Recorrências Lineares

Bruno Fernandes Cerqueira Leite

10 de setembro de 2000

Resumo

Neste pequeno artigo iremos expor um método para resolver relações de recorrência lineares, e provaremos a validade do método. Os conhecimentos matemáticos necessários para a compreensão das demonstrações são apenas algumas noções de cálculo e álgebra linear.

Problema Queremos determinar todas as funções $f:\mathbb{N} \to \mathbb{C}$ que satisfaçam a relação

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \dots + a_m f(n-m)$$
 (1)

para todo n natural com $n \ge m$. Aqui, m é um inteiro positivo e os a_i são complexos quaisquer com a única restrição $a_m \ne 0$.

 ${\rm O}$ nosso primeiro resultado é bastante evidente e sua verificação fica a cargo do leitor.

Teorema 1. Seja λ o conjunto de todas as funções definidas no parágrafo anterior. Então λ é um subespaço do conjunto das funções de $\mathbb N$ em $\mathbb C$, sendo as operações "soma" e "multiplicação por escalar" as usuais.

Dada uma relação de recorrência como em (1), vamos definir o polinômio

$$Q(x) = x^m - a_1 x^{m-1} - a_2 x^{m-2} - \dots - a_m$$

como sendo o polinômio característico da recorrência. A equação Q(x)=0 é a equação característica da recorrência. Note que a restrição $a_m \neq 0$ exclui imediatamente a possibilidade de termos 0 como raiz desta equação, já que $Q(0)=-a_m \neq 0$. Sabemos, pelo Teorema Fundamental da Álgebra, que o polinômio Q(x) pode ser fatorado como um produto de m monômios, pois o grau de Q(x) é m. Então

$$Q(x) = \prod_{i=1}^{R} (x - r_i)^{s_i}$$
 (2)

onde $\sum_{i=1}^{R} s_i = m$. Isto significa simplesmente que a equação característica tem R raízes (r_1, r_2, \ldots, r_R) , e a i-ésima raiz, r_i , tem multiplicidade s_i .

Para cada i, com $1 \le i \le R$, podemos escrever Q(x) como $Q(x) = (x - r_i)^{s_i} q(x)$. Vamos provar que se $p \in \mathbb{N}$ e $0 \le p \le s_i - 1$, então a função $f(n) = n^p r_i^n$ é uma solução de (1).

Lema. Sejam $Q(x) = x^m - \sum_{i=1}^m a_i x^{m-i}$ o polinômio característico de (1), α uma de suas raízes e β a multiplicidade de α . Se $\beta \geq 2$, então para qualquer $j \in \mathbb{N}$ com $1 \leq j \leq \beta - 1$ teremos

$$\sum_{i=1}^{m} a_i \alpha^{m-i} i^j = 0$$

Demonstração. Vamos mostrar que se $j\in\mathbb{N}$ e $1\leq j\leq\beta-1$ então α é raiz de multiplicidade $\beta-j$ do polinômio

$$\sum_{i=1}^{m} a_i x^{m-i} i^j.$$

Como α é raiz de multiplicidade β de Q(x), α é raiz de $Q^{(y)}(x)$ (y-ésima derivada de Q(x)) com multiplicidade $\beta - y$ (se $1 \le y \le \beta - 1$). Esta observação será fundamental na demonstração e o leitor está convidado a demonstrá-la.

Como $Q(x) = x^m - \sum_{i=1}^m a_i x^{m-i}$, temos

$$mQ(x) = mx^m - \sum_{i=1}^m a_i mx^{m-i}.$$
 (3)

Além disso, $Q'(x) = mx^{m-1} - \sum_{i=1}^{m-1} a_i(m-i)x^{m-i-1}$. Logo

$$xQ'(x) = mx^m - \sum_{i=1}^{m-1} a_i(m-i)x^{m-i}.$$
 (4)

Subtraindo (4) de (3), obtemos $mQ(x) - xQ'(x) = \sum_{i=1}^{m} a_i x^{m-i} i$. Como α é raiz de multiplicidade β de mQ(x) e de multiplicidade $\beta - 1$ de xQ'(x), temos que α é raiz de multiplicidade $\beta - 1$ de $\sum_{i=1}^{m} a_i x^{m-i} i$, que é exatamente o que queríamos provar para j = 1.

A demonstração para j>1 segue por indução, de modo muito parecido. Suponha que $1< j<\beta-1$ e que α seja raiz de

$$\sum_{i=1}^{m} a_i x^{m-i} i^j \tag{5}$$

com multiplicidade $\beta-j>0$. Multiplicando (5) por m
 vemos que α é raiz de $\sum_{i=1}^m ma_ix^{m-i}i^j$ com multiplicidade $\beta-j$, e multiplicando por x a derivada de (5) vemos que α é raiz de $\sum_{i=1}^m a_i(m-i)x^{m-i}i^j$ com multiplicidade $\beta-j-1>0$. Subtraindo estas expressões, concluímos que α é raiz de $\sum_{i=1}^m a_ix^{m-i}i^{j+1}$ com multiplicidade $\beta-j-1>0$. O argumento mostra que o lema de fato vale para todo $j\in\mathbb{N},\ 1\leq j\leq\beta-1$.

Teorema 2. Sejam Q(x) o polinômio característico de (1), α uma de suas raízes e β a multiplicidade de α . Então para qualquer $p \in \mathbb{N}$, com $0 \le p \le \beta - 1$, temos que a função $f(n) = n^p \alpha^n$ é uma solução de (1).

Demonstração. Se $\beta = 1$, então p = 0. Devemos mostrar que α^n é uma solução de (1). Mas isso é óbvio se observarmos que α é raiz da equação característica de (1).

Se $\beta \geq 2$ e p=0, a demostração é igualmente fácil. Então podemos supor $\beta \geq 2$, p>0, ou seja, $\beta \geq 2$ e $1\leq p\leq \beta-1$. Temos que mostrar que a função $f(n)=n^p\alpha^n$ é solução de (1), ou seja, que $n^p\alpha^n=\sum_{i=1}^m a_i(n-i)^p\alpha^{n-i}$. Multiplicando ambos os lados da igualdade por α^{m-n} vemos que temos que provar que

$$n^p \alpha^m = \sum_{i=1}^m a_i (n-i)^p \alpha^{m-i}.$$

Mas

$$\sum_{i=1}^{m} a_{i}(n-i)^{p} \alpha^{m-i} = \sum_{i=1}^{m} a_{i} \alpha^{m-i} \sum_{j=0}^{p} \binom{p}{j} n^{j} (-i)^{p-j}$$

$$= \sum_{j=0}^{p} (-1)^{p-j} \binom{p}{j} n^{j} \sum_{i=1}^{m} a_{i} \alpha^{m-i} i^{p-j}$$

$$= \sum_{j=0}^{p-1} (-1)^{p-j} \binom{p}{j} n^{j} \sum_{i=1}^{m} a_{i} \alpha^{m-i} i^{p-j} + n^{p} \sum_{i=1}^{m} a_{i} \alpha^{m-i}.$$

$$= \sum_{j=0}^{m} (-1)^{m-j} \binom{p}{j} n^{j} \sum_{i=1}^{m} a_{i} \alpha^{m-i} i^{p-j} + n^{p} \sum_{i=1}^{m} a_{i} \alpha^{m-i}.$$

Veja que no primeiro somatório (parcela A) temos $0 \le j \le p-1$, logo $1 \le p-j \le \beta-1$. (lembramos que $p-j \le p \le \beta-1$). Logo, podemos aplicar o lema anterior para concluir que para qualquer j, com $0 \le j \le p-1$, temos $\sum_{i=1}^m a_i \alpha^{m-i} i^{p-j} = 0$, ou seja, S(j) = 0. Portanto a parcela A é igual a zero. Como α é raiz da equação característica, temos

$$\alpha^{m} - a_{1}\alpha^{m-1} - a_{2}\alpha^{m-2} - \dots - a_{m} = 0$$
 ou ainda $\alpha^{m} = \sum_{i=1}^{m} a_{i}\alpha^{m-i}$.

Portanto a parcela B é igual a $n^p \sum_{i=1}^m a_i \alpha^{m-i} = n^p \alpha^m$. Provamos que $\sum_{i=1}^m a_i (n-i)^p \alpha^{n-i} = n^p \alpha^n$.

O teorema 2 mostra que a cada fator do tipo $(x-r_i)^{s_i}$ de (2) podemos associar s_i soluções de (1), todas da forma $n^j r_i^n$, com $0 \le j \le s_i - 1$. Então, considerando que $Q(x) = \prod_{i=1}^R (x-r_i)^{s_i}$, podemos achar $\sum_{i=1}^R s_i = m$ soluções de (1).

Teorema 3. As m soluções citadas no parágrafo anterior são linearmente independentes sobre \mathbb{C} .

Demonstração. Podemos considerar as soluções como sendo da forma $n^j r_i^n$. Queremos provar que

$$\sum_{i=1}^{R} \sum_{j=0}^{s_i-1} a_{ij} n^j r_i^n = 0 \text{ implica } a_{ij} = 0,$$

para qualquer par de inteiros (i, j) com $1 \le i \le R$ e $0 \le j \le s_i - 1$.

Se R=1, temos que provar que se $\sum_{j=0}^{s_1-1} a_{1j} n^j r_1^n=0$ então todos os a_{1j} são nulos. Podemos supor $s_1>1$, já que o caso $s_1=1$ é completamente trivial. Antes de prosseguir, é bom lembrar que os r_i são complexos distintos e não nulos.

Se $\sum_{j=0}^{s_1-1} a_{1j} n^j r_1^n = 0$, $\sum_{j=0}^{s_1-1} a_{1j} n^j = 0$. Ou seja, temos um polinômio de grau $s_i - 1 > 0$ identicamente nulo. Logo todos os coeficientes são nulos, ou seja, todos os a_{1j} são nulos. Agora suponha que R > 1.

Veja que se $\sum_{i=1}^R \sum_{j=0}^{s_i-1} a_{ij} n^j r_i^n = 0$ então $\sum_{i=1}^R r_i^n \sum_{j=0}^{s_i-1} a_{ij} n^j = 0$. Se definirmos o polinômio $P_i(n)$ como sendo $\sum_{j=0}^{s_i-1} a_{ij} n^j$, temos que

$$\sum_{i=1}^{R} r_i^n P_i(n) = 0. (6)$$

Queremos mostrar que todos os polinômios $P_i(n)$ são identicamente nulos, ou seja, queremos mostrar que se $i \in \mathbb{N}$ e $1 \le i \le R$, então $P_i(n) = 0$ para todo n.

Sejam A e B subconjuntos de $\{1, 2, \ldots, R\}$ tais que para $i \in A$, o polinômio $P_i(n)$ não é identicamente nulo, e para $i \in B$, o polinômio $P_i(n)$ é identicamente nulo. É óbvio que $A \cap B = \emptyset$ e $A \cup B = \{1, 2, \ldots, R\}$. Queremos mostrar que A é vazio. Então suponha que A não é vazio.

Vamos definir r_m como o maior dos r_i , em módulo, que obedeça $i \in A$. Ou seja, r_m é tal que

$$|r_m| = \max\{|r_i| : i \in A\}.$$

Passando os termos com r_m para o outro lado da equação (6), temos

$$r_m^n P_m(n) = -\sum_{1 \le i \le R, i \ne m} r_i^n P_i(n),$$

e, dividindo tudo por r_m^n , ficamos com

$$P_m(n) = -\sum_{1 \le i \le R, i \ne m} (r_i/r_m)^n P_i(n).$$

O limite do lado direito é 0 para $n \to \infty$ já que $P_i(n)$ tem crescimento polinomial enquanto $(r_i/r_m)^n$ tende a zero exponencialmente. Mas então $\lim_{n\to\infty} P_m(n) = 0$, o que só pode ocorrer se o polinômio $P_m(n)$ for identicamente nulo. Isto é absurdo pois $m \in A$. Logo todos os polinômios $P_i(n)$ são identicamente nulos, o que prova o teorema 3.

Teorema 4. O conjunto λ citado no teorema 1 é um espaço vetorial de dimensão m.

Demonstração. Sabemos pelo teorema 3 que dim $\lambda \geq m$. Vamos mostrar que dim $\lambda \leq m$.

A equação (1) mostra que a função f(n) fica completamente determinada se soubermos os valores de $f(0), f(1), \ldots, f(m-1)$. Nesse caso, dado $n \in \mathbb{N}$, podemos escrever f(n) como combinação linear de $f(0), f(1), \ldots, f(m-1)$. Ou seja, existirão funções-coeficientes (coeficientes que dependem de n) $C_0(n), C_1(n), \ldots, C_{m-1}(n)$ tais que

$$f(n) = \sum_{j=0}^{m-1} C_j(n) f(j) \text{ para todo } n.$$
 (7)

Por outro lado, para todo n > m,

$$f(n) = \sum_{i=1}^{m} a_i f(n-i) = \sum_{i=1}^{m} a_i \sum_{j=0}^{m-1} C_j(n-i) f(j) = \sum_{j=0}^{m-1} f(j) \sum_{i=1}^{m} a_i C_j(n-i),$$

e como $\sum_{i=1}^m a_i C_j(n-i)$ é o coeficiente de f(j), temos $C_j(n) = \sum_{i=1}^m a_i C_j(n-i)$, e isto prova que para todo $j \in \mathbb{N}$ com $0 \le j \le m-1$, $C_j(n) \in \lambda$, já que $C_j(n)$ satisfaz a relação (1).

A equação (7) mostra que f(n) sempre pode ser escrito como uma combinação linear de m funções de λ . Seja $[v_1, v_2, \ldots, v_n]$ o espaço vetorial gerado pelos vetores do conjunto $\{v_1, v_2, \ldots, v_n\}$. Então $[C_0(n), C_1(n), \ldots, C_{m-1}(n)] \subset \lambda$, e portanto dim $\lambda \leq m$.

Conclusão Para resolvermos uma relação de recorrência como (1), fatoramos o polinômio característico de (1), como em (2). Para cada um dos r_i achados, teremos s_i soluções: $r_i^n, nr_i^n, n^2r_i^n, \ldots, n^{s_i-1}r_i^n$. No total teremos m soluções linearmente independentes da equação (1). O conjunto das funções que satisfazem a relação (1) é o espaço vetorial λ , de dimensão m, logo as nossas m soluções formam uma base para λ . Isso significa que uma função f pertence a λ se e somente se ela é combinação linear das nossas m soluções. Em símbolos:

$$f \text{ satisfaz } (1) \iff f \in \lambda \iff f(n) = \sum_{i=1}^{R} \sum_{j=0}^{s_i - 1} a_{ij} n^j r_i^n \text{ para todo } n.$$
 (8)

Foi dito anteriormente que a função f fica completamente determinada se já sabemos os valores iniciais $(f(0), f(1), \ldots, f(m-1))$. Mas se a função fica completamente determinada deveríamos ser capazes de determinar os a_{ij} em (8). Uma pergunta natural é: como achamos os a_{ij} se conhecemos os valores iniciais?

A resposta é simples: basta montar um sistema com m equações lineares e m incógnitas (os a_{ij}):

$$f(d) = \sum_{i=0}^{s_i - 1} a_{ij} d^j r_i^d \qquad 0 \le d \le m - 1$$

Veja que de fato as únicas variáveis desconhecidas são os a_{ij} .

Estamos procurando uma fórmula geral para uma função f que satisfaz (1) e cujos valores iniciais nós já sabemos. Esses valores iniciais determinam de modo único a função f. Como ela está em λ , ela tem uma representação na forma $f(n) = \sum_{i=1}^R \sum_{j=0}^{s_i-1} a_{ij} n^j r_i^n$, para todo n. Isso garante que o sistema linear terá ao menos uma solução. Como os a_{ij} são as coordenadas de f em relação à base $\{n^j r_i^n, 1 \le i \le R, 0 \le j \le s_i - 1\}$, a solução do sistema é única (um elemento de um espaço vetorial não admite duas representações distintas por coordenadas em relação à mesma base). Portanto podemos achar de modo único os a_{ij} .

Agradecimentos

Gostaria de agradecer aos meus orientadores, Edson de Faria e Yoshiharu Kohayakawa, pela imensa atenção dedicada ao nosso projeto de Iniciação Científica.