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Abstract

We consider the nonlinear Sturm-Liouville differential operator F (u) =
−u′′ + f(u) for u ∈ H2

D([0, π]), a Sobolev space of functions satisfying
Dirichlet boundary conditions. For a generic nonlinearity f : R → R we

show that there is a diffeomorphism in the domain of F converting the
critical set C of F into a union of isolated parallel hyperplanes. For the

proof, we show that the homotopy groups of connected components of C
are trivial and prove results which permit to replace homotopy equivalences

of systems of infinite dimensional Hilbert manifolds by diffeomorphisms.

1 Introduction

Consider the nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t)) = g(t), u(0) = u(π) = 0

and for any smooth nonlinearity f : R→ R denote by F the differential operator

F : H2
D([0, π])→ L2([0, π]).

u 7→ −u′′ + f(u)

Here H2
D([0, π]) is the Sobolev space of functions u(t) with square integrable

second derivatives which satisfy Dirichlet boundary conditions u(0) = u(π) = 0
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and L2([0, π]) is the usual Hilbert space of square integrable functions in [0, π].
We are interested in the critical set C of F ,

C = {u ∈ H2
D([0, π]) | DF (u) has 0 as an eigenvalue}.

Here DF (u) : H2
D([0, π]) ⊂ L2([0, π])→ L2([0, π]) is the Fredholm linear operator

DF (u)v = −v′′ + f ′(u)v of index 0. Let Σ = {m ∈ Z | m > 0,−m2 ∈ f ′(R)}.
Our main result about C is the following.

Theorem 1 For tame nonlinearities f (to be defined below), C is the disjoint
union of connected components Cm, m ∈ Σ, where each Cm is a smooth con-
tractible hypersurface in H2

D([0, π]). Furthermore, there is a diffeomorphism of
H2
D([0, π]) to itself taking C to a union of parallel hyperplanes.

In the proof of this theorem we shall make use of two results concerning the
topology of infinite dimensional manifolds, Theorem 2 (proved in Section 2) and
Theorem 3 (in Section 3). The topological theorems are described in a generality
which is greater than needed in this paper, since we believe that the results are
of independent interest.

Theorem 2 Let X and Y be separable Banach spaces. Suppose i : Y → X
is a bounded, injective linear map with dense image and M ⊂ X a smooth,
closed submanifold of finite codimension. Then N = i−1(M) is a smooth closed
submanifold of Y , and the restrictions i : Y \N → X\M and i : (Y,N)→ (X,M)
are homotopy equivalences.

Our second topological result concerns H-manifolds, i.e., manifolds modeled
on the separable infinite dimensional Hilbert space H.

Theorem 3 Suppose f : (V1, ∂V1)→ (V2, ∂V2) is a smooth homotopy equivalence
of H-manifolds with boundary, K2 ⊂ V2 \ ∂V2 a closed submanifold of finite
codimension and K1 = f−1(K2). Suppose also that f is transversal to K2 and
the maps f : K1 → K2 and f : V1 \ K1 → V2 \ K2 are homotopy equivalences.
Then there exists a diffeomorphism h : (V1; ∂V1,K1) → (V2; ∂V2,K2), which is
homotopic to f as maps of triples.

We are able to extend this theorem to a class of Banach spaces which unfortu-
nately does not contain Cr

D([0, π]). We thus cannot obtain a version of Theorem
1 for such domains of F .

We now sketch the main steps in the proof of Theorem 1. Let f : R→ R be a
smooth function: we call f appropriate if either f ′′(0) 6= 0 or the two conditions
below hold:

(a) the roots of f ′′ are isolated,
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(b) f ′(0) is not of the form −m2, m ∈ Z.

We call an appropriate function f : R→ R tame iff f ′′(x) 6= 0 whenever f ′(x) is
of the form −m2 for some integer m. Notice that tame functions are generic. In
section 4 we introduce a smooth functional ω : H2

D → R; for tame f , Σ consists
of regular values of ω and C is the union of the non-empty smooth H-manifolds
Cm = ω−1({m}). Theorem 1 follows from Theorem 3 once we prove that each
Cm is contractible. As any H-manifold is an ANR, this fact is asserted by the
following technical result, which is the core of section 4.

Proposition 1.1 If f is tame and Cm is non-empty, then Cm is path-connected
and its homotopy groups πk(Cm) are all trivial.

To prove this proposition, we observe that the functional ω smoothly extends
to ω̃ : C0

D([0, π]) → R (Lemma 4.1). Theorem 2 then shows that the inclusion
ι : H2

D → C0
D induces a homotopy equivalence between the levels Cm ⊂ H2

D

and the levels C̃m = ω̃−1(mπ) ⊂ C0
D,m ∈ Σ, and we are left with showing that

the manifolds C̃m are path connected and have trivial homotopy groups: this is
simpler than the similar task for Cm ⊂ H2

D, since we only have to control the
continuity of the homotopy of spheres to a point with respect to the weaker C0

norm.

We refer to the geometric and topological study of the set of solutions of
F (u) = g (for varying g) as the geometric approach. A pioneering example of the
geometric approach applied to PDEs is the work of Ambrosetti and Prodi on the
Laplacian on a bounded open set Ω ⊂ Rn with Dirichlet conditions ([1]),

FAP (u) = −∆u+ f(u), u|∂Ω = 0.

In the Ambrosetti-Prodi scenario, the hypotheses on the nonlinearity are such
that the critical set is diffeomorphic to a hyperplane. Subsequent work ([4]) then
established that FAP is a global fold. Theorem 1 above is the n = 1 case of
Ambrosetti-Prodi but now we consider more general nonlinearities f . For convex
f , Theorem 1 was proved ([12], [5]) by showing that each connected component
of C is the graph of a continuous function from Hsin to R, where Hsin is the
hyperplane of functions in H2

D([0, π]) orthogonal to sin(t). This result, applied
to the nonlinearity f(u) = u2/2, yields the following rather standard (but not
trivial) fact in spectral theory: the set of potentials u ∈ H2

D([0, π]) for which the
operator

v ∈ H2([0, π]) 7→ −v′′ + uv ∈ L2([0, π])

has 0 as its n-th eigenvalue is a topological hyperplane. For more general non-
linearities, however, we were not able to make spectral theory work for us. Our
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hypotheses do not demand that the nonlinearity f have a prescribed asymptotic
behavior at infinity.

A more elementary version of this approach has been exploited in [11] to show
that the critical set of the operator

F1 : H1(S1)→ L2(S1)

u 7→ −u′ + f(u)

is either empty or a hyperplane. In this case, the critical set is the zero level of
a Nemytskii operator,

ϕ : H1(S1)→ R

u 7→
∫

S1
f ′(u)

whose contractibility was shown ([10]) by means of ergodic-like arguments, robust
enough to admit extensions to functionals from spaces of functions acting in
domains in higher dimensions and taking values on Rn. To show contractibility
of the connected components Cm of F , however, we recur constantly to Sturm
oscillation, and this is the main reason why our proof does not appear to extend
to operators on functions in many variables. Notice that Lemma 5.3 in [11] is a
corollary of our Theorem 3.

In order to provide global geometric information about the operator F1, the
authors of [11] considered the stratification of the critical set into Morin singular-
ities of different types. Generically, the singularities of F are also of Morin type,
but we do not explore the matter further in this paper.

2 Homotopy equivalence

The aim of this section is to prove Theorem 2. As in the statement of the theorem,
X and Y are separable Banach spaces, i : Y → X is an injective bounded linear
map with dense image and M ⊂ X is a closed smooth submanifold of finite
codimension k. Let P be a compact smooth manifold with boundary of dimension
r + k; P has a fixed but arbitrary Riemannian metric.

Definition 2.1 The smooth function f : P → X is called a smooth M -proper
embedding if f is a smooth embedding, f(∂P ) ∩M = ∅ and f is transversal to
M .

The set Q = f−1(M) is a smooth compact manifold (with no boundary) of
dimension r.
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Lemma 2.2 If f : P → X is a smooth M-proper embedding then there exists
ε > 0 such that any smooth map g : P → X with ‖f − g‖C1 < ε is a smooth M-
proper embedding. For this ε, if ‖f−g‖C1 < ε then Qg = g−1(M) is diffeomorphic
to Q and there exists a smooth embedding θ : Q→ P homotopic to the inclusion
Q ⊂ P and such θ(Q) = Qg. Moreover, if S ⊂ P is a compact submanifold and
f |S = g|S then θ can be chosen to be the identity on S ∩Q and the homotopy to
be relative to S ∩Q.

Notice that the lemma also holds if Q = ∅.
Proof: The existence of ε follows from the fact that all of the following properties
are open in f in the C1 topology: being an embedding, f(∂P ) ∩M = ∅ and f is
transversal to M . Let gt : P → X be defined by gt(p) = (1−t)f(p)+tg(p); clearly
g0 = f and g1 = g and by the previous remark gt is a smooth M -proper embedding
for all t ∈ [0, 1]. Let G : P × [0, 1] → X × [0, 1] be G(p, t) = (gt(p), t) and let
Q̃ = G−1(M × [0, 1]): Q̃ is a compact manifold with two boundary components,
Q × {0} and Qg × {1}. The function π : Q̃ → [0, 1] defined by π(p, t) = t is a
submersion. Notice that (S ∩ Q)× [0, 1] ⊆ Q̃. Construct on Q̃ a tangent vector
field α such that α(p, t) = (0, 1) for p ∈ S ∩ Q and Dπ(p, t) · α(p, t) = 1 for all
(p, t) ∈ Q̃ (it is easy to construct such a vector field α in a neighborhood of a
point (p, t); use partitions of unity to define it on all Q̃). Integrating this vector
field yields θ and the desired homotopy. �

Let X, Y and i : Y → X be as above and let P be a compact manifold with
boundary. Let C1(P,X) (resp. C1(P, Y )) be the metric space of C1 functions
from P to X (resp. Y ) with the C1 metric. Similarly, let C1

c (Rk,X) (resp.
C1
c (Rk, Y )) be the normed vector spaces of C1 functions from Rk to X (resp. Y )

with compact support with the C1 norm. Define i∗ : C1(P, Y ) → C1(P,X) and
i∗ : C1

c (Rk, Y )→ C1
c (Rk,X) by composition.

Lemma 2.3 The images of i∗ : C1(P, Y ) → C1(P,X) and i∗ : C1
c (Rk, Y ) →

C1
c (Rk,X) are dense in C1(P,X) and C1

c (Rk,X), respectively.

Proof: We first prove the lemma for Rk by induction on k (the case k = 0 is
trivial). Let f : Rk+1 → X be a C1 function with compact support and ε > 0 a
real number. We may assume without loss of generality that f is smooth (take
a convolution with a smooth bump) and that the support of f is contained in
(0, 1)k+1. We want to construct f̃ : Rk+1 → Y such that dC1(f, i◦ f̃) < ε and such
that the support of f̃ is also contained in (0, 1)k+1. Take δ = 1/N > 0 such that
if v, v′ ∈ Rk+1, d(v, v′) < δ, then f and all partial derivatives of f of order 1 or 2
differ by at most ε/16 between v and v′. Assume furthermore that the support
of f is contained in (δ, 1 − δ)k+1. Let g = ∂f/∂xk+1 and consider the functions
g0, g1, . . . , gN : Rk → X defined by

gj(x1, x2, . . . , xk) = g(x1, x2, . . . , xk, j/N);
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notice that g0 = g1 = gN−1 = gN = 0. By induction hypothesis, we may pick
g̃0, . . . , g̃N : Rk → Y with dC1(gj , i ◦ g̃j) < ε/16 and with supports contained in
(0, 1)k; take g̃0 = g̃1 = g̃N−1 = g̃N = 0. Now define g̃ : Rk+1 → Y by

g̃(x1, x2, . . . , xk, j/N) = g̃j(x1, x2, . . . , xk)

and by affine interpolation for other values of xk+1. Clearly, the distances dC0(g, i◦
g̃), dC0(∂g/∂x1, i◦∂g̃/∂x1), . . . , dC0(∂g/∂xk, i◦∂g̃/∂xk) are all smaller than ε/4.

Therefore, the function h̃ : Rn → Y defined by h̃(x1, . . . , xn) =
∫ 1

0
g̃(x1, . . . , xk, t)dt

satisfies dC1(h, 0) < ε/4. Let φ : R→ R be a smooth non-negative function with
support contained in (0, 1), integral equal to 1 and dC1(φ, 0) < 3. Then the
function

f̃ (x1, . . . , xk, xk+1) =

∫ xk+1

0

(g̃(x1, . . . , xk, t)− φ(t)h̃(x1, . . . , xk))dt

satisfies all the requirements.

We now prove the lemma for a compact manifold P . Take a finite open
cover of P by disks and a corresponding smooth partition of unity. In order to
approximate f it suffices to approximate each product of f by a function in the
partition of unity, provided the support of the approximation is still contained
in the corresponding open set. But that is precisely what we did in the previous
case. �

Let M be a submanifold of finite codimension k of a separable Banach space
X. A closed tubular neighborhood of M is a 0-codimensional smooth embedding
φ : D(ξ) → X, where D(ξ) is the closed unit disk bundle of a smooth Rk-bundle
over M so that

(1) φ restricted to the 0-section is the inclusion M ↪→ X,

(2) φ(D0(ξ)) is an open subset of X,

(3) φ(D(ξ)) is a closed subset of X.

Here, D0(ξ) is the open unit disk bundle. Clearly, φ(∂D(ξ)) is a codimension 1
smooth submanifold of X. It is a well known fact ([9] or [7]) that finite codimen-
sional Banach submanifolds of a separable Banach space admit closed tubular
neighborhoods.

Proof of Theorem 2: It suffices to prove the two following facts. Let S and Q
be compact manifolds with no boundary. If i0 : S → Q, i1 : S → Y \ N (resp.
i1 : S → N) and i2 : Q → X \M (resp. i2 : Q → M) are embeddings with
i ◦ i1 = i2 ◦ i0 then there exists u : Q→ Y \N (resp. u : Q→ N) such that u ◦ i0
is homotopic to i1 and i2 is homotopic to i ◦ u.
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In the first case we use Lemma 2.2 and Lemma 2.3 to obtain ĩ2 : P → X \M
near i2 and of the from ĩ2 = i ◦ u, for u : P → Y \N , proving the first claim.

Consider a closed tubular neighborhood of M in X. If i2 : Q → M is an
embedding then the pull-back of the tubular neighborhood is a bundle P → Q.
We have a smooth M -proper embedding also called i2 : P → X where P is a
compact manifold with boundary; the dimension of P is r + k where k is the
codimension of M and r is the dimension of Q. Use this construction in the
second case to define P , again use both lemmas to obtain ĩ2 : P → X near i2, a
smooth M -proper embedding of the form ĩ2 = i◦u1, where u1 : P → Y a smooth
N -proper embedding. The homotopy and the function θ constructed in Lemma
2.2 now obtain u : Q→ Y and the desired homotopies. �

3 Global changes of variable

In this section we prove Theorem 3. We will write H for the infinite dimensional
separable real Hilbert space and we call a H-manifold (resp. H-manifold with
boundary) a Hausdorff paracompact smooth manifold with local model H (resp.
H× [0,+∞)).

Proposition 3.1 Suppose f : (V, ∂V ) → (W,∂W ) is a homotopy equivalence
between two smooth H-manifolds with boundary

1. There exists a diffeomorphism h : (V, ∂V )→ (W,∂W ) so that h and f are
homotopic maps of pairs.

2. If h∂ : ∂V → ∂W is a diffeomorphism homotopic (resp. equal) to f ∂ =
f |∂V : ∂V → ∂W , then one can extend h∂ to a diffeomorphism h : (V, ∂V )→
(W,∂W ) homotopic (resp. relative homotopic) to f .

Here, an H-manifold is modeled on the separable infinite dimensional real
Hilbert space. The proof of Proposition 3.1 is based on the following known
results on Hilbert manifolds.

Fact 1 [3], [2] If f : M → N is a homotopy equivalence between two H-manifolds,
there exists h : M → N , a diffeomorphism which is homotopic to f .

An isotopy between diffeomorphisms h0, h1 : M → N is a diffeomorphism
h : R ×M → R×N taking (t,m) to a point of the form h(t,m) = (t, ht(m)) so
that ht = h0 if t ≤ 0 and ht = h1 if t ≥ 1.

Fact 2 [2] Homotopic diffeomorphisms h0, h1 : M → N between H-manifolds are
isotopic.
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Fact 3 [3], [7] Given two homotopic closed embeddings of infinite codimension
`i : V → M , i = 0, 1, with V and M H-manifolds, there exists an isotopy of
diffeomorphisms h : R×M → R×M such that ht is the identity for t ≤ 0, ht is
constant for t ≥ 1 and h1 ◦ `0 = `1.

Let M be an H-manifold and V ⊂ M be a closed H-submanifold. As in
Section 2 define a closed tubular neighborhood of V to be a 0-codimensional
smooth embedding φ : D(ξ) →M , where D(ξ) is the closed unit disk bundle of a
smooth vector bundle with the same properties (1), (2) and (3) as before. Now,
the fiber of ξ is isomorphic to Rk if the codimension of V in M is k and H if the
codimension is infinite. If the fiber is isomorphic to H then D(ξ) is necessarily
a trivial bundle since the linear group of invertible bounded operators on H is
contractible ([8]).

Fact 4 [3] Let V ⊂ M as above and φi : D(ξ) → M , i = 0, 1, be two closed
tubular neighborhoods. Then there exists an isotopy of diffeomorphisms h : R ×
M → R ×M such that ht is the identity for t ≤ 0, ht is constant for t ≥ 1,
h1 ◦ φ0 = φ1 ◦ θ, θ : D(ξ) → D(ξ) a (vector) bundle isomorphism which can be
taken to be identity when the fiber of ξ is H and h1|V is the identity.

The hypothesis of finite codimension implies K1 and K2 of infinite dimension.
A similar conclusion remains true for K1 and K2 of infinite dimension and infinite
codimension, and the proof in this case is a straightforward consequence of results
in [3] and [2].

Proof of Proposition 3.1 Let V0 = V and V1 = W . Set Ki, i = 0, 1, to
be H-manifolds diffeomorphic to ∂Vi via diffeomorphisms ψi : ∂Vi → Ki. Let
Bi = Ki×D∞ and K0

i = Ki×{0} ⊂ Bi. By Fact 1, there exists diffeomorphisms
θi : ∂Vi → Ki × S∞, such that θi is homotopic to the map ψ̃i taking v ∈ ∂Vi
to (ψi(v), x) ∈ Ki × S∞, where x is an arbitrary but fixed element in S∞. Also,
define the smooth H-manifolds Ṽi = Vi ∪θi Bi.

V = V

V

K

V

BK  S =  B 

ψ ψ θ

∼

∼

00

0

0 0 0

00 0 0

8

V = V

V

K

V

BK  S =  B 

ψ ψ θ

∼

∼

11

1

1 1

1 1 1 1

1

8

The inclusions (Ṽi,K
0
i ) ↪→ (Ṽi, Bi) and (Vi, ∂Vi) ↪→ (Ṽi, Bi) are homotopy

equivalences of pairs. Also, by hypothesis, f : (V0, ∂V0)→ (V1, ∂V1) is a homotopy
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equivalence of pairs. Hence, there exists f̃ : (Ṽ0,K
0
0) → (Ṽ1,K

0
1 ) which makes

the diagram below homotopy commutative. From Fact 1, let f̃ ′ : Ṽ0 → Ṽ1 be
a diffeomorphism which is homotopic to f̃ . Notice that the behavior of f̃ ′ at
K0

0 or ∂V0 is not controlled. Let ` : K0 = K0
0 → K1 = K0

1 be a diffeomorphism
homotopic to f̃ |K0

0
. Notice that f |∂V0 : ∂V0 → ∂V1 is homotopic to both ψ−1

1 ◦`◦ψ0

and to θ−1
1 ◦ (`× id) ◦ θ0.

(V ,   V )

V

K

(V ,   V )

V

K

~~

~ ~

~~

(V ,K ) (V ,K )

f

f

f

l

~

~

0 0

0 0
0

0

0

0 0

0

1 1

1

(V ,B )1 1(V ,B )0 0

1

1

1

~
f
K| 0

0

’

Let `0 : K0 → Ṽ1 be the composition of ` with the inclusion K1 = K1
0 ⊂ Ṽ1.

Also, let `1 : K0 = K0
0 → Ṽ1 be the restriction of f̃ ′ to K0

0 . Notice that both maps
embed K0 in Ṽ1 as an infinite codimensional submanifold. By Fact 3, there exists
an isotopy h′ : R× Ṽ1 → R× Ṽ1 with h′t = id for t ≤ 0, which is independent of t
for t ≥ 1 and such that h′1◦`0 = `1. The diffeomorphism f̃ ′′ = (h′1)−1◦f̃ ′ : Ṽ0 → Ṽ1

is clearly homotopic to f̃ . Also, f̃ ′′ takes K0
0 to K1

0, and f̃ ′′ is then homotopic
to f̃ as a map of pairs, from (Ṽ0,K

0
0 ) to (Ṽ1,K1

0).

Let φ0, φ1 : K1
0 × D∞ → Ṽ1 be tubular neighborhoods given by φ0 = f̃ ′′ ◦

incl ◦ (`−1 × id), where incl : K1 × D∞ → Ṽ1 is the inclusion, and φ1 is the
inclusion of B1 in Ṽ1. By Fact 4, there is an isotopy h′′ : R× Ṽ1 → R × Ṽ1 with
h′′t = id, for t ≤ 0, which is independent of t for t ≥ 1 and such that h′′1 ◦φ0 = φ1.
Finally, let f̃ ′′′ = h′′1 ◦ f̃ ′′. Clearly, f̃ ′′′ restricts to a diffeomorphism of pairs from
(V0, ∂V0) to (V1, ∂V1), homotopic to f . This finishes item (a).

Item (b) is a straightforward consequence of item (a), Fact 2 and the existence
of collar neighborhoods for the boundary of an H-manifold. �

Before we proceed with the proof of Theorem 3 we describe a construction
which is sometimes refered to as cutting a manifold along a submanifold.

Let (V, ∂V ) be an H-manifold with boundary. A proper finite codimension
submanifold is a closed subset K ⊂ V such that

1. K ⊂ V \ ∂V ,

2. K is a closed, finite codimensional smooth submanifold of V \ ∂V .

9



The normal bundle νK is the quotient T (V )|K/T (K). Denote by E(νK) the total
space of νK and by S(νK) the corresponding sphere bundle (E(νK)\K)/R+, where
R+ acts on E(νK) \ K by multiplication. Also, denote by D(νK) the fiberwise
compactification of E(νK) obtained by adding a point at infinity for each half-
line from the origin. Clearly, D(νK ) and S(νK) are isomorphic to the closed unit
disk bundle and to the unit sphere bundle of νK provided νK is equipped with
a smooth fiberwise scalar product, and we may therefore consider S(νK) as the
boundary of D(νK).

Let ψD : D(νK) → V be a closed tubular neighborhood of K. Let ψS :
S(νK)×[0, 1) → V be defined by ψS(n, t) = ψD(tn). The cutting of (V, ∂V ) along
K is an H-manifold with boundary (actually a bordism) (Ṽ , ∂+Ṽ , ∂−Ṽ ), together
with a canonical smooth map p : (Ṽ , ∂+Ṽ , ∂−Ṽ ) → (V, ∂V ). The manifold Ṽ as
a set is the disjoint union of V \K and S(νK); more precisely, Ṽ = (V \K) ∪ψS
(S(νK) × [0, 1)). Set p to be the identity on V \ K and equal to the bundle
projection S(νK)→ K on K. From Fact 4, the smooth structure thus defined on
Ṽ actually does not depend on the choice of tubular neighborhood θ. Now take
∂+Ṽ = ∂V and ∂−Ṽ = S(νK).

Consider V̌ = Ṽ ∪ D(νK), obtained by identifying ∂−Ṽ and ∂D(νK), both
equal to S(νK). The pair (V̌ , ∂V̌ = ∂+Ṽ ) is a smooth H-manifold with boundary
and K ⊂ D(νK) ⊂ V̌ is a proper smooth embedding of finite codimension.
There exists a well defined class of thickening diffeomorphisms (all isotopic)
θ̌ : (V̌ , ∂+V̌ ,K)→ (V, ∂V,K) so that the restriction of θ̌ to K is the identity.

The constructions above are functorial in the following sense. Let

f : (V1, ∂V1,K1)→ (V2, ∂V2,K2)

be a smooth map so that f is transversal to K2 and K1 = f−1(K2). Such a
map induces a map f̃ : (Ṽ1, ∂+Ṽ1, ∂−Ṽ1) → (Ṽ2, ∂+Ṽ2, ∂−Ṽ2) and bundle maps
D(νK1) → D(νK2) sending S(νK1) into S(νK2). The restriction of f̃ to ∂−Ṽ1

is the induced bundle map from S(νK1) to S(νK2); on each fiber, this map is
projective (i.e., f̃ restricted to ∂−Ṽ1 comes from a vector bundle map E(νK1)→
E(νK2)). Such maps f will be called morphisms. We consider morphisms f :
(V1, ∂V1,K1) → (V2, ∂V2,K2) with the additional property that the maps f :
V1 → V2, f : ∂V1 → ∂V2, f : K1 → K2, f : V1 \K1 → V2 \K2 are all homotopy
equivalences. This clearly implies that f̃ : (Ṽ1, ∂+Ṽ1, ∂−Ṽ1) → (Ṽ2, ∂+Ṽ2, ∂−Ṽ2) is
a homotopy equivalence of triples.

Proof of Theorem 3: Start with f : (V1, ∂V1,K1) → (V2, ∂V2,K2) which in-
duces the homotopy equivalence f̃ : (Ṽ1, ∂+Ṽ1, ∂−Ṽ1) → (Ṽ2, ∂+Ṽ2, ∂−Ṽ2) and the
bundle map D(f) : D(νK1) → D(νK2 ). Notice that the restriction fK = f |K1 is
a homotopy equivalence, and therefore so is D(f).

By Fact 1, fK is homotopic to a diffeomorphism hK : K1 → K2 by a homotopy
fKt , where fK0 = fK and fK1 = hK. Since fK comes from a bundle map D(f),
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the homotopy fKt lifts to a homotopy of bundle maps D(fKt ), and since D(fK1 )
induces on the base a diffeomorphism hK, D(fK1 ) itself is a diffeomorphism.

This shows that f̃ is a homotopy equivalence between ∂−Ṽ1 and ∂−Ṽ2, and
therefore a homotopy equivalence between the boundaries of Ṽ1 and Ṽ2. We may
then apply Proposition 3.1 to obtain a homotopic diffeomorphism h̃ between the
triples. Also, the restriction of D(fK1 ) to S(νK1) = ∂−Ṽ1 is a diffeomorphism
homotopic to the restriction of h̃. By Fact 2, there exists an isotopy between
these two diffeomorphisms, and we may therefore glue them in order to obtain
the desired diffeomorphism. �

Corollary 3.2 Let X and Y be a separable Hilbert spaces and i : Y → X an
injective bounded linear map with dense image. If M is a finite codimensional
closed submanifold of X then N = i−1(M) is a finite codimensional closed sub-
manifold of Y and there exists a diffeomorphism h : (Y,N)→ (X,M) homotopic
to i : (Y,N)→ (X,M).

Proof: From Theorem 2, i : Y \ N → X \M and i : (Y,N) → (X,M) are
homotopy equivalences. We now apply Theorem 3 with V1 = Y and V2 = X,
∂V1 = ∂V2 = ∅, K2 = M , K1 = N and f = i. �

4 Constructing the homotopy

Let X = C0
D([0, π]), Y = H2

0 ([0, π]) and Z = L2([0, π]). Consider the operator

F : Y → Z

u 7→ −u′′ + f(u)

with derivative at u given by

DF (u) : Y → Z.

w 7→ −w′′ + f ′(u)w

We recall some facts from the theory of second order differential equations ([6]).
Given u ∈ Y , let v(u, ·) be the solution in [0, π] of

−v′′(u, t) + f ′(u(t))v(u, t) = 0, v(u, 0) = 0, v′(u, 0) = 1.

The characterization of critical points of F follows from standard Fredholm theory
of Sturm-Liouville operators: u is in C if and only if the kernel of DF (u) is non-
trivial. Thus, a point u belongs to the critical set C of F if and only if v(u, π) = 0;
in this case, by the simplicity of the spectrum of DF (u), kerDF (u) is spanned
by v(u, ·).
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Let ω : Y×[0, π]→ R be the continuously defined argument of (v′(u, t), v(u, t)),
with ω(u, 0) = 0. One can show that u is critical if and only if ω(u, π) = mπ,
for m ∈ Z; moreover, m has to be positive since ω(u, t) > 0 for all t > 0. Let
Cm = {u ∈ Y | ω(u, π) = mπ}: the critical set C of F is the (disjoint) union
of Cm, m ∈ N∗. A standard computation shows that, for any given t, ω(u, t) is
smooth as a function of u ∈ Y and we have

∂

∂u
ω(u, t) · ϕ = − 1

(v(u, t))2 + (v′(u, t))2

∫ t

0

f ′′(u(s))ϕ(s)(v(u, s))2ds.

where ∂
∂u
ω(u, t) denotes the differential of ω(·, t) : Y → R and ∂

∂u
ω(u, t) · ϕ the

value of this differential on the element ϕ ∈ Y . Let f be appropriate: using
the formula above one can see that mπ is a regular value for the real valued
function ω(·, π), and therefore the sets Cm are either empty or smooth manifolds
of codimension 1.

When considering a given Cm we use the more convenient m-argument at u:
ωm : Y × [0, π]→ R is the argument of (v′,mv), i.e., it satisfies

v′(u, t) tan(ωm(u, t)) = mv(u, t), ωm(u, 0) = 0.

It is easy to see that mπ is a regular value of ωm, as it is of ω. The advantage of
this definition is that if f ′(u(t)) = −m2 for t in some interval then ωm(u, ·) is a
linear map of slope m in this interval.

We will later consider local m-arguments. More precisely, given u we solve
the differential equation

−v̂′′ + f ′(u)v̂ = 0, v̂(t0) = a0, v̂′(t0) = b0

and set ω̂m(t) to be the argument of (v̂′,mv̂). The notation ω̂m(u, t) leaves un-
specified the values of t0, a0 and b0: these values will always be specified in the
context.

We list some properties relating u and ωm, most of which are simple or stan-
dard. The obvious adaptations to ω̂m will be frequently left to the reader.

Lemma 4.1 The m-argument ωm satisfies

ω′m(u, t) = m− m2 + f ′(u(t))

m
sin2(ωm(u, t)), ωm(u, 0) = 0 (∗)

(here ω′m(u, t) = d
dt
ωm(u, t));

(a) ω′m(u, t) = m if and only if either ωm(u, t) = jπ, j ∈ Z, or f ′(u(t)) = −m2;

(b) if f ′(u(t)) < −m2 (resp., f ′(u(t)) > −m2) then ω′m(u, t) ≥ m (resp., ω′m(u, t) ≤
m);
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(c) the differential equation (∗) defines ωm(·, π) as a smooth function on C0([0, π])
which is L1-continuous on bounded sets;

(d) for any given t, the differential equation (∗) implies that

∂

∂u
ωm(u, t) · ϕ = − m

(mv(u, t))2 + (v′(u, t))2

∫ t

0

f ′′(u(s))ϕ(s)(v(u, s))2ds;

(e) if u is smooth and not flat at t0, f ′′(u(t0)) 6= 0 and ω′m(u, t0) = m then
ω′m(u, ·) is not flat at t0.

Item (c) of this result entitles us to define the extension ω̃m : X → R and
implies that the maps ω and ωm can be extended to smooth maps on X and one
can consider the codimension one smooth manifolds C̃m = {u ∈ X | ω(u, π) =
mπ}. From Corollary 3.2, the inclusion i : (Y,Cm)→ (X, C̃m) is homotopic to a
homeomorphism. From now on we drop the tilde both on C̃m and ω̃m: thus, our
basic functional space will be X = C0

D([0, π]).

Recall that a smooth function ζ : R → R is flat at t0 if its Taylor expansion
at t0 is constant.

Proof of Lemma 4.1: We only prove the last item. Assume by contradiction
that ω′m(u, ·) is flat at t0. Since f ′′(u(t0)) 6= 0, the function f ′ ◦ u is not flat at t0.
In the differential equation

ω′m(u, t)−m = −m
2 + f ′(u(t))

m
sin2(ωm(u, t))

the left hand side is zero and flat at t0 and the right hand side is a product of
two non-flat functions. Thus, the formal Taylor series around t0 of the left hand
side is identically zero, whereas the corresponding series for the right hand side
is non-zero. �

Lemma 4.1 shows how to obtain ωm(u, ·) directly from u, without referring to
v(u, ·). More generally, we define the local m-argument ω̂m by the equation

ω̂′m(u, t) = m− m2 + f ′(u(t))

m
sin2(ω̂m(u, t)), ω̂m(u, t0) = θ0

where tan(θ0) = ma0/b0.

Proposition 4.2 Let f be appropriate; then Cm 6= ∅ if and only if the number
−m2 belongs to the interior of the image of f ′.

Notice that the proposition makes no claim concerning connectedness or any
other topological property of Cm.
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Proof: Assume that −m2 ∈ int(f ′(R)): for some ε > 0 there exist x−, x+ ∈ R
with f ′(x±) = −m2∓ ε. Consider two families of functions u−,s, u+,s in C0

0([0, π])
which are uniformly C0 bounded and L1 converge to the constants x−, x+ when
s tends to 0. From item (c) of Lemma 4.1, for some sufficiently small s0 we
have ωm(u−,s0 , π) < −m2, ωm(u+,s0, π) > −m2. By continuity, some u in the line
segment from u−,s0 to u+,s0 belongs to Cm.

To prove the converse, assume first f ′(0) = −m2: from the definition of
appropriateness we must then have f ′′(0) 6= 0 and then clearly −m2 ∈ int(f ′(R)).
Assume instead f ′(0) 6= −m2, say f ′(0) > −m2, and let u ∈ Cm. For t− near
0 or π we have f ′(u(t−)) > −m2 and from Lemma 4.1 ω′m(u, t−) < m for such
t− 6= 0, π. We must then have ω′m(u, t+) > m for some t+ ∈ [0, π]. Thus
f ′(u(t+)) < −m2 and the result follows. �

We present a rough sketch of the construction of the deformation within Cm of
a family of functions u to a final point u∗, as claimed in Proposition 1.1. Actually,
from Theorem 2, it suffices that this deformation be continuous in the C0 norm
instead of the H2 norm. A natural candidate for u∗ would be a constant function
equal to an arbitrary xm where f ′(xm) = −m2: in this case, ωm(u, t) = mt.
Unfortunately, this function does not satisfy the Dirichlet boundary conditions:
given the family of functions u to be deformed, we construct a fixed u∗ ∈ Cm
which is constant equal to xm in a large interval [a, π− a].

Figure 1: Graph of original u and ωm

Consider now the m-argument of a given u ∈ Cm: ωm(u, ·) is a continuous
function from [0, π] to [0,mπ]. These two graphs are shown in Figure 1; in this
example m = 2. The graphs of the constant functions u = xm and ωm(u, t) = tm
are indicated by dotted lines. The idea, to be formalized and implemented in step
4 of the proof, is for the homotopy to squeeze the graph of ωm between parallel
walls advancing towards the line y = mt, as shown in Figure 2. A corresponding
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u is obtained by changing its original value in the region of the domain over
which the graph of ωm has been squeezed—there, the new value of u is xm.
Notice that, in principle, the value of ωm(u, π) = mπ for this new u but such u
is discontinuous. We must therefore make amends: for a fixed tolerance tol, the
region where the graph of ωm trespasses the wall by more than tol is taken to
xm and in the region where the graph of ωm lies strictly between the walls, u is
unchanged. Hence, there is an open region in the domain where u assumes rather
arbitrary values in order to preserve its continuity. Steps 2 and 3 guarantee that
this open region is uniformly small (for u in the deformed loop): in particular, we
have to fudge u so that the graph of ωm(u, ·) does not include segments parallel
to y = mt. This symmetry breaking is achieved by replacing u by appropriate
polynomial approximations. At the end of step 4, we have functions which are
equal to xm in a substantial amount of the domain: the straight line segments
joining them to u∗ can be deformed onto Cm thus accomplishing the last step of
the deformation.

Figure 2: Graph of u and ωm at some point during step 4

Lemma 4.3 Given u ∈ C0
D, ωm(u, ·) is a C1 function with ω′m(u, t0) = m and

ω′′m(u, t0) = 0 whenever ωm(u, t0) = jπ, j ∈ Z. Furthermore, given u0 ∈ R with
f ′′(u0) 6= 0 and a C1 function w : (t0 − ε, t0 + ε) → R with either w(t0) 6= jπ or
simultaneously w(t0) = jπ, w′(t0) = m, w′′(t0) = 0, there exists, for sufficiently
small ε1 < ε, a unique continuous function u : (t0 − ε1, t0 + ε1)→ R with

w′(t) = m− m2 + f ′(u(t))

m
sin2(w(t)), u(t0) = u0.

Proof: The fact that ωm(u, ·) is a C1 function follows directly from the differ-
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ential equation in Lemma 4.1. Given t0 with ωm(u, t0) = jπ, we have

ω′′m(u, t0) = lim
t→t0

ω′m(u, t)−m
t− t0

= lim
t→t0
−m

2 + f ′(u(t))

m

sin2(ωm(u, t))

t− t0
= C lim

t→t0

sin2(ωm(u, t))− sin2(ωm(u, t0))

t− t0
= 0.

Also, the differential equation in u and w may be written as

f ′(u(t)) = −m2 +m
m− w′(t)
sin2(w(t))

.

The right hand side is clearly continuous even when w(t) = jπ which allows for
solving in u when f ′ is invertible. �

Thus, for example, for concave or convex nonlinearities f , changes in ωm(u, ·)
easily translate back to changes in u. In particular, as mentioned in the intro-
duction, simpler proofs of Theorem 1 are known under these hypothesis.

A technical difficulty in the construction of u∗ (and in many points of the
deformation process) is making sure that u∗ (or a deformed u) belongs to Cm.
For this, we make use of the following Lemma.

Consider two smooth functions u0 : [0, t0]→ R and u1 : [t1, π]→ R satisfying
u0(0) = 0 and u1(π) = 0, and consider local m-arguments ωm(u0, t) and ωm(u1, t)
starting respectively from 0 at t = 0 and mπ at t = π. Under the hypothesis of
the lemma below, we may solder these two chunks in a specific, smoothly defined
way, to obtain a smooth function u : [0, π] → R belonging to Cm (i.e., so that
ωm(u, π) = mπ).

Lemma 4.4 Let 0 < t0 < t1 < π be real numbers such that sin(mt) 6= 0 for all
t ∈ [t0, t1]. For sufficiently small ε > 0 there exists a smooth function

Ξt0,t1 : (−ε, ε)× (−ε, ε)× [t0, t1]→ R

with the following properties:

(a) Ξt0,t1(h0, h1, t0) = Ξt0,t1(h0, h1, t1) = xm for all h0, h1 ∈ (−ε, ε) and flat at
these points;

(b) if ω̂m(Ξt0,t1(h0, h1, ·), t) is defined with initial condition ω̂m(Ξt0,t1(h0, h1, ·), t0) =
mt0 + h0 then ω̂m(Ξt0,t1(h0, h1, ·), t1) = mt1 + h1;

(c) Ξt0,t1(h, h, t) = xm for all h ∈ (−ε, ε), t ∈ [t0, t1].
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Proof: Take ε > 0 such that sin(mt) 6= 0 for all t ∈ [t0 − ε/m, t1 + ε/m]. Let
ξ : [t0, t1]→ [0, 1] be a smooth bijection with ξ(t0) = 0, ξ(t1) = 1 which is flat at
these endpoints. Let

wh0,h1(t) = mt+ h0 + (h1 − h0)ξ(t);

we are ready to apply Lemma 4.3 in order to define Ξt0,t1 with

ω̂m(Ξt0,t1(h0, h1, ·), t) = wh0,h1(t).

�
The lemma below will be used in step 4 of the proof of Proposition 1.1.

Lemma 4.5 Let g : Sk × [0, π] → R be a smooth function. Suppose there exists
ε > 0 such that for any δ > 0 there exists yδ ∈ R and θδ ∈ Sk such that µ(Aδ) > ε,
where

Aδ = {t ∈ [0, π] | g(θδ, t) ∈ [yδ, yδ + δ]}.
Then there exists a point (θ0, t0) ∈ Sk × [0, π] for which the function g(θ0, ·) is
flat at t0.

Proof: Let (y0, θ0) be an accumulation point of the sequence (yan, θan) where
liman = 0; without loss, we may suppose that (y0, θ0) is the limit of this sequence.
Let

A0 = lim sup
n

Aan =
⋂

n

⋃

i≥n
Ai;

from

µ(lim sup
n

Aan) ≥ lim sup
n

µ(Aan)

(a corollary of Fatou’s lemma) we have µ(A0) ≥ ε. On the other hand, from
continuity, g(θ0, t) = y0 for t ∈ A0. Thus, any non-isolated point t0 ∈ A0 is a flat
point for g(θ0, ·). �
Proof of Proposition 1.1: Path connectedness of Cm (i.e., the case k = 0,
for which πk(Cm) has no group structure) will be discussed simultaneously to
the verification of the triviality of the homotopy groups of Cm. Keeping with the
notation of the previous section, let φ : X → R, φ(u) = ωm(u, π)−mπ, MY = Cm
and MX = φ−1({0}) ⊆ X. As shown in the previous section, it suffices, given
a Y -continuous (i.e., H2-continuous) γ : Sk → MY , to construct a X-continuous
(i.e., C0-continuous) Γ : Bk+1 →MX with Γ|Sk=∂Bk+1 = γ.

We set a more convenient notation: let Ak+1 be the annulus Sk × [0, π] and
U(0) : Ak+1 → R be the initial map defined by U(0)(θ, t) = (γ(θ))(t). We want
to construct a continuous function U : [0, 5] × Ak+1 → R with the following
properties:
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(i) the values at {0} ×Ak+1 are given by the initial map U(0);

(ii) for any s ∈ [0, 5] and θ ∈ Sk, U(s, θ, ·) ∈ MX ⊆ C0
0([0, π]), i.e., U(s, θ, 0) =

U(s, θ, π) = 0 and ωm(U(s, θ, ·), π) = mπ;

(iii) for s = 5 the function U is constant in θ, i.e., for any θ0, θ1 ∈ Sk and
t ∈ [0, π], U(5, θ0, t) = U(5, θ1, t).

We then have

Γ(rθ)(t) =

{
U(5, θ, t), if r ≤ 1/2,

U(10(1 − r), θ, t) if r ≥ 1/2.

Step 1 We search for convenient vectors ϕ(θ, ·) in Y along which the derivative

− m

(v′(U(0, θ, ·), π))2

∫ π

0

f ′′(U(0, θ, σ))ϕ(θ, σ)(v(U(0, θ, ·), σ))2dσ,

of ωm(U(0, θ, ·), π) is positive (see Lemma 4.1, (d)). Let βδ : [0, π] → [0, 1] be a
smooth bump equal to zero in [0, δ)∪(π−δ, π] and equal to one in (2δ, π−2δ); this
family of bumps may be constructed to be L1-continuous in δ. Clearly, the choice
ϕ(θ, t) = −βδ(t)f ′′(U(0, θ, t)) yields a positive derivative for δ = 0 and therefore,
by continuity, also for some positive δ0 (independent of θ). Furthermore, the
smoothness in u of ωm(u, π) guarantees that there exists ε > 0 such that

∂

∂τ
ωm(U(0, θ, ·) + τϕ(θ, ·), π) > ε

at any point (θ, τ ) with |τ | < ε.

We now want to deform each u so that the modified u’s are constant equal to
xm on small intervals near t = 0 and t = π. More precisely, we will define small
positive real numbers 0 < δ2 � δ1 and construct U for 0 ≤ s ≤ 1 so that

(i) for δ2 ≤ t ≤ δ1 and π − δ1 ≤ t ≤ π − δ2 we have U(1, θ, t) = xm;

(ii) for t < δ2 and t > π − δ2, U(1, θ, t) does not depend on θ and satisfies
|U(1, θ, t)| ≤ |xm|;

(iii) for any s ∈ [0, 1], and any θ ∈ Sk we have ωm(U(s, θ, ·), π) = mπ, i.e.,
U(s, θ, ·) ∈ Cm.

In particular, from (i), in the interval δ2 ≤ t ≤ δ1 (or π − δ1 ≤ t ≤ π − δ2) the
graph of ωm(U(1, θ, ·), t) is a straight segment of slope m. We claim that for any
sufficiently small δ1 and δ2 with δ2 < δ1 this construction can be accomplished.
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Indeed, for sufficiently small δ1 < δ0/2 we can uniquely define ξ : [0, 1] × Sk ×
[0, π]→ (−ε, ε) such that

U(s, θ, t) = (1 − s+ sβδ1(t))U(0, θ, t) + s(βδ2/2 − βδ1)(t)xm + ξ(s, θ, t)ϕ(θ, t)

satisfies U(s, θ, ·) ∈ Cm for all s ∈ [0, 1] and θ ∈ Sk (here δ0, ε, ϕ and β are as
defined in the previous paragraph). The above formula for U admits the following
geometric interpretation. The first two terms of the right hand side parametrize
in s a straight line segment from the original u to a modified function satisfying
items (i) and (ii). The third term takes care of item (iii) provided the L1 distance
between u and the modified function is so small that their m-arguments ωm at π
differ from less than ε.

Step 2 Let η > 0 be a small number to be specified later. We now define U for
1 ≤ s ≤ 2 so that there exist positive numbers δ′2 < δ′1 < δ′0 < π/m such that

(i) for t ∈ [δ′2, δ
′
1]∪ [π−δ′1, π−δ′2] we have U(2, θ, t) = xm and ωm(U(2, θ, ·), t) =

mt;

(ii) for any θ, U(2, θ, π − δ′0) = xm and ωm(U(2, θ, ·), π − δ′0)) = m(π − δ′0) + η;

(iii) for t ∈ [0, δ′1] ∪ [π − δ′0, π], U(2, θ, t) does not depend on θ;

(iv) for any s ∈ [1, 2], and any θ ∈ Sk, we have U(s, θ, ·) ∈ Cm.

To do this, assume that δ1 < π/m and δ2 < δ1/4 and let δ′2 = δ1/2, δ′1 = 3δ1/4,
δ′0 = 7δ1/8. The L1-continuity of the m-argument (Lemma 4.1) entails that both
h− = mδ1/4−ωm(U(1, θ, ·), δ1/4) and h+ = m(π−δ1/4)−ωm(U(1, θ, ·), π−δ1/4)
can be taken to be arbitrarily small by choosing δ2 small. Now solder the six
chunks: for s ∈ [1, 2] set

U(s, θ, t) =





Ξδ1/4,δ′2(h−, h−(s), t), if δ1/4 < t < δ′2
Ξδ′1,δ1(h−(s), h−, t), if δ′1 < t < δ1

Ξπ−δ1 ,π−δ′0(h+, h
0
+(s), t), if π − δ1 < t < π − δ′0

Ξπ−δ′0 ,π−δ′1(h
0
+, h

1
+(s), t), if π − δ′0 < t < π − δ′1

Ξπ−δ′2 ,π−δ1/4(h1
+(s), h+, t), if π − δ′2 < t < π − δ1/4

U(1/4, θ, t), otherwise;

where h−(s) = (2 − s)h−, h0
+(s) = η + (2 − s)(h+ − η) and h1

+(s) = (2 − s)h+.
The number η is chosen to be any positive number sufficiently small to permit
soldering. See Figure 3 for a sketch of the graph of U(2, θ, ·) and ωm(U(2, θ, ·), t).

We are now ready to describe u∗:

u∗(t) =

{
U(2, θ, t), for t ∈ [0, δ′1] ∪ [π − δ′1, π],

xm, for t ∈ [δ′2, π − δ′2].
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Figure 3: Graphs of u and ωm at the end of step 2

Notice that the value of θ in the definition above is immaterial, from property
(iii). Moreover, the homotopy from now on will not change the values of the
functions U(s, θ, ·) near the endpoints: we shall have U(s, θ, t) = u∗(t) for all
s ≥ 2, t ∈ [0, δ′2] ∪ [π− δ′2, π] and θ ∈ Sk. The construction of u∗ is dependent on
the original map γ : Sk → MY : still, path connectivity of Cm follows from the
same homotopy being described when applied to an original map γ, with k = 0.

Step 3 Continuing with the preparations, we change u’s in the central interval
[δ′1, π− δ′0] so that there they become polynomials in the variables θ and t. More
precisely, for some polynomial function P : Rk+2 → R (with properties to be
specified below) and for s ∈ [2, 3], set

U(s, θ, t) =





(s− 2)U(2, θ, t) + (3 − s)P (θ, t), for t ∈ [δ′1, π − δ′0],
Ξπ−δ′1,π−δ′2(h(s, θ), 0, t), for t ∈ [π − δ′1, π − δ′2],
u∗(t), otherwise,

where h(s, θ) = ωm(U(s, θ, ·), π − δ′1) −m(π − δ′1). In order for this function U
to be continuous we must choose P with P (θ, δ′1) = P (θ, π − δ′0) = xm. Lemma
4.4 applies if we require h(s, θ) ∈ (η/2, 3η/2) for all s and θ: this is accomplished
from Lemma 4.1 by choosing P (θ, t) uniformly close to U(2, θ, t) in the interval
[δ′1, π − δ′0] (as we may, from the Stone-Weierstrass theorem).

Step 4 Let

A = [3, 4]× Sk × [δ′1, π − δ′1]
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and consider the partition

AI = {(s, θ, t) ∈ A | − (4− s)mπ ≤ ωm(U(s, θ, ·), t)−mt ≤ (4− s)mπ},
AS = {(s, θ, t) ∈ A | − (4− s)mπ − tol ≥ ωm(U(s, θ, ·), t)−mt

or ωm(U(s, θ, ·), t)−mt ≥ (4− s)mπ + tol},
AT = A− (AI ∪AS)

(here the letters I, S and T stand for invariant, squeezed and Tietze). For
(s, θ, t) ∈ A, set

U(s, θ, t) =

{
U(3, θ, t), for (s, θ, t) ∈ AI ,

xm, for (s, θ, t) ∈ AS,

and now apply the Tietze extension theorem to define U on AT so that U is
continuous in A. Set U(s, θ, t) = u∗(t) for t ∈ [0, δ′1]∪ [π− δ′2, π] and apply solder
in the interval [π − δ′1, π − δ′2], i.e., set

U(s, θ, t) = Ξπ−δ′1,π−δ′2(ωm(U(s, θ, ·), π − δ′1), 0, t).

We are left to show that under this construction, for sufficiently small tol, solder
is applicable, i.e., ωm(U(s, θ, ·), π − δ′1) can be taken as small as desired.

We first prove that given ε > 0 there exists tol > 0 such that for any s0 and
θ0 the Lebesgue measure of

AT,s0,θ0 = {t ∈ [0, π] | (s0, θ0, t) ∈ AT}

is smaller than ε. First consider AT,s0,θ0 ∩ [π − δ′0, π − δ′1]: in this interval,
ωm(U(3, θ0, ·), t)−mt is strictly decreasing and does not depend on θ0. Thus, for
sufficiently small tol we may assume µ(AT,s0,θ0 ∩ [π − δ′0, π − δ′1]) < ε/2. Next
consider AT,s0,θ0 ∩ [δ′1, π − δ′0]. Suppose by contradiction that for a fixed ε > 0
and for all tol > 0 we have

µ(AT,s0,θ0 ∩ [δ′1, π − δ′0]) > ε/2.

From Lemma 4.5, ω′m(U(3, θ0, ·), t) is flat in t = t0 for some θ0 ∈ Sk. Now, making
use of the last item of Lemma 4.1, U(3, θ0, t) is flat in t = t0, contradicting its
polynomiality.

Step 5

At this point of the construction the loop U(4, θ, t) is L1 close to the constant
loop u∗. Indeed, consider U(3, θ, t): this function of θ and t is C0-bounded by
some constant C. Given ε1 > 0 we can choose tol in step 4 in such a way that,
for all θ,

1. |U(4, θ, ·)− u∗|C0 < 2C + 1,
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2. |U(4, θ, ·)− u∗|L1 < ε1.

The first follows from compactness of the set of parameters for the function Ξ
employed in the soldering in step 4. The second follows from choosing tol such
that AT has measure less than ε1/(4C + 2) (as discussed in step 4).

We may now take a family in θ of straight lines joining U(4, θ, t) to U(5, θ, t) =
u∗. More formally, let

U(s, θ, t) =

{
Ξπ−δ′1 ,π−δ′2(h(s, θ), 0, t), for t ∈ [π − δ′1, π − δ′2],
(5 − s)U(4, θ, t) + (s− 4)u∗(t), otherwise,

where, again, h(s, θ) = ωm(U(s, θ, ·), π−δ′1)−m(π−δ′1). The fact that U(s, θ, π−
δ′1)−m(π − δ′1) is appropriately small follows from Lemma 4.1, item (c). �
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