[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] divisibilidade
Oi, Francisco,
O correto é 10^100 - 4 e não 10^100 - 6.
Tipicamente estes exercícios devem ser resolvidos usando
"módulo". Mas este, em especial, dá pra fazer até
diretamente...
Solução 1)
Note que o 10^100 - 4 é um monte de noves (ou seja, 99 noves) terminando
com um 6, correto?
Mas cada grupo de seis noves (999999) é divisível por 7 dando
142857. Após os 96 primeiros algarimos (do dividendo) você
terá obtido no quociente 16 vezes a seqüência 142857 e sobrariam os
algarismos 9996 para terminar a divisão.
Mas 9996 é divisível por 7 dando 1428.
Solução 2)
Note a seguinte propriedade (pode prová-la: é um exercício simples e
elegante):
Seja N = (Mr), ou seja, os algarismos iniciais de N compõem o número M e
seu último algarismo (de N) é r.
Então N é divisívível por 7 sss M - 2r é divisível por
7.
Usando esta propriedade também dá para resolver seu problema
(tente).
Abraços,
Nehab
PS: Deixo a solução por "módulo" para os demais
colegas.
Abraços,
Nehab
At 15:39 15/8/2007, you wrote:
Como mostro que 7 | (10^100 -
6) ?
Grato.
Receba GRÁTIS as mensagens do Messenger no seu celular quando você
estiver offline. Conheça o MSN Mobile!
Cadastre-se
já!