[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Somatório
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Somatório
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Sun, 6 May 2007 02:34:32 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=hRMkqTXmpj62Ag3GZWsRb/3YbJmDbVCYzeoQqPXXyK9cdy9ZDj/cty1da4c8OwT6JqtyygpFWdbHP342AObzF5qHVWQhq2AsVZpmFDO3UpavFj0mb76spjuzKRIi3CPuP0BQ+Z0hyLWVqRI+V8+cpEJ99uy1EzkvQgXrVSmMqD0=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=gXFqxlZw6ISY9RJ8gPAfLKfh405s1Z8DxWlsFI7mXAYUZV+HLJmF8leVkJCTXYpmAnVKddOFEazlvW1KjyaVNtOvGsrT1qt+l26SqnDjQ1UK+h6zSRBRtDRmer5ya4trHxdCBE4ZBlk1X/YrteRERGs3aOg5lzLjpV2LjTkkysA=
- In-Reply-To: <37c27dd00705051836j5d97d3bbta894a9fc6cf1c0a1@mail.gmail.com>
- References: <37c27dd00705051836j5d97d3bbta894a9fc6cf1c0a1@mail.gmail.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Olá Felipe,
usando fracoes parciais, temos:
i/[(i+1)(i+2)(i+3)] == A/(i+1) + B/(i+2) + C/(i+3)
resolvendo, temos:
A = -1/2
B = 2
C = -3/2
logo: Sum i/[(i+1)(i+2)(i+3)] = -1/2 * Sum 1/(i+1) + 2 * Sum 1/(i+2) -
3/2 * Sum 1/(i+3)
onde todos os somatorios vao de 1 até N
veja que Sum[i=1->N] 1/(i+1) = Sum[i=0->N-1] 1/(i+2) = 1/2 - 1/(N+2) +
Sum[i=1->N] 1/(i+2)
e que Sum[i=1->N] 1/(i+3) = Sum[i=2->N+1] 1/(i+2) = 1/(N+3) - 1/3 +
Sum[i=1->N] 1/(i+2)
deste modo:
Sum i/[(i+1)(i+2)(i+3)] = -1/2 * [1/2 - 1/(N+2) + Sum 1/(i+2) ] + 2 *
Sum 1/(i+2) - 3/2 * [ 1/(N+3) - 1/3 + Sum 1/(i+2) ]
opaa.. o somatorio cortou! ficando:
-1/2 * [1/2 - 1/(N+2)] - 3/2 * [1/(N+3) - 1/3]
basta terminar as contas agora!
abracos,
Salhab
On 5/5/07, Felipe Régis <bluttau@gmail.com> wrote:
> Olá pessoal,
>
> Alguém poderia me ajudar a demonstrar que,
> S(n) = Sum[i=1->n] {i/[(i+1)(i+2)(i+3)]} = [n(n+3)]/[4(n+1)(n+2)]
> Comecei a desenvolver a soma isoladamente mas não achei nenhuma relação que
> pudesse me ajudar:
>
> S(0)=0
> S(1)=1/24
> S(2)= 3/40
> S(3)=1/10
> ...
> S(n)= [n(n+3)]/[4(n+1)(n+2)]
>
> Obrigado!
> Felipe Régis e Silva
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================