[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Três Problemas de Probabilidade





On 5/23/07, Anselmo Alves de Sousa <anselmo_rj@hotmail.com> wrote:
Pensei em alguma coisa assim:
 
1)
Considerando que em cada tentativa, cada chave tem a mesma chance de ser escolhida. Seja
X é a variável aleatória número de tentativas até que a porta se abra pela primeira vez.
 
P(X=1)=1/n
P(X=2)=1/n*1/(n-1)
P(X=3)=1/n*1/(n-1)*1/(n-2)

.
.
.
P(X=k)=1/n*1/(n-1)*1/(n-2)* ...*1/(n+1-k)

Anselmo, pela sua resposta reparei um descuido tremendo na minha... Na primeira, fiz besteira.

2) Encontrei 0,037 e 0,2702

Na segunda, concordamos.

3) Encontrei [p - (1-p)/m] e (1-p)/m

No segundo item da 3 também concordamos, mas quanto ao primeiro (que está errada na minha resposta anterior)...
A chance dele responder corretamente é p ou não p e 1/m, certo? Não entendi a razão do menos na sua resposta, ali não seria um mais?

Um abraço.

Valdoir Wathier.

ALguém confirma esses valores?!

Date: Wed, 23 May 2007 14:21:32 -0300
From: vwathier@gmail.com
To: obm-l@mat.puc-rio.br
Subject: Re: [obm-l] Três Problemas de Probabilidade


On 5/23/07, Anselmo Alves de Sousa < anselmo_rj@hotmail.com> wrote:
Companheiros, gostaria de auxílio nas seguintes questões:
 
1) Um indivíduo tem n chaves, das quais somente uma abre uma porta. Ele seleciona, a cada tentativa,
uma chave ao acaso sem reposição e tenta abrir a porta. Qual a probabilidade de que ele abra a porta
na k-ésima tentativa (k=1,2,3...,n).

Todas têm exatamente a mesma chance de abrir a porta, que corresponde a 1/n e de não abrir a porta, por consequencia, a chance é de (n-1)/n, para qualquer chave.
A probabilidade de que uma dada chave abra a porta é de que nenhuma das anteriores abra a porta e que ela abra.
Por exemplo: Qual a probabilidade de a terceira chave abrir a porta?
A primeira chave não abre: (n-1)/n.
A segunda chave não abre: (n-1)/n.
A terceira chave abre: 1/n.
A probabilidade, então, seria de [(n-1)/n]^2 * 1/n

Por este mesmo raciocínio, para saber o resultado geral, basta pensar que teremos k-1 portas que não devem abrir a chave e então uma porta que abre, ou seja:
[(n-1)/n]^(k-1) * 1/n... isso pode ser simplificado ficando algo como (n - 1)^(k-1) / n^k

Acho que é algo nessa linha.

2) Três máquina A, B e C produzem 50%, 30% e 20%, respectivamente, do total de peças de uma fábrica.
As porcentagens de produção defeituosa destas máquinas são 3%, 4% e 5%. Se uma peça é selecionada
aleatoriamente, ache a probabilidade de ela ser defeituosa. Se a peça selecionada é defeituosa, encontre a
probabilidade de ter sido produzida pela máquina C.

Probabilidade de  ser defeituosa:  Para isso você pega o percentual de produção de cada máquina e multiplica pelo percentual de peças com defeito que cada uma produs.
ATENÇÃO: estou considerando que os 3% significam que do total de peças produzidas pela máquina A, 3% apresentam defeito (acho que isto não está bem claro no enunciado, pois pode referir-se ao total de peças também).
Máquina A: 0,5 * 0,03 = 0,015 (1,5% das peças possuem defeito E foram produzidas pela máquina A).
Máquina B: 0,3 * 0,04 = 0,012 (1,2% das peças possuem defeito E foram produzidas pela máquina B).
Máquina C: 0,2*0,05 = 0,01 (1% das peças possuem defeito E foram produzidas pela máquina C).

A probabilidade da peça ser defeituosa é 1,5% + 1,2% + 1% = 3,7%.

Sabendo que ela é defeituosa, qual a probabilidade de ter sido produzida pela máquina C?
A maquina C responde por 1/3,7 das peças defeituosas, então, a probabilidade é de aproximadamente 27%.

3) A probabilidade de que um aluno saiba a resposta de uma questão de um exame de múltipla escolha é p.
Há m respostas possíveis para cada questão, das quais apenas uma é correta. Se o aluno não sabe a resposta para uma dada questão, ele escolhe ao acaso uma das m respostas possíveis.
 a) Qual é a probabilidade de o aluno responder corretamente uma questão?
    1/m
 
b) Se o aluno respondeu corretamente à questão, qual é a probabilidade de que ele tenha "chutado" A resposta?
  Há duas formas dele acertar. A primeira é sabendo a questão, o que corresponde a P, a segunda é, se não souber (não p), chutar e acertar. Ainda poderia chutar e errar, mas já sabemos que acertou, então, a probabilidade de que ele tenha chutado é a probabilidade de: ele NÃO saber (que corresponde a probabiliade dele chutar) E acertar.

 (1 - p)*(1/m) = (1-p)/m

Desde já grato pela sua ajuda!



Espero que ajude,

Valdoir Wathier.




Obtenha o novo Windows Live Messenger! Experimente!