[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] integral



I ln(secx+ tgx)dx= tgx*ln(secx+tgx) -1/cosx

On 7/31/07, saulo nilson <saulo.nilson@gmail.com> wrote:
w=lnsecx+tgx
dw= 1/secx+tgx * (-1/cosx^2 *-senx +secx^2)dx=
dw= cosxdx
cosxe^w-1=rq(1-cosx^2)
e^2wcosx^2-2cosxe^w+1=1-cosx^2
cosx^2(e^2w+1)-2cosxe^w=0
cosx= 2e^w/(e^2w+1)=2/(e^w+e^-w)=1/coshw
I w *coshw dw
u= w
du=dw
dv=coshwdw
v= senhw
I ln(sec x+tgx)dx= w*senhw-Isenhwdw= wsenhw-coshw
=`(n(secx+tgx) -1/cosx

 
On 7/31/07, antonio ricardo < raizde5mais1divididopor2@yahoo.com.br> wrote:
ola
poderiam me ajudar a resolver a seguinte integral

integral de ln(secx + tgx)

valeu

Alertas do Yahoo! Mail em seu celular. Saiba mais.