ANALYTIC CONTINUATION IS IMPRACTICAL

Nicolau Corgao Saldanha

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF

MATHEMATICS

June 1989




ABSTRACT

In fhis work we study the space A{ of analytic functions from the disc to the disc. For a
metric space M we define a family of numbers I}, . (M) which give several ways of measuring
the “size” of the metric space. I ; is the Hausdorff dimension and we accordingly think of
I, » as a generalization of this concept. We call I, the generalized dimension and I3, the
hyperdimension of the space. We compufe the hyperdimension and generalized dimension
of M with several metrics; the simplest is da(f,g) = sup,c 4 |f(z) — 9(2)| where A is a
compact subsget of the open unit disc. The hyperdimension of Af turns out to be 2 for most
“natural” metrics. The generalized dimension, however, is much more interesting and much

harder to compute. If M is given the metric d4 defined above we have
Iia(M) = %C(A — 4;8A,84)

where C denotes the conductivity of a surface in the sense given by electricity. We generalize
d4 to d, where p is a function assuming non-negative real values on the open disc; we give

estimates of

Ty,2(M, dy).

After this part of the work was completed, we found out that Kolmogorov had intoduced

the closely related concept of the entropy of a metric space and that Erchin had already

proved a very similar version of the result concerning d 4.




We apply these results to the problem of specifying analytic functions, We prove certain
inequalities that bound the efficiency of any specification procedure and exhibit one pro-
cedure that realizes the corresponding equality. As we found out about Kolmogorov’s and

Erohin’s work we discovered that these ideas had already been pursued by Vituskin.

. Our main application is the study of the problem of doing analytic continuation. We
know that analytic continuation can always be done “in theory”. We show that it is very
hard to do it “in practice” in the fc;llowing sense: the amount of information about the
function which we need in order to perform the analytic continuation within an error of ¢
grows quadratically with [log(e}| but exponentially with the “length” of the arc along which
analytic continuation is to be done. By the “length” of the arc we mean its length in the
Kobayashi metric on the domain where the function is known to be defined. All of this shows

that analytic continuation is impractical in all but the simplest cases; explicit examples are

given.
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Chapter 0

Introduction

The original motivation for this work was the problem of analytic continuation. We all
know that analytic continuation is theoretically possible in the following sense: if the value
of an analytic function is given on a small region the value of the function is determined

everywhere. Finding this value, however, is a different story.

This motivates the following questions. The first question is: given the value of a function
in a small region how can we compute the value of the same function outside that region?
More than one answer is known for this question. All of these answers have the shortcoming,
however, of being very inefficient in many situations. This brings us to other questions. Why
are these methods inefficient? Is it possible that far better methods exist but we have not
been clever enough fo find them? Or is there some intrinsic limitation on the ‘quality’ of

any possible such methods? If so, what are these limitations? These are the questions which

7




8 CHAPTER ¢. INTRODUCTION
we attempt to answer.

There is another class of questions which also served as inspiration for this work. Here
we think of an analytic function as known but we want to specify what the function is.
Alternatively, we can immagine that we have some function in mind and we want to tell
somebody else, possibly a computer, what this function is. What is a good way of doing

this? How much information do we need to give?

We soon saw that in order to answer any of these questions we needed first of all to study
spaces of holomorphic functions. For several reasons, including concreteness and simplicity,
we decided that the spaces we needed to study would be spaces of bounded holomorphic
functions on some given domain. If this domain is simply connected the Riemann mapping
theorem tells us that by composition with a fixed function we can suppose that this domain
is the unit disc. This brings us to the space M of analytic functions from the disc to the

disc. Several interesting metrics can be considered for AM,

So now we had metric spaces and we were interested in measuring their ‘size’. Our first
idea was to compute the Hausdorff dimension: this, however, turned out to be infinite. The
natural thing to do now seemed to be to define some concept similar to Hausdorff dimension
which would apply to these large metric spaces. This led us to introduce first the concept
of generalized dimension and later that of hyperdimension. The similarity of these concepts
led us to unify them in the symbol I}, ., a very general way of measuring the ‘size’ of a

metric space which, even though never used to its full power, helps to unify several proofs.

Summing up, for a metric space M we define a family of numbers I}, , (M) which give several




ways of measuring the ‘size’ of the metric space. I3 ; is the Hausdorff dimension and we
@ccordingly think of I, as a generalization of this concept. We call I, the generalized
dimension and I3 1 the hyperdimension of the space.

At this point we proceeded to compute the hyperdimension and generalized dimension of
M with several metrics; the simplest is d4(f, g) = sup, . 4 |f(2) —g(z)] where A is a compact
subset of the open unit disc, The hyperdimension of A turns out to be 2 for this anﬂ most
‘natural’ metrics. The generalized dimension, however, is much more interesting and much

harder to compute. If M is given the metric d4 defined above we have

Iy o(M,ds) = %C(A — A;8A,84)

where C denotes the conductivity of a surface in the sense given by electricity.

We generalize the metric d4 by introducing d, where p is a function assuming non-
negative real values in the open unit disc. d4 is the same as d,,, where x4 is the characteristic
function of A. In genera'ﬂ, p should be thought of as telling us the ‘weight’ of each point in
the definition of d;. Seen by itself, d; may seem to be an artificial concept but it turns out
to be very important in many applications. d, is a metric in many cases, but not always.

We conjecture that
1
Iy 2(M,dy) = ;E(Gbp)

where ¢, is the smallest superharmonic function which is everywhere greater or equal than

p and E stands for the energy of a funetion. We do not prove this conjecture but we prove

estimates towards it which are sufficient for the applications.




10 CHAPTER 0. INTRODUCTION

At this point we turn back to one of our motivating questions: we consider how most
gﬁiciently to specify holomorphic functions. Our results concerning the ‘size’ of spaces give
us inequalities that bound the efficiency of any specification procedure. More than this
is true, however. The proof of the generalized dimension results provides us with a very
explicit specification procedure. The above mentioned inequalities show that no method

can be much better than ours since our procedure realizes the corresponding equality.

This may be a good moment to remark that after practically all of this work was com-
pleted we found out that Kolmogorov had intoduced the concepts of the entropy and capacity
of a metric space which correspond very closely to our I;,,. We show how our concepts
relate to Kolmogorov’s but, being already used to our own, we do not adopt his notation
consistently. A lot of work has been done estimating the entropy and capacity of several
metric spaces. In particular, we found out that Erohin had already proved what we call the
‘Conductivity Theorem’ in the case of A connected and had in fact generalized this result
in many directions which we did not consider (see (2, 3]). Notice also that Erchin’s proof is
essentially the same as ours, only in a somewhat different language. We also found out about
the work of Vituskin (see [6]) who addresses the question of specifying functions in many
different situations and derives many interesting results. We believe, however, that many
other questions addressed in this work, especially in connection with analytic continuation,
are actually new. We thank Curt McMullen for his crucial help in finding out about this

related work,

We finally turn back to the original problem of the practicality of analytical continuation.
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We show that, although theoretically possible, analytic continuation is impractical in all but
the simplest situations., The precision with which the function needs to be known at the
original point or region in order to give a decent approximation at the final point or region
may be such as to render the problem physically impossible. All of these rather vague
statements are defined precisely, often in more than one way. More explicitly, in one of
these approaches we show that the amount of information about the function which we need
in order to perform the analytic cc;ntinua.tion within an error of € grows quadratically with
{log(€)| but exponentially with the “length” of the arc along which analytic continuation is
to be done. By the “length” of the arc we mean its length in the Kobayashi metric on the
domain where the function is known to be defined. We also give explicit examples. Not all
questions are answered, however, and several interesting conjectures are left to be answered
in the future.

I would like to thank all those who helped in this work, specially Bill Thurston, without

whom this work would not have been born.
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Chapter 1

Measuring Spaces of Functions

1.0 Introduction

In this chapter we define the basic concepts which we shall study and use later. Among the
most important is the generalized dimension of a metric space, denoted by I, which is
a way of measuring the “size” of the space. After this part of the work was completed we
leaned about Kolmogorov’s definitions of the entropy H, and the capacity C. of a metric
space; we show how our concepts relate to Kolmogorov’s but, being already used to our own,
we do not adopt his notation consistently, We apply these concepts to spaces of holomorphic
functions and define =, ., which gives an indirect way of measuring subsets of the complex

unit disc.

13
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1.1 Measuring Metric Spaces

1.1.1 Packing and Covering Size

We will be interested in ways of measuring the “size” of a metric space. The concepts below

are probably the most obvious in this sense.

Definition 1.1.1 Let § be @ metric space with distance d and take ¢ > 0.

(i) AC S is called an e-packing set iff
zyEAety = d(z,y)>e
The e-packing size is defined as

NP(S,d) = A|.

max
A C 5§ an e-packing set
(it) B C 5§ iz called an e-covering set iff

V&S JyechB d(z,y) < e.

The e-covering size is defined as

NC,(S,d) = min |B|.

B C § an e-covering set

The following proposition will be important later on:

Proposition 1.1.2 If 5§ i{s o metric space with distence d, then

NC.(8,d) < NP(S,d) < NC4.(5,d)
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Jor any k < 1/2. We will often take k = 1/3,

Proof of Proposition 1.1.2:

Let A be an e-packing set of maximal size. We claim that A is an e-covering set. In
order to see this, pick any = in 8, If # € A, there obviously exists an element of A which is
at a distance of at most € from #, namely z itself. Otherwise, by maximality, we know that
AU {2} is not an e-packing set. This means that there exist y,z € AU {2}, v # 2, with
d(y,z) < e. Now we can not have y,z € 4, since A is an e-packing set; We can therefore
suppose without loss of generality # — 2, and this shows that there exists an element of 4
which is at a distance of at most ¢ from «, namely y. This takes care of the first inequality.

Now let A be an e-packing set and let B be an ke-covering set. Let us build a function
f 1+ A -+ B which takes each 2 € A to some y € B such that d(z,y) < ke; such an f
exists since B is an ke-covering set. f is injective since f(zo) = f(z1) implies d(zq, z1) <
d(zo, f(20)) + d(z1, f(21)) < 2ke < ¢, which implies 25 = 2y by the fact that A is an

¢-packing set. This takes care of the second inequality.

1.1.2 Hyperdimension and Generalized Dimension

We know that if S is nice enough we have

lim log NP, .. log NC, — h($),

. e0 |loge] =0 |loge|
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where A(S) is the Hausdorff dimension of §. The Hausdorff dimension is therefore a way of

measuring the “size” of a metric space.

In this work, however, we will often be dealing with spaces with infinite Hausdorff di-
mension. This means that comparing log NP, or log NC, with |loge| is not a good idea.
Kolmogorov’s approach here is to define H, = log NC, and C, = log NP, and then to find
estimates for these two functions. H is called the entropy and C the capacity of the metric
space. Being used to our own definitions, we shall not use this terminology in mest of this

work but we shall translate our main results into this language.

Our approach is slightly different. We say that we should be comparing log N P, or
log NC. with some function of ¢ that grows faster than |loge|. One more or less natural
candidate is |loge|”, where » is a real parameter; it will later become clear that this is
the “right” function for many of our examples. The first question would be what value
of » to take; given a value of » we can define an analogue of the Hausdorff dimension.
Following these ideas and generalizing them we shall now define I, ,, something much more
general than we actually need. Before doing so, however, let us define ( for local use )
log™}(z) = log(log(...(log(x))...)) where we have n ‘log’ in the right hand side; more
formally, log{o}(:ﬂ) = z and log{""'l}(:n) = log(log{"‘}(m)). Notice that log{"}(m) is defined

for large enough = and goes to infinity as z goes to infinity.

Definition 1.1.3 Let § be a metric space with distance d. Let n > 1 be an integer and r,

0 < r < +oo, be a real number.
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We define:

int {n}
I:I;r (S, d) = lim sup w = lim sup log NCE(S’ d)
’ =0 (logi™He=1)) — emo” (logi™H(e=1)yr

I, .(S,d) = liminf i—og{"} NFP(5d) = limin log{“} NC(S,d)
nr A gua) (10g{"}(€—1))1‘ e—0 (log{n} (E“'l))f

When I\ .(S,d) = I}, (S, d) we denote this valve by I, (S, d).
In particular, I ; is the Hausdorff dimension. We call attention to the following special
cases of this definition.

I;ﬁl(s, d) = lim sup log log N P.(S, d) = limsup loglog NC.(S,d)

0 log | log e| €0 log | log €]

loglog NP.(S,d) — liminf loglog NC.(S,d)

log |log ¢ e—+0 log | log €}

I;4(5,d) = liﬂiélf

When IY,(5,d) = I5,(5,d) we denote this value by I%,1(S,d). We call I},1(S,d) the
hyperdimension of §. This says ( as we shall see ) that I3 1(S5,d) is the “most reasonable”

value for r for which to consider I' ,(S, d).

log NP.(S,d) . (s,
Tf,(5,d) = limoup BTG D)y 108 NCl5,d)
. 0 | log €] e—s0 |log €]

log NP(S,d) log NC.(5,d)

= lim inf

S,d) = lim inf
I7,(5,d) =limin Mog eT i g e

When IT,(S,d) = I7,(S,d) we denote this value by I't - (S,d). We call I' (S, d) the

generalized dimension of S The case » = 2 will be particularly important.

The next proposition tells us that this definition is legal.
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Proposition 1.1.4 Let S be @ metric space with distance d. Then for anyn> 1,0 <r <

00
log!™ NP(S,d) . log{"} NC,(S,d)

limsu = lim su
o (gl (e n)y w0 (g™ (e-L)y

and

{n} {n}
lim in ].Dg NPE(S! d) — im inf log NCe(S, d)
s} (IOg{ﬂ.} (f"'l))f g— 0 (Iog'{"]’(e—l))r

Proof of Proposition 1.1.4:
From Proposition 1.1.2 we have NP, > NC, from which we have the *>’ inequality

corresponding to each of the equations above.

But Proposition 1.1.2 also gives us NP, < NC,/3. This, together with

{nr}rae—-1yyr
o (ogtH(3e )
e—0 (iog{"}(e—l))r

gives us the ‘<’ inequalities, concluding the proof of the proposition.
1.1.4

From now on we shall restrict our attention almost entirely to the casesn =— 1 and n = 2,
r = 1. Let us now prove a small result relating I ; and I'i, corresponding to the intuitive

observations made above.
Proposition 1.1.5 Let (8,d) be a meiric space. Then:

La(S)>r = I,(S)=+oo;

T(S)>r = Tf,(5)=too;

¥

]




1.i. MEASURING METRIC SFPACES 19

ISy <r = Iy (8)=0;

Ify(8)<r = It(5)=0.

Proof of Proposition 1.1.5:

This is an easy computation.
1.1.5

More generally, we would have
Lial8)>r = I (5)=+oo

and similarly for the other cases but we shall refrain from needless generality.

Intuitively, I, is a variation of Hausdorff dimension designed for larger ‘spaces and the
“normal” situation should be the one where it is defined ( i.c., where rf, = IT, ) We
are going to see that this indeed happens in the cases we are primarily interested in, but
not always. I%; is indeed some kind of a “hyperdimension”, since it tells us what kind
of generalized dimension is interesting for a given space. Going further, I3, would be a
generalized hyperdimension, I's , would be a hyperhyperdimension and so on.

We can roughly understand the geometric meaning of I, in general and I 3 and I,
in particular. If you look at your space with a microscope of resolution ¢, you tend to think
it has finite Hausdorff dimension and you make a guess as to what the dimension is. If you

get a better microscope, however, you notice your first guess of the Hausdorff dimension was

mistaken, and you make a higher guess. If you keep changing microscopes, your guesses are
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going to become larger and larger, probably tending towards infinity. I} ; and D1, both
measure how fast the guesses grow.

One important thing to remember about I is that it isn’t really very sensitive; the
larger n is and, to a lesser extent, the larger r is, the less sensitive I}, , will be. Remember
that the Hausdorif dimension was already incapable of telling a tiny disc from a huge one.
For r > 1, Il,r is even less precise, since ( very roughly speaking ) it only measures the rate
at which the Hausdorff dimension goes to infinity. A constant difference in the Hausdorff

dimension goes undetected.

1.1.3 Equivalent Metrics

Sometimes a space S comes with more than one interesting metric. If the metrics are not
too different, we can expect the two values of I}, . corresponding to the two metrics to be

approximately equal. The next proposition formalizes this in one situation.

Definition 1.1.6 If S is a space with two metrics dy and d; they are said to be equivalent
if they satisfy

Codolz,y) < di(e,y) < Cido(z, )

where 0 < Co < €y < 400 are conslants.

Proposition 1.1.7 If S is a space with two equivalent metrics dy and dy then for any values

of n and r

I (S.do) =TI, .(S,d1),  Lf.(8do) =T}, (S ds).
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Proof of Proposition 1.1.7:

If A is an e-packing set for dy, it is a (Cpe)-packing set for d;. It follows that & P.(5,ds) <
NP(g,e)(S,d1). It is now easy to see ( with only a few computations ) that I, -(8,do) <

I, .(8,d) and I (S5,do) < I}t (S, d1). The opposite inequalities are entirely analogous.

1.1.7

1.1.4 Product Spaces

Let us now prove another easy fact about I Remember that if (Sg,ds) and (S1,d1) are
metric spaces there are at least three interesting metrics we can giveto Sp x Sy, the maximum
metric (L), the sum metric (L!) and the “square root of the sum of the squares” metric
(L?). Unless we say the opposite, the product of two vector spaces will receive the maximum
metric. These metrics are all equivalent anyway, so if all we are interested in I’,», the choice

hardly matters.

In order to see why the next proposition is the natural thing to expect, remember that
I, is vaguely like a dimension, and that the dimension of the product of two spaces is the

sum of the dimensions. Remember also that I} 3 is some kind of a “hyperdimension”.

Proposition 1.1.8 If Sy end S; are metric spaces and Sy x Sy is their product,

max(l“;_l(sg);l';,l(sl)) < I3,4(50 x 51) <

+ < (o x 51) < max (T4 (So); Tfa(51)
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and, for any value of r,
F]._,r(so) =+ IT,r(Sl) < Pl_,r(so X Sl) <

< I

»(50 x 81) < IT,(So) + I, (S1).

When I',,(50) and I',(S1) are both defined, 30 is I'y »(So x 51) and we have
I+ (So x 81) = I'w{(80) -+ I'yr(S1).
Also, if S is a metric space, then:

1127.1(5'") = 112_,1(5)5 Ig'l(sﬂ) = 1?,1(5)5

I (™) =nl(8);  IT.(8") =nI{,(5)
Notice that it is usually not true that
IT,. (50 x 81) = I'[ ,(S0) + I (51)

nor that

I}, (S0 x §1) = IT (S0} + IT,(51).

The construction of a counterexample follows the same spirit as that of Example 1.1.9 below.
Proof of Proposition 1.1.8:

The product of an e-packing set for Sy and of an e-packing set for S is an e-packing set

for Sp x 51. This shows that

 NP,(So x 51) > NP(50) - NP.(51)
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and therefore

log log N P.(Sp x 51) max log log N P¢(So)  loglog N P.(51)
log |log €| log|loge] ' log]loge|

and

10g NPE(SO X 51) > IOg NPE(SQ) log NPE(S:[)
MogelF > [logel [Togel

from which follow

T ¥

I3.1(50 x 51) 2 max (T3, (S0); I34(51)

and

7 . II,,(SO X 31) 2 F]__.g-(SO) + 1‘1]:1'(51)'

The product of an e-covering set for Sy and of an e-covering set for 5; is an e-covering

set for Sg x S1. This shows that
NCE(SO X Sl) S NC;(SO) + NCE(Sl)

and therefore

log log NC (55 x 8,) < .

log | log €| -
< loglog NC.(S5o) loglog NC(S1) log 2
- logiloge] ' log|logel log | log |

and

logNCE(Sox31)<logNCE(So) log NC.(51)
|log e[ = |logelr [log e[

from which follow

T4 (So x $1) < max(Tfy(So); Tf,(51))
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and therefore

23
log log N P,(5¢ x 51) N log log N P(So) . loglog N Pe(5)
log | log ] = log | log ¢ log | log €|

- and
.
log NP(So x 51) _ log NP.(S,) + log N P(S1)

|loge[" | log €| | log €|
from which follow
and

T31(S0 x 51) > max(T74(So); T5(51)

I'I_,‘I‘(So X Sl) 2 111_,7'(30) + Pf,r(si)

The product of an e-covering set for S and of an e-covering set for S; is an e-covering
set for Sy x §1. This shows that

NGE(SO X S]_) S NC'E(S()) ' NCE(S]_)
and therefore _
loglog NC(Sg % 8})
log | log €] -
log log NC.(Sp) loglog NC.(51) log 2
< .
= log [ log €] log |log €| log | log €
and
log NC,(5p x 51) < log NC(So)
|log €] -
from which follow

+ log NC.(S1)
[logel ogel

I (S0 x 51) < max( T (So); T (51)
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and

If,.(So x 81) < IT,(Sa) + I . (51).

. The first part of the proposition follows; the second one is similar.

1.1.5 An Example

An overoptimistic person might think that I3, . would always be defined. The following
example should dispel such false hopes. This example deals only withn=1orn=2,r=1

but the generalization is obvious,

Example 1.1.9 For any 0 < r~ < r* < 4oo, let 0 < a < 400 and 0 < b < +o00 be
arbitrary ezcept that if v~ = rT we must have a < b. A Canior space K can be construcied
with Iy (K, d) = r~ and I'T(K,d) = rt. Iy, (K,d)=a and FL_,_(K,d) =b.

Make K the space of functions f from N to N with the property f(n) < ¢(n) where ¢

is a function to be defined. We define

d(f, g) = exp(—min{n|f(n) # g(n)}).

{ Notice that for us N includes 0. ) It is easy to see that

NP(K,d)= ][] o).

i<~ loge

We may as well stick to the packing situation. The observations above give us

log NP, = Z log p(4).
i<—loge
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Plugging this into the definition of I3 ; we have

If,(S,d) = limsup

s 4 OO0 1

- log > log o(3) |,

isn

Iz4(5,d)= llmmf

n—;+m

log Zlog (i) ],

i<n

It (8,d) = 11m sup —Zlog w(i

i<n

and

Iy,(85,d) = lim inf —Zlogga

‘n—> {s o)
isn

Now it is only a question of choosing the right ¢; this is an easy task.

1.2 Spaces of Functions

1.2.1 The Metric

Let us apply the concepts of the previous section to spaces of functions, We will denote the
open unit disc in the complex plane by A. The closed unit disc will be denoted by A and
the unit circle by 8A or S'. The space of all holomorphic functions defined on A will be
denoted by #; the subspace of bounded holomerphic functions defined on A will be denoted
by H*°; the subspace of holomorphic functions from A to A will be denoted by Ao and its
closure, the space of holomorphic functions from A to A will be denoted by AM. Notice that

the only difference between these two spaces is that M contains the constant functions of

unit norm.
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Definition 1.2.1 Let AC A, A#0, and f1, f € H. Forn > 0, we define

da(fi, fa) = sup [fi(2) — fa(2)|.
ZEA

This function can assume the value +oo when considered as defined on the whole of H
but is finite if restricted to H®>,

What we want to do is study this metric and others to be defined later, with special
emphasis on their geometric properties.

We list some trivial consequences of the definition as a proposition.

Proposition 1.2.2 The following are properties of d 4.

(i) Forany AC A and enyn >0, dy is o pseudometric on M with 0 < d4 < 2.

(i) If AC B, ds < dp.

(iii) da =dz =dss.

(iv) If A C A hes an accumulation point in A, ds is a meiric.

(v} If ¢ is a conformal bijection from A to itself, it induces an isomorphism belween the two

metric spaces (M, da) and (M, dy(4))-

Proof of Proposition 1.2.2:
(i) and (ii) are immediate. (%ii) follows from continuity and the Maximum Principle. (iv)
follows from the fact that the set of zeroes of an analytic function can not have accumulation

points. (u) follows from composition with ¢.

1.2.2
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A slightly less trivial proposition is the following.
Proposition 1.2.3 The metric space (M, d,) is compact.

Proof of Proposition 1.2.3:

This is a well known fact, The proof will be omitted.

1.2.3

A question we want to ask is roughly how large d4 is, or, in other words, how large M

is from the point of view of d 4.

1.2.2 Bounded and Unbounded Sets

The next proposition tells us that there is a big difference between sets that keep away from

JA and those who don’t.

Proposition 1.2.4 For any A C A, the conditions below are equivaleni:
(i) A does not accumulate on dA.

(ii) NP(M,da) < +oo for some 0 < e < 2.

(iii) NP(M,ds) < +oo for all0 < e < 2.

{iv) NCe(M,da) < oo for some 0 < e < 1.

{v) NC.(M,ds) < +oo forall0 <e < 1.

Proof of Proposition 1.2.4:

First consider the case where 4 does not accumulate on 8A. If we think of A as the

hyperbolic plane, this means that A is bounded. For any ¢ we can find a finite family of balls
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of hyperbolic radius €/3 that will cover A. If the value of a function in M is given up to a
precision of ¢/3 in the hyperbolic center of each of these balls, by the Schwartz-Pick theorem
the function is defined up to an error of less than ¢ at any point of A. This gives us a finite
covering of M by balls of radius ¢ in the metric d4. We just proved that N Ce(M,d4) < oo
for all 0 < € < 1. From proposition 1.1.2, it follows that N P.{M, ds) < +ooforalld < e < 1.

We showed that (%) implies any of the other conditions.

We now consider the case when A does accumulate on dA. We shall prove that for any
0 <€ <2, NP(M,da) = 400 by constructing an infinite e-packing set. During the con-
struction, ¢ will be fixed but arbitrary, Notice that the “hard” cases are those corresponding
to ¢ large, close to 2. We will adopt the notation § = 2 — e. By proposition 1.1.2, it will
follow that NC,(M,d4) = +oo for all 0 < € < 1. This will show that the negation of (i}

implies the negation of any of the other conditions, establishing the proposition.

We might as well take an infinite strip around the real axis of width 2 as our domain
and assume that A accumulates at -00. This means we can take a seqUence zy, = dy + b2
of points in A such that a, goes to +oo; we can assume that anyq —a, > C for a positive
constant €' to be specified. In the process of constructing the packing set, we shall use the
function fi(2z) = 2(kz)~?sin®(kz) — 1, where k is a positive real number, as a building block.

Notice that for real z, the function assumes values between —1 and 1. On the strip of width

2 it will assume values in a neighborhood of this interval which can be made arbitrarily
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small by choosing & sufficiently small k. Define
-1
By=| sup |fu(2)l
[Im{z)|<t
and choose k such that By > 1 — §/4. Now notice that as the real part of z tends to +co,
fr(2) tends to —1. Take C such that Re(z) > C implies | f5(z)+ 1| < §/4. We are now ready

to construct our infinite packing set: define gn(z) = By fa{2—an). It is now straightforward

to check that the set of all ¢, is an e-packing set.

In light of the previous two propositions, we are going to restrict our attention to the

case A C A, A compact.

1.2.3 Hyperdimension and Generalized Dimension

The Hausdorff dimension of (M, d,) is going to be infinite in most cases, and it is a most
astonishing coincidence that the concepts introduced in the last section turn out to be

exactly what we need.
Definition 1.2.5 If A C A, we define
Vio(A) = IE (Myda),  7n.(4) = I (M, da),

We drop the + and — asigns when they are superfluouns, i.e., when the corresponding kimit

ezists.
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The explanation concerning the intuitive meaning of I, , in the previous section should
also give an idea of what ~,, . means. =, , measures d4, which amounts to measuring 4, in
some indirect and non-obvious way. This way of measuring 4 will of course be different for
different values of n and r. We are going to see that at least in some cases Y, has a strong
geometric meaning.

It is natural to ask whether the following contjecture is true.
Conjecture 1.2.6 =, .(A) is always defined.

This will turn out to be trivial in many cases ( including n > 3 ) and will follow from
our results in some others but the general case is hard and is not known to be true. ( The
unknown casesaren=1,1<r<2andn=2,r=1.)

Next we state some easy consequences of proposition 1.2.2 and definition 1.2.5.

Proposition 1.2.7
(i)
72,1({0}) =1, ‘)’1,1({0}) = 2.

(ii) If A C B then ( for any r )

Yrr(A) S ¥pp(B)y . (4) <~E.(B).

"Y'r-'u_,'r (A) = '71:,7- (A) = 'Tr:,r (aA)l

FY;l;,r (A) = 'TI,T (A") = 'Y;t,r (BA)
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(iv)

Ya.1(AU B) < max(+vf,(A); v41(B));
Y1 .(AU B) £ +{.(4) +~7.(B).

(v) If Ai,0 < i < n is a family of isomelric sets { with respect to the Poincard Metric ) then
75,1(U A;) = 3 1(Ao),

7o, (1 4s) < mvi, (o).

(vi) If A is a finite set,

'7'2,1(—4) =1, 71,1(*4) = 2§A|-

Proof of Proposition 1.2.7:

(1) is follows from the fact that (M, do}) is essentially isomorphic to (A, ||}, meaning it
is isomorphic once you identify points which are at zero distance. The dise is known to have
Hausdorff dimension 2.

(i) and (i¥) are obvious consequernces of the corresponding items of proposition 1.2.2.

From dsup = max(dg,dp) it follows that (M, d4up) is a subspace of (M, d4) x (M, dg),

and therefore has smaller I'{' ; and I‘i"' This observation together with proposition 1.1.8

,
gives us (4v). () follows similarly from proposition 1.1.8 since now the spaces (M, d4,) are

all isomorphic.

{vi) is proved by induction from (%) and (iv).

1.2.7
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Chapter 2

The Conductivity Theorem

2.0 Introduction

The main theorem of this chapter is the Conductivity Theorem below.

Theorem 2.0.1 (Conductivity Theorem) For any A C A,

1
71,2(A) = ET—C(A - A; Sl, aA.).

We already defined the left hand side of this equation. In the next section we proceed to
define the right hand side, which is the conductivity { whence the name of the theorem ).
We then prove the special case of A connected and then finally the general case.

After writing this chapter, the author found out ( thanks to the help of Curt McMullen )

about the very closely related work of Erchin (see [2, 3]). Erohin proves what we call the

33
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Conductivity Theorem for A connected and generalizations in directions different from ours
(such as higher dimensions); we shall not deal with these generalizations here. Notice also

that Erohin’s proof is essentially the same as ours, only in a somewhat different language.

2.1 Conductivity and Energy

2.1.1 Conductivity

In what follows, all sets will be subsets of the complex plane. Most or all of what will be
said can be generalized to other contexts; we will refrain from doing so, however, since it

would be quite useless for us.

Definition 2.1.1 Let A be an open set and let f be @ harmonic function defined on A. Hy

s a map from w1(A) ( or H1(A) ) into R defined as follows:
Hy() = [ V5 nar
4]
H is called the holonomy of f.

It is obvious that Hy is a group homomorphism where R has the additive group structure.

H; measures the extent to which the harmonic conjugate of f fails to be well defined.

Definition 2.1.2 Let A be an open set and B, C be a partition of its boundary. Lel ¢ be

the harmonic funclion defined on A with values 0 at B and 1 at C. ¢ will be called the

potential function.
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We define C(A; B, C) to be the absolute value of the fluz of Vi through a curve contained

in A separating B from C; we call this the conductivity of A between B and C.

First of all, let us notice that the above mentioned flux is independent of the choice of
the curve since V¢ is closed. The exact meaning of saying that ¢ assumes certain values in
certain subsets of the boundary would in general require some comments and some attention
to technicalities, We will only talk about ‘nice’ cases though, and we therefore feel free to
omit any such discussion.

The reason for calling this concept “conductivity” and using the symbol C should be
clear if we think of ¢ as the electric potential, of V¢ as the flux of charge and of the flux
of V¢ through an appropriate curve as the current. We shall sometimes use the symbol
U interchangeably with C. Remember that by Ohm’s law the conductivity is numerically
equal to the intensity of the current when the difference of potential iz one.

An important observation is that C is invariant by conformal maps.

Notice that this concept is interesting only when B and € are unions of connected
components of 84; otherwise B and C “touch”, we have a short-circuit and the conductivity
becomes infinite. In the interesting case the two definitions above are related by the following

lemma.
Lemma 2.1.3 If vy is a closed curve seperating B from C we have

C(4; B,C) = [Hy(v)|

where ¢ is the potential funclion.




36 CHAPTER 2. THE CONDUCTIVITY THEOREM

Proof of Lemma 2.1.3:

Easy.

Example 2.1.4 If A is the region between two conceniric circles B and C of radii r and R

then

2T
|log R/7|’

C(4;B,C) =
This can be shown directly since in this case we know exactly what ¢ is.
This is a special case of A being an annulus and B and C the connected components of

its boundary. The general case can be transformed to this one by a conformal map. Since

the Kobayashi metric is also invariant by conformal maps, we have:

Proposition 2.1.5 Let A be on annulus and B and C the connecled components of iis
boundary. Lel d be the length of the unique simple closed geodesic in A with ils Kobayashi
metric. Then:

C(4;B,C)=d.
Proof of Proposition 2.1.5:
Above.
2.1.5

Let us conclude this subsection with a result concerning harmonic functions other than

the potential.
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Proposition 2.1.6 Let A, B and C be as in the definition above. Let n be o harmonic
function defined on A end extended to B and C. Then, if I is the fluz of Vy from B to C

and C is the conductivity { as defined above )
C - (inf n(=) - sup nz)) < F<C- (jlelg n(2) — inf n(2)).
Proof of Proposition 2.1.86:

Easy.

2.1.6

2.1.2 Energy

There is another important ¢oncept called the energy of a map which we now introduce.

Definition 2.1.7 If f is a real valued funciion defined on D C C we define the energy of f

to be

E(f)=7 [ IVsFaa

Returning to the analogy with electricity, if f is the electric potential and V f is the flow
of electric charge then E(f) will be one half of the amount of electric energy transformed
into heat because of the resistence. In this interpretation the factor 1/2 seems inappropriate;

we keep it, however, since this is the usual definition and changing it would bring confusion.

This observation makes the following proposition almost obvious.
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Proposition 2.1.8 Let A C C be an open set and B, C « partition of its boundary. Let ¢

b_g the harmonic function defined on A with values 0 at B and 1 et C'. Then
1
E(¢) = EC(A; B,C).

Proof of Proposition 2.1.8:

This is an easy computation.

2.1.8

We have the following corollary,

Corollary 2.1.9 Let A C A be a compact set. Lel ¢4 be the smallest superharmonic

Function satisfying d4(z) > 0 for all z and $4(2) > 1 for 2 € A. Then we have
1
E(ps) = -2-C(A — 4;58%,04).

Proof of Corollary 2.1.9:

This is a consequence of the previous proposition on the domain A — A.

Notice that this says that the Conductivity Theorem might just as well have been stated

as

,2(4) = ZE(44)

where ¢ 4 i3 defined as in the corollary.
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2.1.3 Conductivity: Results

We now proceed to prove some further results about C.

Definition 2.1.10 For any f € H we define deg(f), the degree of f, to be the number of

zeroes of f in A counted with multiplicities,

Remember that A is open, which means that zeroes on the boundary are not counted.
The degree is either a non-negative integer or infinity. When f can be continuously extended
to A, it is easy to see that deg(f) is the degree of f(z) = f(2)/|f(2)] as a function from $*

to itself.

Definition 2.1.11 Let W = (w;), € I be e finite family of poinis of A, We define

ﬁw(z)=]_—_[—z“w€ .

jer#wi— 1
We also define

E(W)=da(0,8w).
It is easy to see that deg(Bw ) = |W|, where |W| = |I}.

Lemma 2.1.12 Let A C A be compact and let W be o femily of n point of A. Let f = Bw

and let
1 1

= (A A St a4).
[logB| 2n¢ ( ' )

Then

E(W) > R".
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Proof of Lemma 2.1.12:

Consider the function ¢o = Re(log f(2)); it is well defined and continuous on A — 4, it
is harmonic, its value is zero on S! and at most log(E{W)) on 8A. The flux of Vg shall
therefore be ( in absolute value ) at least C|log(E(W))|.

Now look at the harmonic conjugate of ¢g, which is

¢1 = Im(log f(2));

this function is not well defined on A — A since by going around once its value increases by

27n. It can easily be seen that this has also to be the flux. Therefore we have:
21m > C|log(B(W))]

which proves the lemma.

Proposition 2.1.13 Let 4 C A be arbitrary and let

1 1

—_— — A; 5t .
og &] 2WC(A ;8%,04)

Suppose 0 < R < 1. Then there exists a sequence (w,) of points of A with the property
that E(W,) < kR™ where k is a constant and W, is the family of the first n points of the

sequence (wy).

This proposition, together with lemma 2.1.12, gives us an alternative definition of con-

ductivity.
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Proposition 2.1.14 Let A C A be arbitrary and let

.= min E(W).
WCA,|W|=n
Then
n 1
lim ———— = —C(A— A4;8%,94).
rims o0 |[logre| — 27 ( 5%, 84)

Proof of Proposition 2.1.14:

This is a consequence of lemma 2.1.12 and proposition 2.1.13.

Proof of Proposition 2.1.13:
Intuitively, what we have to do is to pick the points in such a way as to minimize
E(W,,). This corresponds to taking points uniformly distributed according to the flux of

current. Since this is a known result, we shall feel free to omit the details.

2.2 The Connected Case

2.2.1 Statement of the Theorem

The main theorem of this section is the following.

Theorem 2.2.1 For any A C A, A connected,

1
1,32(4) = ﬁC(A — A; 5%, 04).
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Figure 2.1: A and a sketch of ¢4 ( showing the level curves and the gradient trajectories }.

Implicit in the statement is the fact that -v; ;(A4) is defined, or that +7 5(4) = v 3(4).
We shall concern ourselves with the case of A not necessarily connected later in this chapter.

We know this to be true for A a finite set, and, in a certain sense, for A accumulating on
S1. We shall suppose from now on that A is compact and that each connected component
is simply connected. A special case where the theorem can be proven with relative ease is
the case of A a closed disc.

Before we prove the theorem, let us note some of its easy but interesting consequences.

These are in fact consequences of the special case where A a closed disc.
Corollary 2.2.2 If A C A is bounded nway from the boundary then
Ta(A
1 ,2(4) < +oo.

If A is any compact non-empty set, we have 1 < v;,(4) < 1{1(}1) <2

Proof of Corollary 2.2.2:
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Just observe that A is contained in some big disc.

Corollary 2.2.3 If A C A has non-empty interior, Y1,2(A) > 0. Also, if A connects two

distinct poinis the same conclusion holds. In any of these cases, assuming A compact,

'Yz,x(A) =2.

Proof of Corollary 2.2.3:

If A has non-empty interior, it contains a disc and the result follows. If A connects
two points, the union of a finite number of sets obtained from A by rigid motions in the
hyperbolic plane will contain the boundary of a set o.f non-empty interior, and will therefore

have positive 47 ,. The result follows from proposition 1.2.7.

Notice that this already tells us the value of «y, ; for all but infinite totally disconnected
sets. The reason why «; ; was so much easler to compute than =, , is that -, ; is much less
sensitive.

We shall use the following lemma in the proof of theorem 2.2.1. Let us anticipate that,
when A is a disc, we shall have ¢,(2) = z®. This special case should be kept in mind when

reading the proof of the theorem. It also makes the lemma somewhat more natural, since

what it says is that an analogue to z™ exists for sets other than the disc.




44 CHAPTER 2. THE CONDUCTIVITY THEOREM
Lemma 2.2.4 Lel A C A be any connected compact set and let R be defined by:

1 1
—C(A—-A4;8L.94)= —— .
27 ( 15%,94) |log R

Then there is a family vy, n € N, of funclions from A to C with the following properties:
(i) Any bounded function f: A — C can be writien uniquely as a series f = Y anp,. The
series converges uniformly and absolutely on any compact subset of A.
(ii) o = 1 and deg(pn) = n.
(iit) lpn(2)| < K for all z € A and all n, where K is a constant.
(iv) For any f =3 Gnpn € M, |a, < 1.
(v) For any R’ > R, there exists a constant Kpr such that d4(0,¢,) < Kp:R™.

(vi) If da(0, ) < € then |a,| < e KR, where K i o constant.

The proof of this lemma will be postponed. Let us note that for A a disc and ¢, (2) = 2"
the lemma indeed holds. The only items which are not entirely obvious are (iv) and (vi);
these follow from an application of the Cauchy Integral Formula.

Let us divide the theorem into two parts which have independent proofs anyway.
Lemma 2.2.5 For any A C A, A connected,
12(4) > 5-C(A ~ 4 5, 84).

Lemma 2.2.8 For any A C A, A connecied,

vr3(A4) < %C(A — 4; 5%, 04).
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Proof of Theorem 2.2.1:

This is an obvious consequence of lemmas 2.2.5 and 2.2.6.

2.2.2 Proof of Lemmma 2.2.5

Proof of Lemma 2.2.5:

The idea behind this proof is really simple: all we have to do is build a large enough
packing set.

We are going to express the functions in terms of the series expansion given by the

lemma. A typical element a € A will be written as

a(z) = Z @nipn(2).

The annoying feature of this way of writing functions is that it is not always easy to tell
from the a,, whether or not @ is in M. This will not be too serious a problem, though, since
71,2 is not very sensitive.

When building a large e-packing set, the first thing we have to worry about is that each
point has to be in M. Now, if (¢,.) is a series of positive numbers with ¥ ¢, < 1/K ( where
K is the constant mentioned in item (%) of lemma 2.2.4 ) then the condition |an| < e, is
clearly sufficient to guarantee that a € AAf.

Our next worry is to make sure the points in our set are not too close. Finding the exact

value of d4 from the series would be too hard, but, again, we don’t really need it; a rough
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estimate will suffice. By item (%i) of lemma 2.2.4, two functions are separated by a distance
of at least ¢ provided the n-th coefficients in their power series differ from one another by
at least KX R~ "e.

Before going on, let us notice that we can fit at least [r /4:l'|2 in a disc of radius r keeping
them a distance of at least d from each other.

Let us pick ¢, = (1—6)8" /K, where 8 is some number between 0 and 1. From the above

observation, we have at least

(1-8)
K2R-ne

good values for a,, in the sense that if we pick the a, from among the good values we are
guaranteed to have an e-packing set.

This gives us the following estimate for N F,, where n is arbitrary:

(1 . g)zgziRzi _ (1 _ G)Znenz—anz—n
NPz H Kie2 - King2n

oi<n

or
log NP. > 2n|loge|— 2n|log(l —8)| ~ 4nlog K

—(n? - n)|logd| — (n? — n)|log R|.

Now, of course, we want to choose the best value for n, which means we want to include in

our product only the terms larger than 1. This corresponds to solving the “equation”

(1 - 9)292nR2n N
K4e?

which gives

1 2log K -+ |log(1 — 6)]
o lloge| —
e |1og9|+|logR|1 oge|

|log 8| + | log R|
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47

What we want to do now is substitute this expression for n in our estimate of N P.. In order

not to waste time and effort, however, we can remember that we are going to divide log N P,

by log? € and take the limit, so we may just as well compute the estimate for log N P, and

ignore terms smaller than log? . This will give us ( after some simplifications )

1

— log? 1 C
|log 8] + | log R| og” €+ C1loge + Co,

log NP, >

where the exact values of Cy and ) are irrelevant. From this inequality we get

1
- > .
T1204) 2 g Tiog ]

and, since this holds for # arbitrarily close to 1:

1

1a(4) 2 ——.
71,2( )-—- |10gR]

This gives us half of the theorem.

2.2.3 Proof of Lemma 2.2.6

Proof of Lemma 2.2.6:

The idea behind this proof is as simple as the one behind the proof of lemma 2.2.5: now

all we have to do is build a small enough covering set. When building covering sets we will

allow ourselves to include “fake points”, i.e., points which are not really in our space or may

not even exist. By looking at the way the inequalities go we can see that this does not hurt

the logic of the proof.
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We are again going to express the functions in terms of the series expansion given by the

lemma. A typical element a € M will be written as

a(z) = Z anon(z).

Remembering that including “bad” points is no problem, we can say that each a, has
absolute value at most 1.

Take R’ > R. Notice that the n-th term will contribute on 4 with an absolute value of
at most |a,]KR™. Let (c,) be a series with Y ¢, < 1. Now if we pick each a, from an
€n-covering set of the unit disc, with e, = c,e K "1R'™", we will have an e-covering set of M.
This may look like it is going to be infinite, but if all but & finite number of the ¢,-covering
sets have exactly one element we are safe. This can be done by choosing ¢, such that e, > 1

for almost every n. In other words, we want
c, > e KR

for almost every n. The easiest way of doing this is picking some ng such that

> e 'KR™ < :,15

n>no

the existence of such an ny being trivial. Now we can define

1 : .
3ng! ifn < np;

Cn =
e *KR™, ifn> ng.

This means that we have
—lpren .

2.8 Zn}: , ifn < ng;

€n =

1, if n > ng.
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We will need an estimate of ng; since

Y KR =¢'KR"(1-R)"?

n>g

we have that

|log el

1 _—
w o = _.__..(|1ogel+ |log(1—R’)|+1°sK+1°52) ® g B

. | log R!|
is the best choice for ng. This gives us complete instructions for building our ¢-covering set.

Before going on, let us prepare ourselves to meet a minor difficulty ahead. We would like

our construction to imply that €, < 2 for all n. This is, unfortunately, usually not true. Let

us therefore take ny to be the greatest integer smaller than or equal to ny with the property

- that ¢, < 2 for all n < n;. We can easily get
n; = min{ ng ~1—(logno+logK+log4+[10g6}) zM
' | Tog B'| Hog RY[’
an estimate for ny which we will need later on.

Our next step will be to make an estimate of the size of the covering set. First of all we
need to find out how many points we need to make an ¢,-covering set of the unit dise¢, and
it is easy to see that 4¢;? suffice provided ¢, < 2, which is true for n < n;, and for the rest
one point is sufficient. This gives us

i n n’—n
16 2 4m . 1 2ng Rl 1 5
NCE < H Tig " - 2 no K
- 2 K-2Riin en:
i=0
ifi or
| logNC. < 2nyq|loge| ~ (n? — ny)|log R'|+

. +2n1 log K + 4n4 log 2 + 2ny log ng.
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Substituting in no and n; and ignoring terms smaller than log? ¢ we get

1 2
[ —
]()g NC'; llo R"l lOg €+ ( smaller terms )

which gives us the estimate
1

A ) g ——
71,2( )— |103R’§

Since R’ can be made arbitrarily close to R, we have

1

+ —
71,2(‘4‘) S flOgRi

which proves our lemma.

2.2.4 Proof of Lemma 2.2.4

Before we handle the general case of lemma 2.2.4, let us look at a speciaﬂ case.

Lemma 2.2.7 Let A C A be a slit from —D to +D, and let o be the bijection between K

end A — A ( see figure 2.2 ), where K is the circular annulus of inner radius R, with

1 et a1
S-C(A - 4;5",04) = Teg 7T

Let also w =v¢~1z), forz € A~ A.

Then there is a family p,,n € N, of funclions from A to C with the following properiies:

(i) Any bounded function f.: A — C can be wrillen uniguely as a series f =3 anpn.
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Figure 2.2: v is a bijection from K to & — A.

(ii) We can write any function f: A — C as o Laurent series n w. If we wrile
on(z) = Y biwt
icl
we have b, = 1 and b; = 0 for i < 0,i# n. In other words, we can write
en(z) =uw™+ Z biwt.
i<0
(i%) lpn(2)| < 2 for all 2 € A end alln.
(iv) For any f = 3 anpn € M, |an < 1].
(v) d4(0,00) =1; da{0,,) = 2R" forn > 0.

(vi) IFda(0, f) < € then |an| < eR™177.

Proof of Lemma 2.2.7:
We start by transforming the annulus A — 4 into the annulus X bounded by the circles

of radii R and 1, where R will be exp(—z--C(A — A4; §1,84)). Let us denote the map from

K to A— A by . Yor any f € M, f = f o is analytic on K and bounded in absolute
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value by 1. We can express f in terms of Laurent series as follows:
flw) =+ +a_qw™? +a_jw! + agu® + arw' + aaw? 4 ---.

There is a problem in considering the Laurent series of f as a name for f, namely, most
Laurent series will correspond to functions defined only on A — A and impossible to extend
to the entire disc. We need therefore some information as to which series, or at least how
many series, actually represent a legitimate f.

The first thing we observe is that for any f, f is defined in A — 4, therefore any Laurent
series for f will give us a Laurent series for f. Notice furthermore that this map from the
space of Laurent series converging in K to that of all Laurent series ( the image of which
will in fact turn out to converge in an annulus bounded exteriorly by the unit circle ) is
linear and continuous. The “good” Laurent series are those whose image is in fact a Taylor
series,

In our case, however, we are lucky enough to know exactly what Laurent series are good.
These are the series that satisfy the condition f(w) = f(w) for all w on the inner circle of

radius R. In terms of the coeflicients, this gives us the family of conditions:
=4
anR* =a. R ".
This means the “good” f can be written as follows:
f(w) = apw® + a1 (w! + R*w~1) + ag(w? -+ R*w=2) 4 ..

thus allowing us to write

f(z) = appo(z) + a1901(z) + a.gzpz(z) 4.
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where wo(z) = 1, pn(z) = (W™ + R¥w™") for n > 0 and w = ¥~!(z). This gives us the
promised new series expansion, taking care of (i) and (i),

(iii) and (u) are straightforward computations. (4u) follows from the Cauchy integral

formula on the circle of radius 1. (i) follows from the Cauchy integral formula on the circle

of radius R.

2.2.7

The following is a slightly stronger version of lemma 2.2.4, in order to stress the similar-

ities with the special case of the slit.

Lemma 2.2.8 Let A C A be any connected, simply connected, compact set and let ¢ be the
bijection between K and A — A { see figure 6.1 ), where K is the circular annulus of inner
radins R, with

1 et aay 1
57 C(8 — 4;81,04) = o,

Let also w=v¢~1(2), forz € A — A.
Then there is o family ¢, n € N, of functions from A to C with the following properties:

(i) Any bounded function f : A — C can be writien uniquely as a series f = 3 anppn. The

convergence i3 uniform on any compact subsel of A,

(ii) We can write any function f: A — C as a Lourent series in w. If we write

on(z) = Z b;w't

icZ
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we have by, = 1 and b; = 0 for i < 0,1 # n. In other words, we can write
pn(z) = w™ + Z bywt.
i<0
We have po(z) = 1 and deg{pn) = n.
(%) len(2)l < K for all z € A and all n, where K is a constant.
(iv) For any f = anppn € M, lan, < 1|.
(v) For any R' > R, there exists o constant Kp such that d4(0,p,) < KrR™.

(vi) If da(0, f) < € then |an| < eR™17™,
‘We shall need the following lemma:

Lemma 2.2.9 Let 5% be the Riemann sphere. Let M, N C 52 be two open topological disea
such that MUN = S% and M NN is an annulus.

Then if f is any holomorphic funclion defined on M N N we can write f = fayr + fn
where far is defined on M and fiy on N. This representation is unigue up to en addilive
consiant. Furthermore, if f is bounded above by C in absolute value, we can take far and
fn to be bounded above by kC in absolute value, where k is a constant { depending on M
and N but independent of f ).

The conclusions above imply that
0— H(Sz) — HM)p H(N) — HMNN)—0

i3 an ezact sequence.

Proof of Lemma 2.2.9: .
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Suppose first that the boundaries of M and N are smooth. Let us identify 5% with the
complex plane C; we can suppose without loss of generality that 0 is in M — N and that
oo is in N — M. Let p be the boundary of M oriented counterclockwise and v; be the

boundary of N oriented clockwise. If z is in M "M N we have

f(z)zij{mi(‘”_)dwri—[h ) 4,

271 w—z 27 w—z

Now we can make

and

It is clear that far is defined in M and fu is defined in N; the only possible doubt would be
whether fy is analytic around oo, which it is ( we have fy{oo) = 0 ). It is also clear that on
M N N we have f = far + fv. The uniqueness of the solution ( up to additive constant ) is
a consequence of the fact that the only holomorphic functions defined on the entire sphere
are constants. The only thing left to prove is the estimate.

Let My € M and Ny C N be open discs satisfying Mo U No = S2, My N Ny is an
annulus, and, for some positive constant §, d(Mp,8M) > § and d(No, dN) > &, where
d(z0,21) = |20 — z1|. Let L be an upper bound on the lengths of v¢ and v,. If |f(2)] < C

for z € M N N it follows that, for z € Mo, |fa(2)| < $LC and similarly for No and fx. It

now follows easily that k = %L + 1 will satisfy the lemma.
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Figure 2.3: How to glue M and N and put the problem in a sphere.

In the case where the boundaries may are not smooth, we can just pick a smaller annulus,

and the lemma will follow.

Proof of Lemma 2.2.8:

This proof starts the same way as the proof of lemma 2.2.7; we define X, ¢ and the
other concepts just like in the other proof. The difficulty here is that unlike the other case,
we don’t know exactly what the “good” f are.

Let M be our original A in the z-sphere with A sitting in it. Let N be the exterior of
the circle of radius R in the w-sphere, therefore containing K. We can use ¢ to glue M ard
N to each other, thus giving us a topological sphere. We know from the theory of Riemann
surfaces that all topological spheres with a complex analytic structure are isomorphic. Now

take f to be the function w™, which is indeed holor;norphic on M N N and bounded in

absolute value by 1. We can now use our lemma in order to obtain far and fiy. Given what
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N is, we can write

_fN(w) = ag + Z a;wi.

i<0
We can suppose without loss of generality that ap = 0. We now have
fM(w) = w" 4 Z a,-wi.
i<0
We shall now take ¢, = fur.

We already proved (i) and (%); (v) follows from the observation that we can make M
smaller, just a small neighbourhood of A, thus causing f to be bounded in absolute value

by R™, where R' > R, without affecting f;. In order to see that (i) is true, write
Flw) =Y aips(w) = g(w).
i>0
Now it is easy to see that g is defined on both M and N, which means it has to be a constant

and therefore 0. (v} and (wi) are proven just like in lemma 2.2.7 by the Cauchy integral

formula.

Proof of Lemma 2.2.4:

Obvious.

224




58 CHAPTER 2. THE CONDUCTIVITY THEOREM

2.2.5 Why A — A Matters

This subsection is somewhat parenthetical. It addresses the question of why the complement
of A is so important in determining -y, 5(A). We answer this question by constructing a
natural bijection between (H®(A),d4,) and {H*(A),d4,) from a bijection between A - 4,
and A — A;. This could all be said using the language of functors, but it hardly seems to
help.

Let A9, A1 C A be two compact sets and let 1 be an analytic bijection between A — Ag
and A — A;. Let us consider that Ag and A; live in two different discs called respectively
Ag and Aj. Ag lives inside a Riemann sphere; call the complement of Ag in this sphere M,.
We can glue Mo to A; using 4 to get a Riemann sphere. Since H*(5?) = C we have the
diagram below

H®(Ap) & H>® (M)
/ N\
0 - C ' H*(A-A) — 0
N /
H®(AL) ® H™(Ma)
where the upper and the lower lines are exact. Let us see how this diagram gives us the

promised bijection.

Start with a function f in (H*™(A),da,). By restriction we can consider f to be also in

H*(A — A). Looking at the diagram we see that this f is the image of a unique ordered

pair of functions (f; f) in H* (A1) @M (Mo) provided we demand that f(co) = 0. ( Notice




2.3. THE GENERAL CASE 59

that co is well defined by construction. ) This gives us the required map. The proof that it
is a bijection is easy.

The existence of such a bijection is in itself not very exciting: it is a bijection between
a space and itself. The interesting thing about it is the way it behaves with respect to the
metrics: we would like io prove that this map is a homeomorphism. This is, unfortunately,

not true in general, but the next proposition shows that in a sense it is almost true.

Proposition 2.2.10 Let Aq and Ay be as above and let the bijection deacribed take f 1o f.
Then if By coniains an open neighbourhood of Ag and if By = Ay U{By) then there enist

constanis Ko and K, with

Kodp,(f.9) < dp,(f,§) < Krds,(f,9).
The constanis depend on the choice of By.

Proof of Proposition 2.2.10:

Easy.

2.3 The General Case

2.3.1 Statement of the Theorem

In this section we prove the conductivity theorem in its general form. We state it once more

in order to refresh the reader’s memory.
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Theorem 2.0.1 For any AC A,

1
71,2(A) - ﬁC(A — A; 51, 04).

The natural thing to expect at this point is that we shall be able to prove a corresponding
generalization of lemma 2.2.4 and prove our theorem in a very similar way to that in which
we proved theorem 2.2.1, In the next subsection we shall see that at least the most obvious
generalizations do not work and why items () and (i) specifically do not carry over to the
new situation.

Let us now look at a simple case where things do work. This result is of course a special

case of the Conductivity Theorem.

Proposition 2.3.1 Let A C A be a compact set. Let f(z) = 2™ end let A4, = f~1(4).

Then we have v, 5(An) = 1y 2(4).

Proof of Proposition 2.3.1:
We have to prove that I o(M,ds.) = nlya(M,ds). Let ( = e For0<i<n,

define

M ={f e M|Vz € A, f({z) = {*f(2)}-

M; corresponds to the space of functions whose Taylor series are of the form

f(z} = a7t + ai+nzi+n + ai+znzi+2“ Fo-= Z %’zj-

j=t (modn)
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From this it follows easily that

M= P M

0<i<n

and therefore

Np(M,da)= 3 Tp(Mida,)
0<i<n

( provided all of these exist ). We shall prove our proposition by proving that I't 2(M;,da,) =
I 2(M,d4) for any value of 4.

Let us first consider the case ¢ = 0. In this case there is indeed an isomorphism be-
tween (M,ds) and (Mo,d4, ), which takes f to f o g where g(z) = z". This implies
I 2(Mo,da,) = I'a(M,ds). Let us denote by M, that subspace of Mg of functions
satisfying f(0) = 0. It is easy to check that I s{Myn,ds,) = I 2(Mo,da,).

Let us now define, for each ¢, 0 < 7 < n, two maps 8y and 8,. 8y is a map from M, to
M,; that takes f(z) to z* f(z). This is a bijection, and it is distance decreasing. This implies

that

Ma(Mo,dy, ) < Ia(My,da).

8,, is a map from M; to M,, that takes f(z) to z("~%) f(2). This is a bijection, and it is dis-
tance decreasing. This implies that Iy 2(M;,da, ) € Iy 2( My, ds. ). These two inequalities

combined easily imply the equality we need and therefore the proposition.
2.3.1

The correct proof of the Conductivity Theorem to be presented later will be in some

sense & generalization of both Theorem 2.2.1 and Proposition 2.3.1.
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2.3.2 What goes Wrong with the Old Proof

As we mentioned in the previous subsection, the natural thing to expect at this point is
that we shall be able to prove a corresponding generalization of lemma 2.2.4 and prove our
theorem in & very similar way to that in which we proved theorem 2.2.1. Let us see what
happens when we try to generalize the proof of lemma 2.2.4.

The first difficulty here is that 1 can not be defined in the same way we used in the c-ase
of A connected since A — A is no longer an annulus. There is no reason to panic, however.
¢, the potential function, is defined in all cases. In the case where A is connected, all level
curves of ¢ are topological circles which are images under ¥ of actual round circles in X. In
the general case, not all level curves of ¢ are topological circles, but those level curves close
enough to S! are. We can define 4 from a thin circular corona inside S to the annulus
contained between S and some level curve. This new definition of 4 is just like the old one,
except that the domain where it is defined is possibly smaller, which may seem not to he
too serious a problem since we can make analytic continuation. This allows us to talk about
Laurent series in w and to prove most of the lemma exactly as we proved lemma 2.2.8, The
only items where the proof does not carry over directly are (o) and (vi).

In fact, it is particularly hard to carry the proof of these items over to the new situation,
the reason being that they are false. Let us see why this is so before going on. In order to
simplify the discussion, let us consider the situation where A has two connected components

Ap and A;. In the discussion below, the reader should have in mind figure 2.4.

Let us consider how we would go about defining ¢,(z). Remember that ¢ is defined on
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Figure 2.4: A and a sketch of ¢4; A has two components.

A — A and that w is defined only on a neighbourhood of 5%, more exactly, in the region
outside the ‘8’ shaped level curve of ¢ which passes through the point where the gradient
of ¢ equals 0. v is also defined outside the ‘8’ and by gluing & to a neighbourhood of oo
in the w plane we can see that the function w™ can be decomposed unigquely in the form
w" = pn(2) — o Biti, Where pn(2) is defined on A. This is of course ‘the same’ definition
as the one we used in lemma 2.2.8. The question is: are these functions as well behaved
in the situation where 4 is disconnected as they were shown to be in the connected case?
As we already mentioned, the answer is no, and the source of the problems is the fact that
w™ is usually not defined on all of A — A. It is clearly defined in the region outside the
‘8’ curve, and indeed if we take away from A — 4 any curve connecting Ap to 4;, w™ will
be defined in what is left. When you approach the curve from the two sides, however, you

usually do not get the same limit. Since ¢ determines the absolute value of w, however, we

know that the function on the two sides of the curve will differ only by multiplication by a
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fixed complex number of absolute value 1. If this number happens to be equal to 1, then
w™ is indeed defined on all of A — 4, but otherwise it just can not be extended in this way.
If for the case n = 1 we call this number w the corresponding number for arbitrary = will

be w®,

The above discussion should motivate the next definition.
Definition 2.3.2 Let A C A be a ( probably disconnecied ) compact set. We define a group
homomorphism H 4 : m1(A — A) — 8 ( where S is the unit circle in the complez plane )

as follows. Define w as above on the universal covering M of A — A. For [y] € m:(A — 4)

let v:[0,1] — A — A be a path representing it and let 5 be its lift o M. We define

Ha(b)) = 5000

The discussion above shows that this is well defined and in S!. Also if v goes around
the entire set A then H 4(7) = 1. The reason for the letter H is that this is another case of

holonormy. The next lemma relates definitions 2.1.1 and 2.3.2.

Lemma 2.3.3 If A C A iz compact, ¢ is ils potential function and C is the conductivity,

we have
2ri
Hafy) = EXP(T]—HM'Y))
for ally € m(A — A).

Proof of Lemma 2.3.3:

This is an easy computation using the fact that

¢ =B+ C-log|w?|
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for appropriate B and C.
233

We can write f as a Laurent series on the region outside the ‘8’ curve; in this way we
can write f as a series in @, which will converge uniformly on any compact subset of A,

The coefficient a, of this series expansion is given by

i —-1-n 1 —1-n,t
e d e n d
n = 5— T'w Flw)dw 21”:['111 w' f(z)dz

where v goes once around A. In the case A connected, we proved that if f was small (
from the point of view of da ) then a, was also small by picking a curve ¥ close to A.
Now we can’t do this, and we get a curve of the following kind: v will go once around Ag,
move from Ap to A;, go once around A; and come back to Ag, possibly in the same way it
came. The terms. corresponding to going around will be small but there is no reason why
the term corresponding to the path should alsc be, and they can only cancel if w™ = 1. An
explicit counterexample could easily be produced, if necessary. We thus see that with these
functions, the obvious generalization of lemma 2.2.8 would be false.

The reader should not think, however, that all this incorrect proof was only a waste of
time and effort. Wi-thout the knowledge of this failed proof, the correct one would appear
unnatural and needlessly complicated. In the above discussion, we also defined ¢, which
will play a fundamental role later on. Perhaps most important, we know why and when the

old proof fails: this is when w™ is not defined on the complement of A, or when w™ # 1.

This still leaves us a small number of cases where w™ s defined; in a certain sense, these
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cases will enable us to prove the entire theorem.

2.3.3 A Preliminary Case

In this subsection we attack the Conductivity Theorem in & simple situation.

Proposition 2.3.4 Let A C A be a compact set. Suppose H(mi(A — A)) C S is a finile

group. Then

1
~1,2(4) = gcm — 4;51,84).

Notice to begin with that the hypothesis implies that A has a finite number of connected
components. The key observation here is that w? is well &eﬂned on A — A4, as is w™ for any
n a multiple of g, where ¢ = |[Ha(m1(A — A))|. Very roughly, the proof can be described
as follows: for n =0 (mod g) the old proof works, these values of n give us a space My,
other spaces M; can be defined and compared with My, taking the direct sum of these
spaces we get A which gives us the generalized dimension and concludes the proof. Notice
the similarity between this proof and that of proposition 2.3.1; these similarities should
be kept in mind during the proof. Our first step therefore is to define Mg and compute
its generalized dimension; our second step will be to define Ad;, compute their generalized

dimensions and prove that indeed M = ) M.

We now proceed to state and prove a lemma which plays a role similar to that of

lemma 2.2.4.
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Lemma 2.3.5 In the situation of proposition 2.3.4 above, define:

1

1
5=C(A - 4;8",04) =

[log 2|

Define pn,n € N as usual Let g = |H (i (A — A))| which is finite by hypothesis. Then
the following hold:
(i) Any bounded function f : A — C can be writlen uniquely as a series f = ¥ anp,. The
series converges uniformly and absolulely on any compact subset of A.
(i) wo = 1 and deg(pn) = n.
(i) Igan(z)i < K for all z € A and all n, where K is a constant.
(iv) For any f =Y anpn € M, |a, < 1.
(v) For any R' > R, there ezists a constant Kn such that d4(0,¢,) < KpeR™ forn =10
(mod g).

(vi) If d4(0, f) < € then |ap| < eKR™ forn=0 (mod gq), where K is o constant.

Proof of Lemma 2.3.5:
Entirely analogous to proof of lemma 2.2.4, taking into account the observations made

in subsection 2.3.2 above.
2.3.5

Proof of Proposition 2.3.4:
The first step is so similar to the proof of theorem 2.2.1 that most of the details will

be omitted. Mg is simply defined to be the space of functions generated by ¢, for n = 0

(mod g); this can easily be seen to be the space of functions f such that, if f = 3 a,w",
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we havea, =0for n >0 and n Z0 (mod g¢). After this is said, the proof that
T1a(Moyda) = S C(A — 4; 5%, 9.4)
1,2 0,4 )] = 'q"z"r ¥ 3

follows from the previous lemma just like theorem 2.2.1 followed from lemma 2.2.4,

For 0 € i < g we define M; by induction. We define M; 1y = v- M; where v = 1 + K
where K is a fixed constant such that ¢, - K has no zeroes on A. We have a bijection
given by construction between AM; and AM;;, that takes f to v f. This map gives us
Na(Mi,da) = I 2(Migs,da) and therefore

11
I a(Mi,da) = ;%C(A — 4; 8%, 84)

for all values of .
Before going on let us introduce some notation. Remember that f can be written as a
Laurent series in w ( at least in a certain region ) and that the non-negative coefficients

determine the negative ones. With this fact in mind we can write, for instance,

(pl = W + s
where ‘.-’ stands for the terms in w~!,w=2% w=3,.... Using this notation we can write
v=w+K+:-.

and more generally

Pr=yt 4+ Cuw e - Cw O

and

Ve =Wt L Gt L Cw O
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where the different Cs represent different numbers. This implies that

yn'(pm:pn+m+CWn+m—1+“'+C§O1 +C

Let us now prove that

@ Mi = M

0<i<y

and thus conclude the theorem. This follows from the observations above since we have,
in a sense, a triangular matrix. If we have f = a,0n + @n_10@n_1 + - -« + @p We can write
f=antion,+fiwhere0<i< g, m=0 (mod ¢) and fi = al,_,@n_1+---+aj. The proof
proceeds by induction. If f can not be written as a finite sum over ¢, it is still the uniform
limit on any compact subset of A of such functions. What this means in this situation is
that the sequence of approximate decompositions of f into a sum of functions each in M;

tends to an exact such decomposition.

2.3.4

2.3.4 The Final Case

In this subsection we attack the Conductivity Theorem in full generality.

Theorem 2.0.1 Let A C A be a compact set. Then

1
‘71,2(}1) - ﬂC(A —_ A; Sl, 8A.).

The idea behind this proof is reducing the theorem to the situation of proposition 2.3.4.

We do this in two steps. Starting with the set A we consider a harmonic function s
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which is close to the potential function ¢ and which has cyclic holonomy outside a small
neighbourhood of A. By imitating the proof of propesition 2.3.4 we get an estimate for
v1,2(A). After this, we let § tend to 0 in order to get the exact value of =y, 5(A). We divide

this proof into lemmas.

Lemma 2.3.6 Let A C A be a compact set. Then there ezisis ¢ harmonic funclion g
defined on A — A satisfying the following properties:

(i)z€8t = ¢s(z)=0.

(i) 2€84 = 1< ¢s(z) <146

(iii) Let A5 = AU ¢;([1,+00)). Then As satisfles the hypothesis of proposition 2.3.4.

Proof of Lemma 2.3.6:
This is done by starting with ¢; equal to 1+ 6/2 on 84 and by making its value slightly

larger in some places in such a way that the holonomy group becomes finite.

2.3.6

Lemma 2.3.7 In the situation of the previous lemma we have that, if C = C(A—4; 51, 84)
and C; = C{A — A;; 51, 64;), then

(1-8)Cs < C < Cs;<(1+8)C.

Proof of Lemma 2.3.7:

This is a simple computation.

2.3.7
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Lemuma 2.3.8 In the situation of lemma 2.5.6 above, define Rs by

1 1 ol
m — ﬂC(A AJ,S ,3A5).
and define Rj by
1 11 ol
og B} ~ 1+6'§}'C(A‘A5’S 1 84s).

Define pp,n € N as usual from A;, not 4. Lel ¢ = |Ha,(m1(A — Aj))| which is finite by
hypothesis. Then the following hold:

(i) Any bounded function f: A — C can be written uniquely as a series f = ) ann. The
series converges uniformly and absolutely on any compact subset of A.

(ii) wo = 1 and deg{pn) = n.

(iit) {on(2)| < K for all 2 € A and all n, where K is a constant.

(iv) For any f = ¥, anon € M, |a, < 1}.

(v) For any R' > Rj, there evisis a constant Kpr such that d4(0,¢n) < K R™ forn=0
(mod g¢).

(vi) Ifda(0, f) < € then |an| < eKR;™ ™ forn=0 (modq), where K is a consiand.

Proof of Lemma 2.3.8:

Entirely analogous to proof of lemma 2.2.4, taking into account the observations made

in subsection 2.3.2 above.
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Lemma 2.3.9 Lel A C A be a compact sel. For any & > 0, define Ry and R} as in

lemma 2.3.8. Then we have

1 1

—— A) < i
| log R%| 71’2( ) | log Rs|

Proof of Lemma 2.3.9:
This is analogous to the proof of theorem 2.2.1 or proposition 2.3.4 with lemma 2.3.8

above playing the role of lemma 2.2.4 or lemma 2.3.5. More exactly, we get

1

T1,2{4) > 57—
1,2( ) |longsl

by & straightforward generalization of lemma 2.2.5, in other words, by building a large

packing set and we get
Yi2(4) < T
L2 | log Rs|

by a corresponding generalization of lernma 2.2.6, i.e., by building a small covering set.

Proof of Theorem 2.0.1:

This is an immediate corollary of lemma 2.3.9.

2.0.1




Chapter 3

Further Results

3.0 Introduction

In this chapter we prove several other minor facts about spaces of functions. In the next
section we study v, 1{4) and =, ,(4) in the cases where A is so small that v, 5(4) = 0. In
another section we study different spaces and slightly different metrics in these spaces in

order to see how the results from the last two chapters would be affected.

73
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3.1 Small Sets

3.1.1 Countable Sets

We already saw that if A is infinite, we have =y, ;(4) = +oo. It is an immediate consequence
of the Conductivity Theorem that if A C A is a countable compact set then ~; 5(A4) = 0. We
shall now see that these are about the only restrictions on the “size” of a general countable

set. { From now on in this subsection ‘countable’ will stand for ‘infinite countable’, )

Example 3.1.1 Thereis a compact countableset A, A C A, A of typew+1, with v, ;(4) =

2.

( A set of type w + 1 is a compact set with exactly one accumulation point. )

A shall be the image of & sequence (a,) to be constructed satisfying lima,, = 0 plus the
point 0. Intuitively, the faster (a,) tends to 0, the smaller -, ;(A) shall be; therefore, we
want a sequence (a, ) that tends to 0 rather slowly. Let us consider two auxiliary sequences
(R;) and (e;) to be specified later, both tending to 0. Now let us pick a finite number of
points on the circle of radius R; around the origin a distance at most ¢; apart from their
neighbours. Let now the sequence (a,,) start with the previously selected points on the circle
of radius Ry and list them, then do the same thing on the circle of radius A; and so on. Let
us prove that by picking the right (R;) and (¢;) we can force v, 1(4) = 2.

Take (for instance) R; = (1/2)6*2), Let B be an (e + 2¢;)-packing set for (M, ds1 )

where S} is the circle of radius R; around the origin. We can see from the Schwartz-Pick
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theorem that B is an e-packing set for (M, d4). We know that

loglog NP (M, dg: )
lim R

0 log | log €| =2

From this it can easily be seen that we can select a value for ¢; which will imply

loglog NP, (M,da)
log | log €]

> 2 — (1/2)(+2

With such a selection of €; we have

loglog N P,
a2(4) = limy BB NPLM, du)

>
e—D log | log €} 22

and, since we already knew that =, ;(A) < 2 we have v, ;(A4) = 2. This concludes the

example.

3.1.1

This construction can easily be generalized in order to get other countable sets A with

Ya,1(A) =rforany 1 <r <2

3.2 Other Spaces, Other Metrics

3.2.1 New Metrics

Definition 3.2.1 Let AC A, A# D, and f1, fa € H. Forn > 0, we define

N, f2) = sup e — b

Zg€EA, i<n
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where
filw) = eo+o1w+arw? 4 agw® + -
fa(w) = bo+biw+ baw? + byuwd + - ..
and
_ Z — Zp
=t

In particular we have df) = d4. We list some trivial consequences of the definition as a

proposition.

Proposition 3.2.2 The following are properiies ofdsr).

(i) For any A C A and any n > 0, dg‘) i3 ¢ pseudometric on M with 0 < dg') <2,

(i) If A C B, dM < d{P).

(i) d§) = & = df).

(i) If A C A has an accumulation poini in A, dg‘) i3 & metric.

(v) If p i3 a conformal bijection from A to itself, it induces an isomorphism between the two
meiric spacea (M,dfr)) and (M, dE:&)).

(vi) If m < n, dslm) < dsr).

(vii) If A C D where D is the disc of radius B around the origin then
1 N
dPf1, f2) < max ﬁdA(ff"). .
Proof of Proposition 3.2.2:

This is entirely analogous to proposition 1.2.2 except for items (v} and {wii), which are

straightforward.

3.2.2
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3.2.2 Hyperdimension and Generalized Dimension

Definition 3.2.3 If A C A, we define
L3F(4) = T (M,dD), A (4) = 1 (M40,

We drop the + and — signs when they are superfluous, i.e., when the corresponding limit

exisils.

{0)

In particular, 'yn?,.,- = Ymq- The following conjecture is an obvious generalization of

conjecture 1.2.8.
Conjecture 3.2.4 'y,(,,':,l(A) are alweys defined.

‘We shall see that this is almost equivalent to the original conjecture.

Next we state some easy consequences of proposition 3.2.2 and definition 3.2.3.
Proposition 3.2.5
(i) For any n > 0,
Wi =1, Aoy =2(n+1).

(it) If A C B then { for any 7 )
Y (4) S AR (B),  AGR(A) <AEYH(B).

(iii)

Yk (4) = ) () = ) (84),

v

AN (A) = AR (A) =) (04).
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(iv)
(40 B) < max(x{7* (4); 40 (B));
W (a0 B) <A () ++4 ().
(v) If Ai, 0 <4 < n is a family of isometric sets ( with respect to the Poincaré Metric ) then
(49 =2 (40),
A7~ (U 4) < m7) ().
(vi} If A is a finite set,
HA) =1, A4) = 2(n+1)4l
(vii) If no < nq then
Yo (4) <AEP(A), AP (4) < AIt(a).

Proof of Proposition 3.2.5:

(1) is follows from the fact that (M, dyo}) is essentially isomorphic to (A, ||), meaning it
is isomorphic once you identify points which are at zero distance. The disc is known to have
Hausdorff dimension 2. The case n > 0 is similar.

(i) and (%ii) are obvious consequences of the corresponding items of proposition 1.2.2.

Fromdsup = max(d4, dp) it follows that (M, d4up) is a subspace of (M, d4) x (M, dg),

and therefore has smaller I;" 1 and I'f,. This observation together with proposition 1.1.8

P

gives us (i), (v} follows similarly from proposition 1.1.8 since now the spaces (M, dy4,) are

all isomorphic.
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(vi) is proved by induction from (3} and (iv).
(vit) follows directly from proposition 1.2.2.

3.2.h

3.2.3 A Theorem
We defined all these more general metrics because of their geometric meaning. The following

theorem tells us that these superscripts do not make a very big difference after all.

Theorem 3.2.6 Forany AC A, foranyn >0
W) =), AT (W) =244,
and, for any r > 1, if A has a finite number of connected componentis,
W) =44, AT =),

Proof of Theorem 3.2.6:

We begin by observing that for +, ; the theorem is trivial, since (M,dsr)) is equivalent
to (M, dE,L")) which is in turn isomorphic to a subspace of (M, d4)".

‘We now prove the theorem in the case where A has a finite number of connected com-
ponents. We do this by observing that (M, dfqn)) is isomorphic to a subspace of (M, d4) x

(A, ]|)k where k is the number of connected components.

3.2.6
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3.2.4 Other Metrics

‘We shall now proceed to study other metrics on A, similar to dgf) under many aspects.
Thesze should be seen as variants of dfr‘), rather than as completely new metrics. We shall
prove that the study of Iy ; of I, for these metrics is superfluous, since it reduces to that
of ds,?). The reason for introducing these new metrics is that in many cases they are more

intuitive, more meaningful, or easier to use than dS;“).
Definition 3.2.7 For A C A a non-emply compact set, we define
AP o, £1) = max da(7, A7),

Proposition 3.2.8 For any non-empty compact set A C A, dg‘} and dg‘) are equivaleni

( in the sense of definition 1.1.6 }.

Proof of Proposition 3.2.8:

This is a simple computation.

Definition 3.2.9 For A C A o non-emply compact set, we define

5A(fo, fl) e slelg dh(fo(z), f1(2=))

where d;, denoles the hyperbolic metric on A. We define

68 (fo, f1) = 64(Rfo, Rf1) = :lelﬁ dr(Rfo(z), Rf1(2))

where 0 < R < 1 is ¢ consiani.
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Proposition 3.2.10 For any non-empiy compact set A C A and foreny 0 < R < 1, Ef

and da are equivalent { in the sense of definition 1.1.8 ).

Proof of Proposition 3.2.10:

This is a simple computation.

3.2.5 Other Spaces

In this subsection we shall briefly consider some other spaces of functions.
One natural space to consider is the space & of meromorphic functions defined on the
disc. The most natural way of extending the definition of d4 to this situation is to use the

metric on the sphere given by its standard immersion in R®. Calling this metric d, we have:
Definition 3.2.11 Let A C A and let fo, f1 € § be arbitrary. Then
di{fo, f1) = sup d(fo(z), f1(z)).
z

This space is not at all fit for the kind of questions we want to ask as the next proposition

shows.
Proposition 3.2.12 For any A C A, A with non-emply interior, for any € < 2,
NP.(S,d§) = +oo.

This is in fact true for any infinite A.

We prove this proposition with the ald of the next lemma.
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Lemma 3.2.13 For any f € 8, for any (small) open subsel B of A there exists g € S with
d‘z—B(f: g) <eg d%(f: g) =2.

Proof of Lemma 3.2.13:

We take g = fh with h = 1+ kﬁ with z5 € B and k a small constant.

Proof of Proposition 3.2.12:

Just take an infinite family (B;) of disjoint open subsets of A and use the above lemma.

Another space we can consider is the space of Lipschitz functions with constant 1 from
one compact space to ancther compact space. One reason for considering such a space is
that the Schwartz-Pick Theorem tells us that the functions in A4 are Lipschitz with constant
1 if A is given the Poincaré metric.

Let K, and Ky be two compact spaces; let £ be the space of Lipschitz functions with
constant 1 from Ky to Kj; give £ the supremum norm. £ is also compact and N P.(L£) and
NC,(L£) will be finite. We can therefore talk about Iy, .(£) but the next proposition shows

there 1s usually not much to talk about.
Proposition 3.2.14 Let Ko = Ky = {0,1}; I, , (L) = +o0 for any n, r.

Proof of Proposition 3.2.14:

All we have to do is construct a large packing set. Let A be a maximal (2¢)-packing set

of [0,1] and let n = |A|; we have n > 1/2¢. We can now select the value of the function to
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be either (1/2)+ € or (1/2) — € on each point of A, the selection on different points being
independent. This gives us an e-packing set for £ with at least 21/2¢ elements. In other

words, NC, > 21/2¢, This gives us the desired result.

The reader probably realizes that the packing set we constructed wasted most of £. This

reflects the fact that £ is much larger than spaces with finite I3, ;, even for large values of

n and r.
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Chapter 4

More General Metrics

4.0 Introduction

In this chapter we consider generalizations of d4 which, while they may seem artificial when
defined, will prove to be important for the applications. We state what we believe to be the
correct genearlization of the Conductivity Theorem as a conjecture; the fact that we can
not prove it at this time accounts for the brevity of this chapter. We prove some weaker

results which allow us to work out some of the applications.

85
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4.1 Introducing the New Metrics

4.1.1 Generalizing d,

If £ : [0, +00) — [0, +o0) takes O to 0, is increasing and has the concavity always down then
for any metric d, f o d is also a metric. The concavity condition is necessary in order to
guarantee that the triangle inequality will still hold. In particular, we observe that if d is a
metric then so is d" if 0 <+ < 1. For r > 1, however, we usually do not get a metric since
the triangle inequality will probably fail.

Let us take look at how these metrics compare to d and one another. For values of d less
than one, the smaller r is, the larger d" will be. If our metric space is bounded, we see that

if we make r smaller, d" will become essentially larger in the sense that
< Py — (EC)drl > Odr,

We see that things are simpler if the distances are bbunded above by 1 from the start; we
also see that taking » = 1/p will mean that for larger p we have a larger metric.

We can use the ideas above to introduce the following definition,

Definition 4.1.1 Forp: A — [0, +oco] we define

1/p(z)
dy(fr9) = 2223 (&L}ﬁ&{ﬂ)

where in the case p(z) = 0 we adopt the convention that

(%f(Z) - g(z)l)mm ~0

2
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and in the case p(z) = +oo we adopt the convention thal

(If(z) _ g(z);) e
2

unless | f(z) — g(z)| = 0 in which case the expression above is said to have value 0.

Intuitively, p gives a measure of how much a point counts: the larger p(z) is, the more
sensitive dy is to the value of f at 2. Notice that dy(f,g) is always defined and that we
always have 0 < dp(f,g) < 2. It is not at all clear, however, just when d, will be a metric.
We proceed now to study this question and to study d,. Let us observe right now, however,
that if x4 is the characteristic function of a set 4 we have d,,, = d4. We can therefore

think of d, as a generalization of d4.

4.1.2 Ond,

We could now study d, as we did d4. The analogies are so strong and so obvious, however,

that we shall be much more concise.

Lemma 4.1.2 For all p and all f,g € M, 0 < dy(f,g9) < 2 and dp(f, f) = 0. If supp(p)

has an accumuletion point in A, then dp(f, g} =0 implies f = g.

Proof of Lemma 4.1.2:
We already saw why the first part is truze, The second part follows from the analiticity

of f and g and analytic continuation.

4.1.2
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Lemma 4.1.3 If p never assumes values in (0,1) aend supp(p) has an accumulation point

in A then dp is a metric.

It is important to note that the opposite implication is nof true; we shall later consider
many cases where p does assume values between 0 and 1 but d, is still a metric.
Proof of Lemma 4.1.3: |

The only non-trivial part is the triangle inequality and this follows from our restrictions

to the values which p can assume.

4.1.3
Lemma 4.1.4 If p1(2) < pa(2) for allz € A, then dp, < d,.
Proof of Lemma 4.1.4:
Easy.
4.1.4

Lemma 4.1.5 If p is bounded and has compact support and dyp is & metric then (M, d,) is

& compact meiric space.

Proof of Lemma 4.1.5:
Just notice that the conditions imply p < K-x 4 for a compact set A and that (M, dx., )

has the same topology as (A, d4).

4.1.5
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Proposition 4.1.8 If ¢, is the smallest superharmonic function such that ¢,(2) > p(z) for

all z then dy, = d.

Proof of Proposition 4.1.8:
All we have to show is that if —log(|f(z)|) > K - p(z) for all z then also — log(]f(z)|) >

K - ¢,(z) for all z, but this follows from the fact that — log(| f(z)|) is superharmeonic.

4.1.6

4.2 Towards a Generalization of the Conductivity The-

orerm

4.2.1 The Generalized Conductivity Theorem

The next definition is the natural generalization of ~, .(A).

Definition 4.2.1 When p is such that d, is a meiric and (M,d,) is compact, we define
'771,?'(?) = Fﬂpf((M!dP))'

Many results about -y, , (A) generalize easily to v, ,(p). For instance, just as v, ;(4) = 2
for all but very small A so -, ,(p) = 2 for all but very small p. Since the Conductivity
Theorem was our main result about -y, ,(A), we would naturally expect its generalization
to be a most important result about -, .(p). We now state as a conjecture what we have

strong reason to believe to be the correct generalization of the Conductivity Theorem to the

new situation.
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Conjecture 4.2.2 Let p be as in the previous subsection. Let ¢, be the smallest superhar-

monic function satisfying ¢, > p. Then

‘71,2(19) = ;lr'E(%)-

We shall not prove this conjecture in this work. In the next subsection we prove some
easy inequalities which will serve as poor substitutes for a proof of the conjecture. Notice

that the Conductivity Theorem is a special case of this conjecture.

4.2.2 Some Estimates

Proposition 4.2.3 Let p assume value r in A ond 0 elsewhere. Then

'Y1,2(P) = ?“271,2(44)-

Proof of Proposition 4.2.3:

Easy.
4.2.3

Proposition 4.2.4 Letp be as in the previous section. Let ¢, be the smallest superharmonic

Junction satisfying ¢, > p. Let A, be the inverse image of r under ¢,. Then

~1,2(p) > 2y 2(Ar)-

Proof of Proposition 4.2.4:

This is an easy consequence of the previous proposition.

4.2.4



Chapter 5

Specifying Functions

5.0 Introduction

In this chapter we put the ideas of the previous chapters into use: we study the guestion
of how most efficiently to specify holomorphic functions. We shall give an explicit tentative
answer and show that no method can be much better than ours in a certain precise sense. We
then study analytic continuation. We show that, although theoretically possible, analytic
continuation is impractical in all but the simplest situations. The precision with which
the function needs to be known at the original point or region in order to give a decent
approximation at the final point or region may be such as to render the problem physically
impossible. All of these statements shall be made precise on occasion. After this part of our

work had been done, we found out about the work of Vituskin (see [6]}) who addresses this

91
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question of specifying functions in many different situations and derives many interesting

results.

5.1 Specifying Functions

5.1.1 Statement of the Problem

In this section we want to consider the question of how best to specify functions. We
interpret a method of specifying a function as a pair of maps enc and dec as follows;
enc: M — C dec: C — M
f = enc(f) n +— dec(n)

where C is a finite set. We shall call |C| the size of the method. Intuitively, C is the space
of names of functions under a certain specification method. If f is a function, enc(f) is
“the name of the function”. Also, if n is a name, dec(n) is “the function named by n”.
( The names enc and dec stand for “encode” and “decode”. ) The expressions above are
inside quotes because it is, of course, impossible to find a bijection between AM and C since
one of these sets is finite and the other uncountable. The impossibility of having a perfect
specification method leads us to ask how good a specification method we can find.

This is meaningless, however, until we define what we mean by a ‘good’ specification
method and say how we can compare the quality of different methods. The simplest possi-

bility is to take the greatest possible error you can get by encoding and decoding a function

to be a measure of the ‘badness’ of the method. The error mentioned above is, of course,
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da(f, dec(ene(f))). We shall call this the precision of the method. The smaller the precision

the better the method.
Proposition 5.1.1 If N is the size of o specification method and ¢ is §ls precision we have
N > NC.( M,da).

Proof of Proposition 5.1.1:

It is enough to observe that dec(enc{AM)) is an e-covering set of size N.

We define a specification procedure to be a family of specification methods, one for each
size. We define the precision of a specification procedure to be the function p which takes
each N to the precision of the method of size N. The faster p tends to zero, the better the

procedure.

Proposition 5.1.2 For any specification procedure we have

. log?(p(N)) 1
Nl% log(N) S‘h,z(*‘l)

Proof of Proposition 5.1.2:

This is a simple consequence of the previous proposition and the definition of Y1,2-

5.1.2

We did all of this for d4 only but everything, including the proofs, carries over trivially

to the situation d,. There is of course, the difference that we do not krow the value of

~1,2{p): we only have a conjecture.
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Notice that the expression inside the limit is a measure of the speed with which p(N)
tends to zero as N tends to infinity. The propesition above puts a bound on the quality of
any procedure.

Let us try to interpret the expression above. log(N) is the number of bits of information
needed in order to store or communicate the name of a function up to a multiplicative
constant. log(p(V)) is the number of decimal places of the value of the function which are
actually known up to another multiplicative constant, The inequality above is telling us
that if we are to be given n bits of information about the function we can hope to know

only the first m decimal places of the value of the function on A where

K being a constant.

5.1.2 Explicit Procedures

In the previous subsection we saw bounds on how good a specification procedure can ever
hope to be. We saw, however, no explicit examples. We proceed now to consider a few
concrete and explicit procedures and to study how good they are. We shall eventually meet

an example of a procedure that actually realizes the equality in proposition 5.1.2.
Example 5.1.3 We cen specify a function by giving ils power series,

This is one of the most obvious ways of specifying a function. One thing that we have to

worry about is with what precision we are going to specify each coeficient. We can easily
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see that this precision should not be the same for all coefficients; precision should start
high and go down as we look at higher coeflicients until we get to the point where we need
no precision and therefore forget about the coefficient completely. All that is said below
assumes we handled this problem correctly.

The power series method is not bad if your domain is a round ball and you take the series
at the center; in this case we do realize the equality in proposition 5.1.2. In other situations
using this method is equivalent to ignoring the geometry of A and pretending that it is a

round ball when it is in fact not. It is easy to see that doing this would give us

i e87R(N)) 1
N—-oo  log(N) Y1,2{B)

where B is a ball containing A.
Example 5.1.4 We cen specify a funclion by giving its value af sample poinis.

Here the main question is: what sample points should we take? We then have to address
the other question which is: with what precision should the value of the function be given? In
any case, we can intuitively see that this method always involves some waste of information:
if two points are close and we know the value of a function at one of them then we know
the approximate value of the same function at the other point. All of this shows that this
method is hard to use optimally and even if so used is unlikely to be very good. We shall
leave the question of exactly how good this method can be at its best unanswered, but we

know it can never be much better than our next method.

Example 5.1.5 We can specify e funclion by giving its series ezpansion in terms of ¢y
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In the case of A conmected, this is the ‘good’ method we promised: if we specify the
coefficients of this series expansion with the right precision we can realize the equality in
proposition 5.1.2. The proof of this is in fact contained in the proof of the Conductivity
Theorem which also describes exactly what precision we should use for each coefficient.

In the case of A disconnected we have to change this series expansion as in the proof of

the corresponding case of the Conductivity Theorem.



Chapter 6

On Analytic Continuation

6.0 Introduction

In this chapter we finally arrive at the problem of the practicality of analytical continnation.
This is the problem that gives the title to this work and it is also our original motivation. We
show that, although theoretically possible, analytic continuation is impractical in all but the
simplest situations. The precision with which the function needs to be known at the original
point or region in order to give a decent approximation at the final point or region may be
such as to render the problem physically impossible. All of these rather vague statements
are defined precisely, often in more than one way. Not all questions are answered, however,
and several interesting conjectures are left to be answered in the future.

97
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6.1 A Simple Interpretation

6.1.1 A Simple Interpretation

Congider that we know a function on a set A and wish to find out its value at a point z, the
interesting case being z ¢ A. We could do this by analytic continuation on a path from A
to z. This shows that finding f(z) is theoretically possible. Let us investigate the gquestion
of how hard it is to do this “in practice”. This question is of course subject to more than

one interpretation; we shall consider a few of them in this chapter.

One way of interpreting the assumption that the function is known on A is to say that
we know f as a point in the metric space (M, d ). Following this point of view, we consider
f(z) as a function on the space (AM,d4), in other words, as a function of f. We shall
call this function z so that we have z(f) = f(z). Provided A is infinite, we know that z
is uniformly continuous. For each € we define 6{¢) to be the largest positive number such
that da(f,¢9) < &(¢) implies |z{f) — 2(g)] < €. We now see that the function § gives a
possible answer to our question: the faster it tends to zero, the harder it is to do analytic

continuation. We proceed now to study the function é.

Before doing so, however, let us introduce some notation. Recall that when 4 C A is
compact we can define a unique harmonic function ¢ on A — A4 such that ¢(z) tends to 0
as z tends to @A but ¢(z) tends to 1 as z tends to dA. We call such function the potential

function for A and denote it by ¢4 so that its value on z shall be denoted by ¢ 4(z).




6.1. A SIMPLE INTERPRETATION 99

Proposition 6.1.1 Lei A and 2 be as above. Let 6(¢) be defined as above. Then we have

- logé 1
% Toge ~ Baz)’

The proposition above tells us that z is Holder and tells us with what constant.
Proof of Proposition 6.1.1:

Consider the harmonic function ¥(z) = —log(|f(z)|) on A — A. This function satisfles
¥(z) > 0 for z € ST and ¥(2) > —log{da(f,0)) for z € 8A; also if zp is a discontinuity of
¥(z) we have lim, ..z, ¥(2} = +oco. All of this implies that ¥(z) > —log(d4(f,0)}¢a(z). In
other words, |log(f{z))] > |log(da(f,0)}|¢4(z) which gives us

log & 1

lim —8% « .

«~0 loge = $a(z)
The opposite inequality is guaranteed by ¢,(z), the functions constructed in the proof of

the Conductivity Theorem, where in the case of A not connected n has to be selected to he

a multiple of a certain p again just as in the proof of the Conductivity Theorem.

How would we extend this result from the case of d4 to the case of d;7 The following is
the natural generalization. We shall be able to prove it and we do nof need the more general

version of the Conductivity Theorem which we conjectured to be true.

Proposition 6.1.2 Let p and z be as above with the obvious generalizations. Let 6(¢) be

defined as above. Then we have

i logéd 1
i Toge — %(3)"
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Remember that ¢, is the smallest superharmonic function larger than p.
Proof of Proposition 8.1.2:

We think of this proposition as two inequalities. One of them is entirely analogous
to the first half of the proof of proposition 6.1.1 above. Notice that we have ¥(z) >
—log(da(f,0))¢p(2) where ¢, is not harmonic, which implies the same inequality every-

where. The other direction follows from proposition 2.1.13.
6.1.2

We could, of course, have given this second proof in general, but we thought it would be

good to have a more concrete proof of a simple case.

6.2 The Information Approach

6.2.1 Asking Questions

In the previous section we considered the following question: “If we want f(z) with a certain
precision, with what precision do we need to know f on A?”. This is a valid question, but
it is not at all clear that it measures the difficulty of doing analytic continpation. After
all, knowing f with a certain precision on a small set is easy, but knowing it with the same
precision on a large set is hard. The following guestion corresponds more closely to the spirit
of the original one: “How many bits of information about f do we need in order to deduce
f(z) with a certain precision?”. We clearly have to say what kind of questions we have in

mind or we could just forget about A and ask directly about f(z). Let us explore several
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possibilities. For all possibilities considered, we shall define N,(A, z) to be the number of
questions concerning f(w) for w € A necessary in order to find out the value of f(z) within
an error of e. We are interested in estimating the size of N.(4, z).

The most restrictive possibility is to say that you have to ask questions that will tell
you the value of f(z) for z € A within an error of § and then reduce the problem to that
considered in the previous subsection. What we saw previously tells us that, with-this very

restrictive approach, we have

I N(Ad,z) 1 71(4)
11 2 = 3 .
e—0 log € log 2 q{)A (z)

Notice that C¢~? need not always increase when A4 becomes larger; this shows that this
possibility is foo restrictive. We can consider a less restrictive possibility as follows: you
have first to find out the value of f(z) for z € A" C A where A" will be any subset of 4

which you are free to choose. With this more plausible approach we have

1 ,1(4")

lim el 2) _
/2 = min .
«—0 log®e Aicalog? ¢4,(z)

It is now natural to say that the most general, the ‘right’ answer, corresponds to paying
more attention to some parts of A than to others but that we can divide our attention in any
way we want. This corresponds to taking any p provided only supp(p) C A. This amounts

to saying that

o Neldi2) 1 73,1(P)
i8] T min 3 .
=0 log“e supp(r)C 4 log 2 ¢2(2)

Qur conjectures would then give us

1
Iim NE(A; z) = in Eg‘oéﬂ) .
<=0 log®e supp(p)CA T log 2 ¢p(z)




102 CHAPTER 6. ON ANALYTIC CONTINUATION

Let us restate this conclusion as a conjecture.

Conjecture 6.2.1 Suppose a funciion f € M is known in a compact set A. Suppose we
want to find out its value in z. In order to determine f(2) within an error of € we need to

ask N, questions about f where

1o Ne(4,2) 1 E(¢y)

=0 log?e supll;r(lp)E:_A wlog2 453(2)

4

We shall not prove this conjecture. Since we have estimates for ~; ;(p), we still have
eatimates on the difficulty of doing analytic continuation even though they are not as good
as the conjecture above. We shall soon see, however, that in many cases we still have good

estimates, indeed, estimates which are not so far from what the conjecture would give us.

6.2.2 Estimates

Proposition §.2.2 Let A C A be a compact set and let 20 ¢ A. Let d be the distance
between zo and A and let § be the diameter of A, both measured in the hyperbolic metric.
Then, if ¢ is o positive superharmonic function defined on A with value 0 on A which is

harmonic outside A we have

71,2(¢) > log®(tanh(8/2)) )
#2(20) ~ log*(tanh(d/2))

71,2(‘4).-

Proof of Proposition 6.2.2:

From what we know about ¢ it follows that it can be written in the form

#(2) = j £u(2)du(w)
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where g is a finite measure on A and &,(z) = |log(|(z — w)/(wz — 1)|)|. Let p(A) = K.

It is easy to check that for any w € 4, &u(20) < |log{tanh({d/2))|. It is equally easy to
check that if w and z are both in A, £,(z) > |log(tanh(4/2))|. From the first inequality it
follows that ¢(z0) < X|log(tanh(d/2))|. From the second inequality it follows that, for any
z € A, ¢(2) > K|log(tanh(6/2))|.

This last inequality implies that B = ¢~1([K|log(tanh(§/2))|, +00)) contains A as a
subset. From proposition 4.2.4 it follows that v, 5(¢) > KZ2log*(tanh(6/2))v, 2(B) >
K?log?(tanh(8/2))v,,2(4). Our result follows from this last inequality and our upper bound

for ¢{zp).

We can easily see that

|log(tanh(z/2))| > 2¢™*

and that

tog({tanh(z/2})| a2 2e~7

is an excellent approximation for large . This means the proposition could be stated as the

following approximate inequality:

In the usual case where d > §, we could confidently write ‘>’ instead of ‘=’ since the errors

are in our favor. This gives us the following corollary:
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Corollary 6.2.3 Let A C A be @ compact set and let 2o ¢ A. Let d be the distance between
zo and A and let § be the diameter of A, both measured in the hyperbolic metric. Suppose
d > &§. Then, if ¢ is o posilive superharmonic funclion defined on A with value 0 on A

which is harmonic oulside A we have

2(¢) _
st

Proof of Corollary 6.2.3:

Above,

6.2.3

6.2.3 Examples

In this subsection we consider some explicit problems of doing analytic continuation and try

to find hard how hard they are.

Example 6.2.4 A is a round ball of radius R around the origin; z is a point a distance r

from the origin, r > R.

Let us define R = tanh(p/2) and D = tanh(r/2). p and D are the radius of 4 and the
distance from the origin to z in the hyperbolic metric. Using the notation of proposition 6.2.2
we have § = 2p and d = D — p; we shall define d- = tanh(d/2).

We know that =y, ;(A) = 1/|log R|; we can easily prove that ¢4(z) = logr/log R. From

what we saw in the previous sections we can conclude that if we want to know f(z) with
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precision ¢ we have to know f on A with precision § where

logd logR
nnioge " logd’

We also know that if we want to find out the value of f(z) with a precision € we have to ask

N, questions where

N, 1 llog R|
M3 3
log®(e) log2 log*d

i

if we demand that f be known with equal precision on all of A. If, however, we are allowed

to pay more attention to some parts of A and less to others, we have the inequality

Ne 1 logz(ta.nh(ﬁ/Z))'v J(4).

.
" log?(e) ™ log 2 log®(tanh(d/2)) b

If we assume d > §, which means, for a fixed R, if we assume r large,

N 1
lim ——— > —_¢24-24. A).
m logz(e) - logze 71'2( )

The inequalities above may not seem very impressive but in the next example will make

their analogues have a clear intuitive content.

Example 6.2.5 Let the domain of functions now be the sirip ¥ of radius w/2 around the
real azis. A is ¢ round ball of radius R < w/2 around the origin; z is a point on the real

line a distance D from the origin, D > R.

In this case it is not so easy to compute ; ,{A); it is enough to know that

1

<24 < omazT

2
| log(R/m
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Figure 6.1: A is a ball inside .

We can also see that for any A’ C A

$a(2) )
|log(tanh((D + R)/2)}| < e alA) < |log(tanh({(D ~ R)/2))I;

we could follow this approach, but we prefer to use the results of the previous subsection.

In order to get full generality we again use proposition 6.2.2. We have d = D — R and

§ = 2log(tan R + sec R). This gives us

71,2(¢) _ log®(tanh(6/2)) -
#2(z0) = log®(tanh(d/2)) 1,2(4).

If we assume D large, we have

1,2(%) _
-jz—zm > 2% .y 5(4).

Using the method of asking questions discussed we have { assuming D large )

. Ng 1 2d__=5
m ——— e . Al
B 1082(6) z log 2° ",2(4)

For a fixed R this inequality tells us that

N, > Ke*P log(e)
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for sufficiently small ¢ where

e~3R=2y, ,(4) . 9e~2h-36
log 2 = log 2| log{R/7)|

K=

In other words, N, grows quadratically with log{e) and ezponeniially with D.

We see that even for a moderate value D like 5 we would have
N, > 22000K log®(e)

which means that in order to get f(z) with a precision of 0.1 we need to ask more than
118006K questions; notice, however, that K may be small: for R = 1, this means more
than 295 questions. If we ask instead for a precision of 0.01 we need io ask more than 1180
questions. If we keep R = 1, make D = 10 and ask for a precision of 0.1 we need to ask
more than 6.5 - 10% questions, if we ask for a precision of 0.01 we need more than 2.6 - 107,
if we take D = 50 and ask for precisions of 0.1 and 0.01 we need more than 3.6 - 10! and

1.44 - 10%2 questions respectively which is impossible to do in practice.

6.3 The Analytic Continuation Flow

6.3.1 The Entropy and Generalized Entropy of the Analytic Con-

tinuation Flow

In this subsection we define a flow corresponding to analytic continuation and show that this

flow has infinite entropy. This already shows that analytic continuation is ‘hard’, but it only

tells a small part of the story. We are going to see that the entropy is not merely infinite,
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but infinite by a comfortable margin. In other words, it is much harder to do analytic

continuation than to follow an arbitrary flow of infinite entropy.

Let us begin by noticiné that there is an analytic bijection between the disc A and the
infinite strip around the real axis of ‘radius’ equal to x/2 which shall be denoted by Z.
( The reason for choosing #/2 is so that the Kobayashi metric at the origin coincides with
the usual metric; this is not essential for us however. ) This allows us to identify A to the
space of analytic functions defined on ¥ bounded in a,bsolute value by 1 and H*® to the
space of bounded analytic functions defined on . We shall not introduce new notation for
these spaces; we shall merely talk about M or H® or even X and think of these spaces as

having several ‘interpretations’, several ‘models’.

With the interpretation of all these spaces as spaces of functions over 3, we define the

following action of R on M:

86: RxH — H.

(i f(z)) — flz+1)

1t is immediate to check that @ is indeed an action; it is in fact also an action on the subspaces
H> and M. This action can of course be seen as a flow; we proceed now to compute the
topological entropy of this flow. Before doing so, however, we have to give A a metric space
stucture. We give it the metric d4 where A C ¥ is a compact set. The simplest situation,
which the reader should have in mind before considering other cases, is that of 4 equal to

a small disc around the origin.
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Following the definition of topological entropy, we say that B C M is (g, €)-generator if
VzeM ZyecB Vi0<t<, da(0(t,2),0(t,v)) < e
This is the same as saying that B is an e-covering set of A for the metric d4, where
Ay, ={z € B|T3,0<t <ty 2+t € A}

Again following the definition of topological entropy we define »{io, €) to be the size of the
smallest (2o, €)-generator. We can easily see that r(2,¢) = NCe(M, dy, ). The topological

entropy of @ is defined to be
. 1 A 1
hiop(8) = lim limsup — log r(to, €) = lim lim sup — log NC.(M, d4, ).
€—0 ty—o00 Do €0 1,400 b0 o
The conductivity theorem tells us that
log NC (M, da, )~ C - loge.
Using this approximation we would get
<1 Cc. .,
hiop(8) = lim lim sup ~— log“e.
=0 too0 L0 .

But it can easily be seen that

o C(Z50%,84,,)

tg— 00 tp

=K>0
from which it would follow that

hiop(f) = li_r}“éK log? € = +o00.
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The computations above were not done very carefully, however, and we should make them

into a real proof. What we said above amounts to

lim_lim —— log r(to, €) = K > 0
S i T ogr(to,€) = K >

and if from this we could conclude

-1 11
I Jog g 8T ) = K> 0

that would give us what we want.
Notice that this would give us much more than the fact that the entropy is infinite; just
a8 we defined the concept of generalized dimension we could define the concept of generalized

entropy to be

. . 1
n.(0) = 11_{1(1) t}f-rfloo log" € to

log r(to, €).
From this point of view we would have estimated m,(f), which would be positive, thus

implying that 1,(6), the usual entropy, is infinite. We formulate this unacheived conclusion

as a conjecture { to be addressed in the future ).

Conjecture 6.3.1 If 8 is the analytic continuation flow as defined above corresponding to

the metric dy we have

1 log r(to, €) = K{A4)

1
#) = lim li
72(6) im  m 2,10

e—+0ta—00 log

where K(A) denotes a numerical funclion of A gssuming positive values.

In order not to leave the question entirely open we proceed in the next subsection to give

a direct, elementary proof of the much weaker claim that the (usual) entropy is infinite.
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6.3.2 The Entropy of the Analytic Continuation Flow is Infinite

Proposition 6.3.2 If @ is the analytic continuation flow corresponding to ds then
htpp(G) = <400,

Proof of Proposition 6.3.2:
It is enough to consider the case A = {0}. We have to find an estimate for 1 log r(t,¢). We
know that r(f,€) = NC. (M, d4,). We have therefore to give an estimate for NC.(M, dy,).

We shall do this by first estimating N P.{M,d4,) and then using the inequality
NPE(S, d) 5 NC(1/3)E(S, d)

from proposition 1.1.2. We have therefore to build a large packing set.
Let h(z) = 2272(1 — cos(z)). We have h(0) =1 and f(2n7) = 0 for any integer n. We
also have

ih{z)} < 2(1 4 cosh 7—21-)

and

|h{a+ b3)] < 2(1 + cosh g)a-ﬂ.

Let N =1+ [t/2x]. We shall now construct our packing set with elements of the form

2= 3 ajh(z+ 2j7).

0Lj< N

We can select the a; arbitrarily with the condition |a;| < K and f(z) will be in M, where K

is a constant whose value we do not need to know. If we select each one of them independently
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from an e-packing set for the disc of radius K we get a packing set for A4, This gives us
NP(M,da,) > (K%‘g)(HUIWJ)
which gives us ( after some simple computations )
hyop(8) = +oo0.
8.3.2

The careful reader will have noticed that we in fact proved

n:(6) >0

which is stronger than the previous proposition but far weaker than the conjecture. This is,

of course, to be expected given the great simplicity of the packing set constructed.

6.4 Explicit Methods for Doing Analytic Continuation

6.4.1 A Method

In this section we just take a quick look at some methods of doing analytic continuation.

We do not attempt to be complete in any sense.

Example 6.4.1 In this method we start with the power series expansion arovnd o point and

work by steps towards our objective.
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Start with the power series expansion of f around a ‘known’ point zo. The power series

gives an approximation for the function inside the disc of convergence. If we pick another

point z; inside that disc, we can use this approximation in order to get an approximate

power series expansion around z;. We can repeat this process for z2, 23, ... 2n. Is this a

good method for doing analytic continuation from zg to 2,7

In order to answer this question we first have to know how we use the approximate

series expansion around z; in order to approximate a series expansion around Ziti1. The

first approximate series expansion is truncated at a certain point. In other words, it is a

polynomial of degree N.

If we just rewrite this polynomial in term of (z — zi41) after n steps we still have the

polynomial we had at the beginning. This will therefore never take us beyond the original

disc of convergence. This is obviously not a very good method.

There is one known way out of this difficulty (see [4]). At each step, truncate the series

from N to rN terms where r is a sufficiently small real parameter. In order to see more

about this method, we refer the reader to the previouly mentioned book. We just want to

observe that what we saw about analytfic continuation indeed applies to this method: the

loss of information is exponential with the distance travelled. The exact rate depends ont

he value of r: from our results we can easily derive upper bounds for r. The reason why

the necessary amount of information grows quadratically with |log €} may not be so obvious:

this reflects the fact that the higher coefficients of the power series are harder and harder

to obtain from the actual values of the function.
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6.4.2 Another Method

Example 6.4.2 In this method we start by using the Riemann mapping theorem to irans-

form the domain of definition into a disc and then use series expansions.

What we do here is reduce the entire problem to a situation very much like the one
we have been studying. Use the Riemann mapping theorem to transform the domain of
definition of f into the unit disc. If we do not know a priori of a domain where f is
defined, this method becomes more complicated since we have to consider a sequence of
neighbourhoods of the path along which analytic continuation is to be done. In any case,
after we have transformed the domain into a disc we just use whatever series expansion
applies to the situation. If we know the values of the function in a compact region 4, we
expand f in terms of the corresponding ¢n. If we know the germ of the function in one
point, we take this point to the origin and use the corresponding Taylor series expansion. In
any case, we see that a big distance between the known point or region and the point where
we want the value of f corresponds to a great precision in determining the coefficients being
required. The fact that the amount of information needed grows quadratically corresponds
to the fact that if we want more precision, we need more coefficients a¢nd a greater precision

in determining each coefficient.
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