[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Integral - conjunto limitado
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Integral - conjunto limitado
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Sat, 23 Jun 2007 16:09:58 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=m6hp0PHZHiLnEMdW/JrhaVG6sj4eqkhGasWj7je8DXktNpg4jHRRY1kJ+/toRkOBTg5H297OKdH8wXoF1UoBJ5QYU0ixMHSpjCR6hGRQSJTE0i52z6zHQ4UdausqjSVzenferVj1KlvsuvdclaS6T3R7rww+Q/c+h1PI128QkaM=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=qcPTEsnvXGz9eTVqoG3wWlVwlSpXn8WOK0sy/HzjILwgf3QJ+5LD+n8a57+fqKa4IzGs0vrihgbdMcTvgs8ynJsKr+SQ+8qhWjAxQdHfSuRqAqe3Bmre35zYrdM7XnEbiFpsdjNxGwlWjswnb9cQFmuj637IWKhrHxcmUKL9B3k=
- In-Reply-To: <4c8e893e0706231053y763b3609l2817e44ade671712@mail.gmail.com>
- References: <4c8e893e0706231053y763b3609l2817e44ade671712@mail.gmail.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Iguuu,
veja que 1/sqrt(1 + t^3) <= 1/sqrt(t^3) = t^(-3/2)
assim, int 1/sqrt(1 + t^3) <= int t^(-3/2) = -2 * t^(-1/2) [faltam os
intervalos]
vamos dividir a integral (que é de 0 a x) para de 0 a 1 e 1 a x..
assim: int (0 a x) 1/sqrt(1 + t^3) = int (0 a 1) 1/sqrt(1 + t^3) + int
(1 a x) 1/sqrt(1 + t^3) <= int (0 a 1) 1/sqrt(1 + t^3) + [-2x^(-1/2) +
2]
mas int (0 a 1) 1/sqrt(1 + t^3) < int (0 a 1) 1 = 1
logo: int (0 a x) 1/sqrt(1 + t^3) <= 1 - 2/sqrt(x) + 2 = 3 - 2/sqrt(x) <= 3
logo: int (0 a x) 1/sqrt(1 + t^3) <= 3... portanto, é limitada.
abracos,
Salhab
On 6/23/07, Igor Castro <castrolima@gmail.com> wrote:
> Caros amigos da lista,
> como eu provo que se f(x) = Integral(de 0 a x) de (1+t^3)^(-1/2)dt ,
> então a imagem de f é um confunto limitado?
> []´s!
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================