
shall see, this is true for most matrices T but false in general. A Jacobi matrix T is
an AP-matrix if its spectrum contains an arithmetic progression with three terms
and is AP-free otherwise. For AP-free matrices, the conjecture is indeed true. On
the other hand, there exist 3 × 3 AP-matrices for which the rate of convergence is,
in the words of Parlett, merely quadratic.

We give an outline of the proof. A basic ingredient are the bidiagonal coor-
dinates, consisting of eigenvalues λi, i = 1, . . . , n, and additional variables βπ

i ,
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i = 1, . . . , n − 1, defined on large open sets of tridiagonal matrices. As proved in
[5], the set TΛ of real, symmetric, tridiagonal matrices with fixed simple spectrum
λ1 < · · · < λn is covered by open dense subsets Uπ

Λ , indexed by permutations π and
bidiagonal coordinates provide a diffeomorphism between each Uπ

Λ and R
n−1. The

new coordinates are used to convert asymptotic issues of Wilkinson’s iteration into
local theory in an appropriate chart.

There are two subsets of TΛ in which Wilkinson’s step might break down. First,
let Z ⊂ TΛ be the set of matrices T for which the shift ω(T ) equals an eigenvalue of
T : we are especially interested in D0,i ⊂ Z, the set of matrices T with (T )n,n = λi,
(T )n,n−1 = 0. Second, the two eigenvalues ω+(T ) ≥ ω−(T ) of the bottom 2 × 2

block T̂ may be equally distant from the corner entry (T )n,n: let Y ⊂ TΛ be the
set of such matrices T . It is clear that the function W is smoothly defined at least
in TΛ − Z − Y but using bidiagonal coordinates we shall see that the domain can
be taken to be much larger. Indeed, for a matrix T ∈ Uπ

Λ ⊂ TΛ with bidiagonal
coordinates λi and βπ

i , T 6∈ Z ∪ Y, the βπ
i ’s of W(T ) are given by

Wπ(βπ
1 , . . . , β

π
n−1) =

(∣

∣

∣

∣

λπ(2) − ω(T )

λπ(1) − ω(T )

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

λπ(n) − ω(T )

λπ(n−1) − ω(T )

∣

∣

∣

∣

βπ
n−1

)

.

In bidiagonal coordinates, points in D0,π(n) ∩ Uπ
Λ satisfy βπ

n−1 = 0 and an inspec-
tion of the formula above shows that Wπ extends smoothly to D0,π(n) − Y. More
generally, near p0 ∈ D0,π(n) the quotient βπ

n−1/(T )n,n−1 is bounded above and
below and rates of convergence are the same in both variables. We then expand
(Wπ(βπ

1 , . . . , β
π
n−1))n−1 in a Taylor series around p0. Notice that ω(T ) ≈ λπ(n)

near p0 and oddness of this function in the variable βπ
n−1 allows for

(Wπ(βπ
1 , . . . , β

π
n−1))n−1 = G(βπ

1 , . . . , β
π
n−1)(β

π
n−1)
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for some smooth function G, yielding the cubic estimate

|(W(T ))n,n−1| < C|(T )n,n−1|3

for some C > 0, T in a neighborhood of p0.
Points of Y with βπ

n−1 6= 0 are step-like discontinuities for W. The behavior of
W near matrices p0 ∈ Y∩Z is more complicated; in figure 2 we show what happens
for Λ = (1, 2, 4), a typical spectrum. The upshot from the figure is that typically
the few points in Y ∩ D0,i, for which the cubic estimate does not hold, are isolated
in the sequence of iterations Tk = Wk(T0) and are irrelevant in the long run. More
precisely, the argument holds for AP-free spectra, i.e., spectra which contain no
three terms arithmetical progression. In such case, there exist positive constants C
and K such that |(Tk+1)n,n−1| > C|(Tk)n,n−1|3 holds for at most K values of k (see
theorem 3.4), yielding genuine cubic convergence of Wilkinson’s iteration.

In the 3 × 3 AP case, instead, there exists a point p0 ∈ Y ∩ D0,i which is kept
fixed by W. The graphs of ω+ and ω− near p0 resemble the two branches of the
cone z2 = xz+y2 near the origin, x and y corresponding to βπ

1 and βπ
2 , respectively.

Sections of the cone by planes x = a, a 6= 0, are hyperbola with a branch passing
through (a, 0, 0) and z is therefore of the order of y2 for small y: this quadratic
behavior of ω implies the cubic estimates for the (n, n − 1) entry under W. For
a = 0, however, the intersection of the cone with the plane x = a is z = ±|y|; z
and therefore ω are of the order of |y| and βπ

2 , respectively: this entails a quadratic
estimate for the (n, n−1) entry under W. Hence, the rate of convergence is dictated
by whether Tk remains near p0 when k goes to infinity. It turns out that Tk tends
to p0 (and cubic convergence fails) if and only if T0 ∈ X , where X is a remarkable
set (see figure 7). A point T0 ∈ X has a sign sequence s : N → {1,−1}, where s(k)
indicates whether ω(Tk) equals ω+ or ω−. The set S of sign sequences is a Cantor
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set and X is the disjoint union of graphs of Lipschitz functions fs : [−a∗, a∗] → R

with fs(0) = 0 for all s ∈ S; a good reference for dynamically defined Cantor sets
is [6]. For y0 ∈ [−a∗, a∗], (fs(y0), y0) ∈ X has sign sequence s. There is an open set
of points T0 6∈ X which are between branches of X : for sufficiently large k, their
iterates Tk will be either to the left or to the right of X and cubic convergence
applies. Another application of dynamical systems to numerical spectral theory is
the work of Batterson and Smillie ([1]) on the Rayleigh quotient iteration.

We begin the paper collecting from [5] the required information about bidiag-
onal coordinates, essentially, the description of Wilkinson’s iteration in terms of
bidiagonal variables. Section 2 also contains a key ingredient: the construction of
a function h(T ) which grows along Wilkinson’s iterations. The proof that h(T )
indeed satisfies this property is indirect: it requires the interpretation of a QR step
as the time one map of a Toda flow. The monotonicity of h then follows by a simple
differentiation argument.

In section 3 we prove cubic convergence of Wilkinson’s shift iteration for AP-
free matrices. In sections 4 and 5, we show that for 3 × 3 AP-matrices, the rate of
convergence is usually cubic but strictly quadratic for a thin set of initial conditions.

The authors acknowledge support from CNPq, CAPES, IM-AGIMB and Faperj.

2 Preliminaries

Let TΛ be the set of real, symmetric, tridiagonal matrices with simple spectrum
λ1, . . . , λn and set Λ = diag(λ1, . . . , λn). For T ∈ TΛ, write T = Q∗ΛQ for some Q ∈
O(n). Write the PLU factorization of Q, i.e., Q = PLU where P is a permutation
matrix, L is lower unipotent and U is upper triangular. This is usually possible
for P = Pπ for several permutations π ∈ Sn. Indeed, since Q is invertible, there
is a matrix P−1Q obtained by permuting the rows of Q for which all the leading
principal minors are invertible. For a permutation π, define Uπ

Λ to be the set of
matrices T ∈ TΛ for which P−1

π Q admits an LU factorization. The following lemma
provides other descriptions of Uπ

Λ . Let E be the set of diagonal matrices having the
values 1 or −1 along the diagonal.

Lemma 2.1 ([5], lemma 3.1) Take T ∈ TΛ with unreduced blocks T1, . . . , Tk of
sizes n1, . . . , nk along the diagonal. Then T ∈ Uπ

Λ if and only if the eigenvalues of
Ti are

λπ
n1+···+ni−1+1, . . . , λ

π
n1+···+ni−1+ni

.

Alternatively, Uπ
Λ is the union of all open faces in TΛ adjacent to Λπ. Also, for

E ∈ E, if T ∈ Uπ
Λ then ETE ∈ Uπ

Λ .

For T ∈ Uπ
Λ , we define the π-normalized diagonalization as the unique factor-

ization T = Q∗
πΛπQπ for which the LU factorization of Qπ yields a matrix U with

positive diagonal. Notice that Qπ = EP−1
π Q for some E ∈ E .

We now construct charts for TΛ, φπ : R
n−1 → Uπ

Λ and φ−1
π : Uπ

Λ → R
n−1

with φπ(0) = Λπ ∈ Uπ
Λ . For T ∈ Uπ

Λ , consider its π-normalized diagonalization
T = Q∗

πΛπQπ and Q = PπQπ so that T = Q∗ΛQ. Write Qπ = LπUπ (which
is possible because the leading principal minors of Qπ are positive) and therefore
PπLπ = QRπ, where Rπ = U−1

π is also upper triangular. Set

Bπ = R−1
π TRπ = L−1

π ΛπLπ.

Notice that the columns of L−1
π are the eigenvectors of Bπ. From Bπ = R−1

π TRπ, Bπ

is upper Hessenberg and from Bπ = L−1
π ΛπLπ, it is lower triangular with diagonal
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entries λπ
1 , . . . , λ

π
n. Summing up, Bπ is lower bidiagonal:

Bπ =















λπ
1

βπ
1 λπ

2

βπ
2 λπ

3

. . .
. . .

βπ
n−1 λπ

n















.

Define ψπ to be the map just constructed taking T ∈ Uπ
Λ to (βπ

1 , . . . , β
π
n−1). We call

βπ
1 , . . . , β

π
n−1 (together with λπ

1 , . . . , λ
π
n) the π-bidiagonal coordinates of T .

Theorem 2.2 ([5], theorem 3.4) The map ψπ : Uπ
Λ → R

n−1 is a diffeomorphism
with inverse φπ : R

n−1 → Uπ
Λ .

The map φπ takes open quadrants of R
n−1 diffeomorphically to the connected

components of TΛ formed by irreducible matrices (connected components are in-
dexed by signs of off-diagonal entries). Also, the hyperplanes βπ

i = 0 in R
n−1 are

taken diffeomorphically to the set of matrices T in Uπ
Λ with (T )i,i+1 = 0. Indeed, it

is shown in theorem 4.5 of [5] that the quotient βπ
i /((T )i,i+1) is a smooth nonzero

function in Uπ
Λ . The following lemma follows by compactness.

Lemma 2.3 Given a compact subset Kπ ⊂ Uπ
Λ , there exist positive constants C <

C ′ such that, for T ∈ Kπ,

C|(T )n,n−1| ≤ |βπ
n−1| ≤ C ′|(T )n,n−1|.

We say that a function α : TΛ → R is even if α(ETE) = α(T ) for any T ∈ TΛ and
E ∈ E . The following lemma translates this definition to bidiagonal coordinates.

Lemma 2.4 ([5], lemma 3.6) If E = diag(σ1, . . . , σn) ∈ E, T ∈ Uπ
Λ , and ψπ(T ) =

(βπ
1 , . . . , β

π
n−1) then

ψπ(ETE) = (σ1σ2β
π
1 , . . . , σn−1σnβ

π
n−1).

A function α : TΛ → R is even if and only if each α ◦ φπ : R
n−1 → R is even in

each coordinate.

As an example of bidiagonal coordinates, let Λ = diag(−1, 0, 1). Set π(1) = 3,
π(2) = 1, π(3) = 2. Matrices will be described by their π-bidiagonal coordinates
x = βπ

1 and y = βπ
2 . Since Bπ = L−1

π ΛπLπ, we obtain

Λπ =





1 0 0
0 −1 0
0 0 0



 , Bπ =





1 0 0
x −1 0
0 y 0



 , Lπ =





1 0 0
−x/2 1 0
−xy y 1





and writing Qπ = LπUπ we have

Qπ =
1

r1r2





2r2 2x(1 + 2y2) xyr1
−xr2 2(2 + x2y2) −2yr1

−2xyr2 y(4 − x2) 2r1



 ,

where r1 =
√

4 + x2 + 4x2y2 and r2 =
√

4 + 4y2 + x2y2. From T = Q∗
πΛπQπ,

T =
1

r21r
2
2





(4 − x2)r22 2xr32 0
2xr32 −4(4 − x2 − 4x2y4 + x4y4) 2yr31

0 2yr31 y2(x2 − 4)r21



 .
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This example will be revisited in sections 4 and 5.
For an invertible real matrix M , write the unique QR factorization

M = Q(M)R(M),

where Q(M) is orthogonal and R(M) is upper triangular with positive diagonal. For
some function f taking nonzero values on the spectrum of a tridiagonal symmetric
matrix T0, the QR step induced by f is the map

F (T ) = Q(f(T ))∗ T Q(f(T )) = R(f(T ))T R(f(T ))−1.

From both equalities, we learn that F (T ) is also tridiagonal, with same signs and
zeroes along the off-diagonal entries than T . The standard QR step corresponds to
f(x) = x and taking a shift s means taking f(x) = x − s. The map F admits a
simple description in terms of bidiagonal coordinates.

Proposition 2.5 ([5], proposition 4.2) For f taking nonzero values on the spec-
trum of T ,

(F ◦ φπ)(βπ
1 , . . . , β

π
n−1) = φπ

(∣

∣

∣

∣

f(λπ(2))

f(λπ(1))

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

f(λπ(n))

f(λπ(n−1))

∣

∣

∣

∣

βπ
n−1

)

We now present some technical results concerning the dynamics QR type iter-
ations which will be needed in the proof of theorem 3.4. The argument is rather
indirect and seems to require the language of Toda flows. For a square matrix M ,
let S = ΠaM be the skew symmetric matrix for which (M)ij = (S)ij for i > j. The
following result, which follows by direct computation, relates Toda flows and QR
iterations.

Proposition 2.6 ([8]) Let Λ be a diagonal matrix with simple spectrum, g : R → R

be a smooth function, Xg be the vector field Xg(T ) = [T,Πag(T )] and T : R → TΛ

be a path satisfying d
dt

T = Xg(T), T(0) = T0. Then

T(t) = Q(exp(t g(T0)))
∗ T0 Q(exp(t g(T0))) = R(exp(t g(T0)))T0R(exp(t g(T0)))

−1,

or, in other words, T(t) = F (T0) where f(x) = exp(t g(x)).

The dynamics of Toda vector fields is rather simple: they are essentially gra-
dients of Morse functions. The following result is known for g(x) = x ([2], [3],
[9]).

Theorem 2.7 Let g : R → R satisfy g(λi) 6= g(λj) for distinct eigenvalues λi, λj of
Λ. Let Xg be the Toda vector field [T,Πag(T )] on TΛ. Let M = diag(µ1, µ2, . . . , µn),
µ1 > µ2 > · · · > µn; let hM,g : TΛ → R be the smooth function hM,g(T ) =
tr(Mg(T )). Then the directional derivative XghM,g is strictly positive except at
diagonal matrices.

Proof: Define a path T : R → TΛ satisfying d
dt

T = Xg as above. We first claim

that d
dt
g̃(T) = [g̃(T),Πag(T)] for any smooth function g̃. Indeed, since Toda flows

preserve spectra, g̃ may be replaced by a polynomial p which coincides with g̃ on
the spectrum of Λ. By linearity, it suffices to consider pk(x) = xk, which is handled
by induction on k:

d

dt
pk+1(T) =

d

dt
(Tpk(T)) = T

(

d

dt
pk(T)

)

+

(

d

dt
T

)

pk(T)

= T[Tk,Πaf(T)] + [T,Πaf(T)]Tk

= Tk+1(Πaf(T)) − T(Πaf(T))Tk + T(Πaf(T))Tk − (Πaf(T))Tk+1

= [pk+1(T),Πaf(T)].
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Take g̃ = g and compute the derivative of hM,g along the path T:

XghM,g =
d

dt
hM,g(T) =

d

dt
(tr Mg(T))

= tr M

(

d

dt
g(T)

)

= tr(M [g(T),Πag(T)])

=
∑

1≤i<j≤n

2(µi − µj)(g(T))2ij .

Since g(T ) has simple spectrum, it is diagonal only if T also is and we are done.
�

Corollary 2.8 Let f : R → R be a function satisfying |f(λi)| 6= |f(λj)| 6= 0 for
i 6= j and let F : TΛ → TΛ be the QR step induced by f . Let K ⊂ TΛ be a compact
set containing no diagonal matrices. Then there exists K > 0 such that, for all
T ∈ TΛ,

|{k ∈ N|F k(T ) ∈ K}| < K.

Proof: Consider g(x) = log |f(x)|, Xg, T, M and hM,g as in the previous theorem.
Since K is compact and avoids diagonal matrices, XghM,g > ǫ > 0 on K. From
proposition 2.6, F k(T0) = T(k) and we are done. �

It is not true that, given K, there existsK2 such that, for all T0 ∈ TΛ, F k(T0) 6∈ K
for all k > K2. For instance, the exit time from a small neighborhood of a diagonal
matrix T is not uniformly bounded; another situation is given in figure 3 below.

3 Wilkinson’s shift and AP-free matrices

We consider iterations of shifted QR steps, induced by fs(x) = x− s. The function
Fs : TΛ → TΛ is defined whenever s is not an eigenvalue. Frequently, the shift s is
taken to depend on T . We consider the asymptotic properties of a special choice of
shift, which defines Wilkinson’s step ([10]). For T ∈ TΛ, let ω+(T ) ≥ ω−(T ) be the
two eigenvalues of the bottom 2×2 block of T and set ω(T ) to be the one nearest to
the entry (T )n,n. This defines continuous maps ω+, ω− : TΛ → R which are smooth
in TΛ−Y0, where Y0 ⊂ TΛ is the set of matrices T for which (T )n,n = (T )n−1,n−1 and
(T )n,n−1 = 0. Indeed, T ∈ Y0 if and only if ω+(T ) = ω−(T ). Also, ω : TΛ −Y → R

is smooth where T ∈ Y ⊂ TΛ if (T )n,n = (T )n−1,n−1. Indeed, T ∈ Y if and only if
(T )n,n is equally distant from both eigenvalues of its bottom 2 × 2 block, which is
the only way smoothness could fail. Also, ω± and ω are even in the sense of lemma
2.4.

Lemma 3.1 The functions ω± : TΛ → R are Lipschitz.

Proof: The function taking T to its bottom 2 × 2 block is clearly smooth. The
function taking a 2× 2 symmetric matrix A to its larger (resp. smaller) eigenvalue
is Lipschitz in compact sets. The lemma follows from composition. �

Let Zk = {T ∈ TΛ; ω(T ) = λk}, Z =
⋃

k Zk, Ẑk = Z − Zk. Notice that if
(T )n,n−1 = 0 then ω(T ) = (T )n,n = λk for some k and therefore T ∈ Zk. Also, if
(T )n−1,n−2 = 0 then again ω(T ) = λk for some k. Define W : TΛ −Y −Z → TΛ by
W(T ) = Fω(T )(T ) for fs(x) = x− s. Notice that W is an odd function.

Figure 1 shows J̄Λ for Λ = diag(1, 2, 4) and Λ = diag(−1, 0, 1). Labels indicate
the diagonal entries and vertices are diagonal matrices. The set Y, on which W
is not defined, degenerates in the second example. Vertices are fixed points and
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edges are invariant under W. A simple arrow indicates the order of the points
T,W(T ),W2(T ), . . . along the edge. For points T on an arc labeled with a double
arrow, W(T ) is a vertex. Arcs marked with a transversal segment consist of fixed
points of W.

(2,5/2,5/2)

(4,3/2,3/2)

(0,0,0)

(0,0,0)

(−1,1,0)

(−1,1/2,1/2)(1,−1/2,−1/2)

(0,1,−1)

(1,−1,0)

(1,0,−1)
(4,2,1)

(4,1,2)

(2,4,1)

(1,4,2)

(2,1,4)

(1,2,4)

(1,3,3)

(0,−1,1)

(−1,0,1)

(3,2,2)

Y
Y

Y

Figure 1: The phase space of Wilkinson’s step for n = 3.

We apply proposition 2.5 to write down Wilkinson’s step in bidiagonal coordi-
nates. Define Wπ by

Wπ(βπ
1 , . . . , β

π
n−1) =

(∣

∣

∣

∣

λπ(2) − ω

λπ(1) − ω

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

λπ(n) − ω

λπ(n−1) − ω

∣

∣

∣

∣

βπ
n−1

)

where ω = ω(φπ(βπ
1 , . . . , β

π
n−1)). Thus, the natural domain for Wπ is R

n−1 −
φ−1

π (Y ∩ Uπ
Λ) − φ−1

π (Ẑπ(n) ∩ Uπ
Λ), where Wπ is a smooth function, indicating that

points in φ−1
π (Zπ(n)) are removable singularities and that, despite absolute values

in the formula, Wπ is smooth at such points. Notice that Wπ is odd, since ω is
even in each variable βπ

i . Also, points in φ−1
π (Zπ(n)) are of the form βπ

n−1 = 0 or,
equivalently, (T )n,n−1 = 0.

Points of Y with βπ
n−1 6= 0 are step-like discontinuities for W. The behavior of

W near matrices p0 ∈ Y∩Z is more complicated; in figure 2 we show what happens
for Λ = (1, 2, 4), a typical 3 × 3 AP-free spectrum. Close to

p0 =





3
√

2 0√
2 2 0

0 0 2



 , π(1) = 1, π(2) = 3, π(3) = 2, βπ
1 = 3

√
2, βπ

2 = 0,

the set Y divides the plane into two sides D+ and D−, where we take ω+ and ω−,
respectively, in the definition of W. From each side D±, the function W can be
continuously extended to Y but the two values thus obtained are quite different
except at p0.

The figure is drawn with a vertical stretching factor of 200. The thick vertical
curve (which looks like a straight line due to stretching) is the set Y. To the right,
the curve BF (with a cusp at W(p0)) is the image of the arc in Y from βπ

2 = 0.1
to βπ

2 = −0.1 under W with the choice ω = ω−; to the left, the curve CG is the
image of the same arc, now with ω = ω+. The dotted lines AB and CD are the
image under W of the horizontal line βπ

2 = 0.1: notice the jump discontinuity at Y
from B to C. Oddness of W in the coordinate βπ

2 explains the mirror symmetry in
the horizontal axis.

The study of the asymptotic behavior of the iterations of Wilkinson’s step be-
comes significantly simpler by taking into account the following result.

Theorem 3.2 ([7], p. 152) If Tk = Wk(T0) then limk→∞(Tk)n,n−1 = 0.

From this result, deflation is always possible in numerical implementations of
Wilkinson’s iteration: T will be truncated so as to split into blocks of size n−1 and
1. We will investigate the rate of convergence of (Tk)n,n−1 to 0.
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A

B

G

H

E

F

C

D

D− D+

Y

p0 W(p0)

Figure 2: Image of Y under Wπ for Λ = diag(1, 2, 4) (stretched vertically).

Proposition 3.3 Let D(ǫ) = {T ∈ TΛ | |(T )n,n−1| < ǫ}. Given a spectrum λ1 <
· · · < λn, there exists ǫq > 0 and Cq > 0 such that W(D(ǫ)) ⊂ D(ǫ) for any ǫ ≤ ǫq
and |(W(T ))n,n−1| ≤ Cq|(T )n,n−1|2 for T ∈ D(ǫq).

Furthermore, for any subset Dc ⊂ D(ǫq) satisfying Dc ∩ Y0 = ∅ there exists
Cc > 0 such that |(W(T ))n,n−1| ≤ Cc|(T )n,n−1|3 for T ∈ Dc.

Proof: Define smaller open sets Vπ ⊂ Kπ ⊂ Uπ
Λ where each Kπ is compact such

that the open sets Vπ still cover TΛ. Let D0 ⊂ TΛ be the set of matrices T with
(T )n,n−1 = 0. The set D0 is a compact submanifold of codimension 1. The set D0

is not contained in any Vπ but is clearly covered by them and we can then write the
π-bidiagonal coordinates βπ

1 , · · · , βπ
n−1 for T ∈ Vπ. Lemma 2.3 allows us to identify

in Vπ rates of decay for (T )n,n−1 and βπ
n−1.

Let ǫ1 < |λi−λj |/2 for all i 6= j. We can take ǫ0 > 0 such that T ∈ D(ǫ0) implies
|(T )n,n − λi| < ǫ1 for some (unique) i (i depends on T ). Call Di(ǫ0) ⊂ D(ǫ0) the
set of such T . Assume without loss that Di(ǫ0) is covered by Vπ for permutations
π satisfying π(n) = i. In Di(ǫ0), W in π-bidiagonal coordinates is given by

Wπ(βπ
1 , . . . , β

π
n−1) =

(∣

∣

∣

∣

λπ(2) − ω

λπ(1) − ω

∣

∣

∣

∣

βπ
1 , . . . ,

∣

∣

∣

∣

λi − ω

λπ(n−1) − ω

∣

∣

∣

∣

βπ
n−1

)

.

In each Vπ ∩Di(ǫ0), ω is a continuous function taking the value λi when βπ
n−1 = 0.

Since ω± are Lipschitz functions of T , |λi − ω| < L|βπ
n−1| for some L > 0, implying

from the formula for Wπ the quadratic rate of decay for βπ
n−1. By taking ǫ0 even

smaller, we can assume that |λi − ω| < ǫ1 in this set so that the quotients

λπ(2) − ω

λπ(1) − ω
, · · · , λπ(n−1) − ω

λπ(n−2) − ω

have absolute value bounded and bounded away from zero and the first claim follows
by compactness.

The Taylor expansion of the last coordinate of Wπ centered at points T ∈
(Vπ ∩ D0) − Y0 with respect to the variable βπ

n−1 is of the form

(Wπ(βπ
1 , . . . , β

π
n−1))n−1 =

∑

ℓ

aℓ(β
π
1 , . . . , β

π
n−2)(β

π
n−1)

ℓ.

The function Wπ is odd, so a0 = a2 = 0. The factor (λπ(n) − ω)/(λπ(n−1) − ω)
equals 0 if βπ

n−1 = 0 and therefore a1 = 0. In other words,

(Wπ(βπ
1 , . . . , β

π
n−1))n−1 = G(βπ

1 , . . . , β
π
n−1)(β

π
n−1)

3

for some real analytic function G. Again by compactness, we are done. �
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A matrix T is an AP-matrix if its spectrum contains an arithmetic progression
with 3 terms, i.e., some eigenvalue is the average of two others; otherwise, T is
AP-free. We also refer to AP-free spectra, Jacobi cells, isospectral manifolds and
so on, with the obvious meanings. The left hexagon in figure 1 is AP-free and the
right hexagon is not.

Theorem 3.4 For AP-free tridiagonal matrices, Wilkinson’s iteration has cubic
convergence. More precisely, given an AP-free spectrum λ1 < · · · < λn, there exist
C > 0 and K > 0 such that, for any T0 ∈ TΛ,

(a) if k > K then |(Tk+1)n,n−1| < 1/C and |(Tk+1)n,n−1| ≤ C|(Tk)n,n−1|2;
(b) the set of positive integers k for which |(Tk+1)n,n−1| > C|(Tk)n,n−1|3 has at

most K elements.

Proof: We keep the notation of the proof of proposition 3.3. Item (a) follows from
theorem 3.2, proposition 3.3 and compactness. Indeed, for any given ǫ > 0 there
exists K1 such that for any T0 ∈ TΛ and for any k > K1 we have Tk ∈ D(ǫ). For
item (b), we need to prove that, given an open Dc ⊂ TΛ containing the diagonal
matrices, there exists K2 such that, for any T0 ∈ TΛ, the set of positive integers
k for which Tk 6∈ Dc has at most K2 elements. Notice that Y0 is removed from
diagonal matrices and therefore such a set Dc exists.

As a warm-up case, let D0,i ⊂ Zi be the set of matrices T ∈ TΛ for which
(T )n,n = λi, (T )n,n−1 = 0. Clearly, D0,i are the n connected components of D0 and
the set D0,i is diffeomorphic to TΛi

, where

Λi = diag(λ1, . . . , λi−1, λi+1, . . . λn),

that is, Λ without λi. Points in D0,i are removable singularities of W and there W
is a QR step on TΛi

(the top (n − 1) × (n − 1) block) with f(x) = x − λi. Apply
corollary 2.8 to conclude this special case: simplicity of Λ ensures that λi is not an
eigenvalue of the top (n− 1)× (n− 1) block and the fact that Λ is AP-free ensures
that |lambdaj − λi| 6= |λj′ − λi| for distinct eigenvalues λj and λj′ of said block. In
general, we need to extend the reasoning in corollary 2.8 to a neighborhood of D0,i.

Let b : TΛ → R be the smooth function defined by b(T ) = (T )n,n−1. From
lemma 2.3, b is transversal to D0; let Z be a smooth vector field in TΛ such that the
directional derivative Zb satisfies Zb = 1 in D(ǫZ) for some ǫZ > 0, ǫZ < ǫq. The
vector field Z can be integrated to yield a diffeomorphism ζ : D0 × (−ǫZ , ǫZ) →
D(ǫZ). Let Di(ǫZ) = ζ(D0,i × (−ǫZ , ǫZ)): we have a diffeomorphism ζ̃ : TΛi

×
(−ǫZ , ǫZ) → Di(ǫZ). Set Ŵi : TΛi

×(−ǫZ , ǫZ) → TΛi
×(−ǫZ , ǫZ), Ŵi = (ζ̃)−1◦W◦ζ̃

and, for t0 ∈ TΛi
× (−ǫZ , ǫZ), tk is defined recursively by tk+1 = Ŵi(tk).

Let g(x) = log(|x − λi|) and M = diag(n − 1, n − 2, . . . , 2, 1). Let Xg tangent
to TΛi

and hM,g : TΛi
→ R be as in theorem 2.7. Extend hM,g to hM,g : TΛi

×
(−ǫZ , ǫZ) → R by ignoring the second coordinate. Let T : R → TΛi

with d
dt

T = Xg:

from proposition 2.6 we have Ŵi(T(0), 0) = (T(1), 0). Therefore, from theorem 2.7,

hM,g(Ŵi(t0)) > hM,g(t0) for any t0 = (T0, 0) ∈ TΛi
×{0}, T0 not a diagonal matrix.

Set δ : TΛi
× (−ǫZ , ǫZ) → R, δ(t0) = hM,g(Ŵi(t0)) − hM,g(t0); by compactness of

the complement of Dc, there exists ǫ > 0 such that δ(t0) > ǫ if t0 ∈ (TΛi
× {0}) −

(ζ̃−1(Dc)). Since δ is continuous in TΛi
× {0}, there exists ǫ′ > 0, ǫ′ < ǫZ , such

that t0 ∈ (TΛi
× (−ǫ′, ǫ′)) − ζ̃−1(Dc) implies δ(t0) > ǫ/2. Clearly, for any t0 in

TΛi
× (−ǫ′, ǫ′),

∑

k≥0

δ(tk) ≤ maxhM,g − minhM,g

and therefore there are at most 2(maxhM,g − minhM,g)/ǫ values of k for which

tk 6∈ ζ̃−1(Dc) and we are done. �
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Figure 3: We may have Tk ∈ Y for large values of k.

On the other hand, it is not true that given an AP-free spectrum Λ there exist
C > 0 and K such that |(Tk+1)n,n−1| ≤ C|(Tk)n,n−1|3 for all k > K. A counterex-
ample is indicated in figure 3: the orbit may spend an arbitrarily large number of
steps near the saddle point S and we may therefore have Tk ∈ Y for arbitrarily
large k.

4 Wilkinson’s step for 3 × 3 AP-matrices

In this and the following sections we prove that for any spectrum of the form
{a− b, a, a+ b} there exist matrices T0 for which

lim
k→∞

Tk =





a b 0
b a 0
0 0 a





and that the convergence of (Tk)n,n−1 towards 0 is still quadratic but not cubic.
For a = 0, b = 1, this limit is the point labeled (0, 0, 0) at the bottom of the right
hexagon in figure 1.

Up to normalizations, a 3 × 3 AP-matrix is isospectral to Λ = diag(−1, 0, 1).
We use the π-bidiagonal coordinates for matrices in Uπ

Λ computed in section 2 for
an appropriate permutation π. The bottom 2 × 2 block of T ∈ Uπ

Λ is

T̂ =
1

r21r
2
2

(

−4(x2 − 4)(x2y4 − 1) 2yr31
2yr31 y2(x2 − 4)r21

)

where r1 =
√

4 + x2 + 4x2y2, r2 =
√

4 + 4y2 + x2y2. Let ω+ ≥ ω− be the (real)

eigenvalues of T̂ ; by interlacing, −1 ≤ ω− ≤ 0 ≤ ω+ ≤ 1, with equality only
when x = 0 or y = 0. The discriminant of the characteristic polynomial of T̂ is
∆ = ((x + 2)2 + 8x2y2)((x − 2)2 + 8x2y2) ≥ 0 which is zero exactly at the points
±p0, p0 = (2, 0). These points correspond to the matrices ±P0,

P0 =





0 1 0
1 0 0
0 0 0





and the origin to the matrix Λπ.
The eigenvalue closest to the bottom element (T̂ )2,2 = (T )3,3 is ω+ if and only

if (T )3,3 > (ω+ + ω−)/2. A straightforward computation yields

(T )3,3 −
ω+ + ω−

2
=

(2 − x)(2 + x)(4 − 4y2 − x2y2 − 8x2y4)

2r21r
2
2

which indicates that the xy-plane is divided by Y into regions, the choice between ω+

and ω− being as in figure 4 (where only the region x > 0 is shown). The hexagon
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of matrices on the right of figure 1 is the image under φπ of the first quadrant
(of π-bidiagonal coordinates) in figure 4; the reader may check, for instance, that
φπ(2, 0) = P0 and that

φπ(0, 1) =





1 0 0
0 −1/2 1/2
0 1/2 −1/2



 .

Y
ω+

ω+

ω+

ω−

ω−

ω−

x

y

R+ R−

r

(0, 1)

(2, 0)

(2, 1/2)

Figure 4: The choice of ω.

We consider the region

R = {(x, y)|x > 0, 4 − 4y2 − x2y2 − 8x2y4 ≥ 0}

and the subsets R+ = R∩ ((0, 2]×R), R− = R ∩ ([2,+∞)×R). For 0 < a ≤ 1/10,
define the wedge of height a to be

Va = {(x, y)||y| ≤ a, |y| ≥ |x− 2|/10}.

Lemma 4.1 The functions ω± are smooth in (x, y) ∈ R except at the point p0,
where they have a cone-like behavior:

ω± =
(x− 2) ±

√

(x− 2)2 + 32y2

4
+O((x− 2)2 + 32y2).

For (x, y) ∈ R+ (resp. R−), 0 ≤ ω+ ≤ 2|y| (resp. −2|y| ≤ ω− ≤ 0). There exists a
positive constant C such that |ω±| ≥ C|y| for (x, y) ∈ Va.

Proof: We have

ω± =
−4 + x2 ±

√
∆

2r21
.

The displayed estimate for ω± follows directly from

lim
(x,y)→(2,0)

∆

16((x− 2)2 + 32y2)
= 1.

The signs of ω± follow from interlacing and the other estimates are now easy. �

Lemma 4.2 The partial derivatives (ω±)x and (ω±)y are uniformly bounded in
R − {p0}. For all (x, y) ∈ R± − {p0} we have (ω±)x ≥ 0, with equality exactly
when y = 0. Also, (ω±)x > 1/120 in any wedge Va. Furthermore, for y 6= 0,
±y(ω±)y > 0.
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Proof: A straightforward computation yields

(ω±)x =
8x

r41
√

∆

((

(1 + 2y2)
√

∆
)

±
(

−4 + x2 + 8y2 + 6x2y2 + 16x2y4
)

)

,

(ω±)y =
4x2y

r41
√

∆

((

(4 − x2)
√

∆
)

±
(

16 + 24x2 + x4 + 32x2y2 + 8x4y2
)

)

.

Also,

(

(1 + 2y2)
√

∆
)2

−
(

−4 + x2 + 8y2 + 6x2y2 + 16x2y4
)2

= 8y2r41 ≥ 0

whence
(1 + 2y2)

√
∆ ≥

∣

∣−4 + x2 + 8y2 + 6x2y2 + 16x2y4
∣

∣ ,

where the equality holds if and only if y = 0. In order to prove the estimate in V ,
write

(ω±)x =
8x

r41
√

∆

8y2r41
((

(1 + 2y2)
√

∆
)

∓ (−4 + x2 + 8y2 + 6x2y2 + 16x2y4)
)

≥ 32x

(1 + 2y2)((x+ 2)2 + 8x2y2)

y2

(x− 2)2 + 8x2y2
> 1/120.

Since
(

(4 − x2)
√

∆
)2

−
(

16 + 24x2 + x4 + 32x2y2 + 8x4y2
)2

= −64x2r41 ≤ 2

we have ∣

∣

∣
(4 − x2)

√
∆
∣

∣

∣
≤ 16 + 24x2 + x4 + 32x2y2 + 8x4y2,

which yields the sign of (ω±)y.
Boundedness near x = ∞ follows from the rates in x since y is bounded. For

(x, y) near p0, expand the formula for (ω±)x as a sum of two terms. The first term
is bounded since

√
∆ simplifies; from the computations above, the absolute value

of the second term is no larger. Since y/
√

∆ is bounded near p0, so is (ω±)y. �

In bidiagonal coordinates, Wilkinson’s step is given by

W(x, y) =

(

1 + ω

1 − ω
x,

|ω|
1 + ω

y

)

.

Since from interlacing ω± does not change sign, the restrictions W+ : R+ → R ⊂ R
2

and W− : R− → R ⊂ R
2, are continuous in their respective domains and smooth

except at p0. The restrictions of W to the the left and to the right of the vertical
line r given by x = 2 coincide with W+ and W− and the restrictions of these two
functions to r yield different values. Figure 5 shows the images of W+ and W−,
clearly contained in R. As we shall see, both W+ and W− are homeomorphisms
onto their respective images.

The line r is taken by W+ (resp. W−) to an arc contained in R− (resp. R+),
with a cusp at p0. The horizontal axis is a common tangent to the four smooth
subarcs in the images of r. A straightforward computation verifies that the preimage
of the vertical line r under W consists of the two smooth arcs

(

x,± (x− 2)
√

x(x2 + 2x+ 4)

4x2

)

,

shown in figures 5 and 6, which are tangent to the lines y = ±
√

6
8 (x− 2).
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Figure 5: W±(R±) (shaded) and W−1
± (r) (thick); in scale.

Proposition 4.3 The functions W± are orientation preserving homeomorphisms
onto their respective images.

Proof: The Jacobian matrix of W̃π is

DW±(x, y) =













2(ω±)x

(1 − (ω±))2
x+

1 + (ω±)

1 − (ω±)

2(ω±)y

(1 − (ω±))2
x

± (ω±)x

(1 + (ω±))2
y ± (ω±)y

(1 + (ω±))2
y ± (ω±)

1 + (ω±)













,

with determinant given by

detDW±(x, y) = ± 1

1 − ω2
±

(

2(ω±)xω±x

1 − ω±
+ (ω±)yy + ω±(1 + ω±)

)

.

It follows from lemmas 4.1 and 4.2 that each term in the sum between parenthesis
have the same sign and detDW±(x, y) > 0 if y 6= 0.

Points in the horizontal axis are fixed points of W±. Figure 5 indicates that the
boundary of the domains are taken to simple closed curves, which in turn implies
the result, from standard degree theory. A more rigorous and rather lengthy proof
is possible using estimates and a little topology, but will be omitted. �

Notice that W̃π reverses orientations for (x, y) ∈ R− but W− preserves orien-
tations.

5 Quadratic convergence for Wilkinson’s iteration

Theorem 5.1 There exists an open neighborhood A ⊂ TΛ of P0 and a closed set
X ⊂ A of zero measure, invariant under W, on which the iteration converges
quadratically to P0. The part of X with positive y coordinate is homeomorphic to
the Cartesian product of a Cantor set and an open interval.

Numerical evidence indicates that we can take A = Uπ
Λ . Figure 7 shows X in

π-bidiagonal coordinates: X and its mirror image at the y axis map the set of all
matrices in TΛ for which Wilkinson’s iteration converges quadratically. Since the
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W−(r)

W−(r)

W+(r)

W+(r)
W−1

− (r)

W−1
− (r)W−1

+ (r)

W−1
+ (r)

p0

r

Figure 6: Images and preimages of the line x = 2; not in scale.

Cantor set is extremely thin, the fine structure of the set X is invisible in the figure;
the curves W−1

± (r) fit inside the largest gaps of X in each quadrant. As we shall
see, an equivalent characterization of X is wedge invariance: X is the set of points
whose forward orbit under W is eventually contained in Va. Propositions 5.4 and
5.5 below imply the theorem and provide additional, more technical information
about X .

In a self-evident notation, we speak of the upper and lower half-wedges and of
the NE, NW, SE and SW faces of a wedge Va. Given z0 ∈ R, set zk+1 = W(zk);
this is well defined unless zk ∈ r. The sequence (zk)k∈N is the W-orbit of z0.

p0
(3, 0)

Figure 7: The set X near p0; in scale

Lemma 5.2 For sufficiently small a > 0, if (x, y) 6∈ Va, |y| ≤ a, then W(x, y) 6∈ Va.
Furthermore, a W-orbit tends to p0 if and only if it is eventually contained in a
wedge.

Proof: Consider a short segment in the upper half plane starting at p0 with argu-
ment θ. It is easy to see that for θ > π − arctan(

√
6/8), the image under W+ of

this segment is a curve tangent to the horizontal axis at p0 and to the left of the
vertical line r. Similarly, if θ < π− arctan(

√
6/8), the curve is to the right of r. An

example of this is W+(r), shown in figure 6. We remind the reader that −
√

6/8
is the slope of W−1

+ (r) at p0. Since −1/6 < −
√

6/8 < 0, the images of the NW
face and of the line r are to the left and right, respectively, of the wedge. A similar
remark holds for W− and the NE face.

Near the horizontal axis, |ω|/(1 + ω) can be assumed to be smaller than 1 and
therefore the absolute value of the second coordinate of zk is decreasing. The slope
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of the line joining z0 = (x, y) and z1 is

y

ω±

(1 − ω±)(1 + ω± ∓ ω±)

−2x(1 + ω±)
.

Since |ω±| ≤ 2|y| (lemma 4.2) and the second fraction tends to 1/4 when (x, y)
tends to p0, the slope can be assumed to have absolute value greater than 1/9, i.e.,
to be steeper than the faces of the wedge. Thus, Va is further from zk+1 than from
zk. �

The set X can now be defined either as the set of points whose orbit is eventually
contained in a wedge or as the set of points z for which limk→∞ Wk(z) = p0.

An L-flat arc in Va is the graph Γ ⊂ Va of a L-Lipschitz function f : I → R.

Lemma 5.3 There exist a wedge Va∗ and a positive constant L∗ < 1/6 with the fol-
lowing properties. Suppose Γ+

0 is an L∗-flat arc in Va∗ , with left endpoint belonging
to the NW face of Va∗ and right endpoint in the vertical line r. Then W+(Γ+

0 ) con-
tains Γ1, also an L∗-flat arc in Va∗ with left (resp. right) endpoint in the NW (resp.
NE) face of Va∗ . Moreover, such arcs are uniformly pushed towards the horizontal
axis:

max
(x,y)∈Γ1

y < 1/4 min
(x,y)∈Γ+

0

y.

Furthermore, W+ stretches the horizontal coordinate. More precisely, let the end-
points of Γ1 be W+(x±, y±) and for x ∈ [x+, x−], let φ(x) be the first coordinate of
W+(x, y) where (x, y) ∈ Γ+

0 ; then φ′(x) > 1 for all x.
An analogous statement holds for the action of W− on an L∗-flat arc Γ−

0 with
endpoints now belonging to r and the NE face of the wedge.

Symmetry with respect to the horizontal axis implies similar results for arcs in
the lower half wedge.

Notice that on smaller wedges, the lemma still holds for the same Lipschitz
constant but given a wedge, the Lipschitz constant cannot be taken arbitrarily
small.
Proof: We prove the statements concerning the action of W+ on the upper half
wedge, the others being similar.

In order to control the slope of images of L-flat arcs, we proceed to prove the
following claim. Given L > 0, there exists a > 0 such that if (x, y) ∈ Va then:

1. the eigenvalues λ0 and λ1 of DW+(x, y) satisfy |λ0| < 1/4, λ1 > 1/2;

2. for the associated eigenvectors vi, | cot arg v0| < 1/L and | tan arg v1| < L.

Indeed, from lemma 4.2 and the formula for DW+ in the proof of proposition 4.3,
the entries in the second row of DW+ tend to zero when (x, y) tends to p0, the (1, 2)
entry is bounded and the (1, 1) entry is larger than 3/4. In a suggestive notation,

DW+ =

(

a1 a2

ǫ1 ǫ2

)

has eigenvalues
(a1 + ǫ2) ±

√

(a1 − ǫ2)2 + 4a2ǫ1
2

,

from which the estimates for λ0 and λ1 follow. The eigenvectors can be written
as v0 = C0(a2, λ0 − a1) and v1 = C1(ǫ2 − λ1,−ǫ1), from which estimates for the
arguments also follow, completing the proof of the claim.
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Assume without loss of generality that L∗ is so small that

max
(x,y)∈Γ

y < 2 min
(x,y)∈Γ

y

for any L∗-flat arc Γ in Va∗ . Assume also that ω+ < 1/8 for all (x, y) ∈ Va∗ . From

W+(x, y) = (x1, y1) =

(

1 + ω+

1 − ω+
x,

ω+

1 + ω+
y

)

we have y1 < y/8 proving

max
(x,y)∈Γ1

y < 1/4 min
(x,y)∈Γ+

0

y.

The claim implies that for all (x, y) ∈ Va, v1 is in the east sector | arg v1| < arctanL
and v0 is in the north sector arctanL < arg v0 < π−arctanL. Thus, the east sector
is taken by DW+(x, y) to a subset of itself. Setting L = L∗ and a∗ = a, this in turn
implies that the image under W+ of the arc Γ+

0 in the statement of the lemma is an
arc for which the Lipschitz constant L∗ still holds. As seen in the beginning of the
proof, the endpoints of W+(Γ+

0 ) are to the left and right of Va∗ . The intersection
of W+(Γ+

0 ) with Va∗ is Γ1.
Write

a1 =
1 + 2(ω±)xx− ω2

±
(1 − ω±)2

.

Take Va∗ so that (1 − ω±)2 < 1.01, ω2
± < 0.01, 2(ω±)xx > 0.1 from which we learn

that a1 > 1.05, completing the proof. �

A sign sequence is a function s : N → {±1} or (s0, s1, s2, . . .). The distance
between two distinct sign sequences s and s̃ is 3−k, where k is the smallest number
for which sk 6= s̃k. There is a natural bi-Lipschitz homeomorphism between the
set S of all sign sequences and the middle third Cantor set K3 ⊂ [0, 1]: take s to
∑

k≥0(1 + sk)/3k+1. More generally, a closed subset K of a Lipschitz graph Γ is a
Cantor set if it has empty interior (in the induced topology in Γ) and no isolated
points. As is well known, a subset of a Lipschitz graph Γ is a Cantor set if and only
if it is homeomorphic to S.

Given z0 ∈ R, the z0-sign sequence sz0 is such that sz0

k = +1 iff zk ∈ R+ (where
zk+1 = W(zk)).

Proposition 5.4 Let L∗ and a∗ be as in lemma 5.3. Let Γ0 be an L∗-flat arc in
Va∗ with endpoints in the NW and NE faces. The set X ∩ Γ0 is a Cantor set and
the map taking z0 to the z0-sign sequence is a bijection from X ∩ Γ0 to S.

The set X is the disjoint union of graphs of Lipschitz functions fs : [0, a∗] → R

(one for each sign sequence s) taking y0 to the x coordinate of the unique point in
the intersection of X with the arc y = y0 with sign sequence s.

Numerical analysis gives, for example,

f(+,+,+,+,...)(1/10) ≈ 1.70831765759310579903646760761255776476753484977976.

Proof: Let Γ±
0 = Γ0 ∩R±. From lemma 5.3, the image of Γ±

0 under W± contains
an L∗-flat arc in Va∗ with endpoints in the NW and NE faces. For a sign sequence
s = (s0, s1, s2, . . .), let Γ1 be such an arc contained in Ws0

(Γs0

0 ), and, more generally,
Γk+1 be an arc contained in Wsk

(Γsk

k ). Define intervals Ik = [ak, bk] ⊂ Γ0 (see figure
8 for s = (+,−,−, . . .)) by

I0 = Γs0

0 , Wsk−1
· · ·Ws1

Ws0
Ik = WkIk = Γsk

k .
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Figure 8: Some curves Γi; schematic.

Again from lemma 5.3, |Ik+1| ≤ |Ik|/4 and the intersection of the nested family
of intervals ∩kIk consists of the unique point in X ∩ Γ0 with sign sequence s. Thus
the map from S to X ∩ Γ0 taking s to the point with sign sequence s is injective
and continuous, whence X ∩ Γ0 is a Cantor set.

Now fix a sign sequence s. Since the arc y = y0 is L∗-flat, the function fs is
well defined. We show that fs is Lipschitz with constant 1/L∗. Indeed, assume by
contradiction that y1 and y2 satisfy

|fs(y1) − fs(y2)| >
1

L∗ |y1 − y2|;

the line through the points (fs(y1), y1) and (fs(y2), y2) has slope smaller than L∗

and is therefore L∗-flat. Thus, there are two points on the intersection of X with
an L∗-flat arc with the same sign sequence, a contradiction. �

The set X is rather thin, with Hausdorff dimension (at least in a neighborhood
of p0) equal to 1; we do not present a proof of this fact. Numerics suggests that X
is a union of smooth curves Xs, s ∈ S, parametrized by (fs(y), y). The curve Xs is
taken by W to Xs′ , where s′ is the left shift of s: s′ = (s(1), s(2), s(3), . . .).

Proposition 5.5 For z0 = (x0, y0) ∈ X , there exists positive constants c, C such
that, for zn = (xn, yn), c|yn|2 ≤ |yn+1| ≤ C|yn|2, i.e., the convergence of zn to p0

is strictly quadratic. On the other hand, for z0 ∈ R − X the convergence of zn is
strictly cubic.

Proof: Recall that yn+1 = |ω|
1+ω

yn. From lemma 4.1, there exist positive constants
c1, C1 such that c1|y| ≤ |ω| ≤ C1|y| for any point (x, y) ∈ Va. Also, we may assume
that 1/2 < 1 + ω < 2 and therefore

c1
2
|y|2 ≤ |ω|

1 + ω
|y| ≤ 2C1|y|2

and the first claim follows.
If the limit point is some p = (x, 0), x 6= 0, then there exists positive constants

c1, C1 such that, in a neighborhood of p, c1|y|2 ≤ |ω| ≤ C1|y|2. This follows from
the fact that ω is smooth and even near p we may write a Taylor expansion as in
theorem 3.4. The second claim now follows easily. �
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