[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] trigonometria
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] trigonometria
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Sat, 7 Apr 2007 14:03:56 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=Jbt7uHeBn95UCO+D8ZeGI5aIe+0sPYK547zDtQ0BvcST36p0Y4bZttvBDfrkh5h1DLXwkpHIR/tPElc/FCdrTIass0FIgV8PACSHeT/cVz6zWRwr7TySMRXLi3pfZHAD75I3+2PQwtz4NVE9N2XSG4SVv2U5yGaavCJ5wJJeMbg=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=qHUPj6AkAszM3bJLaHjS0vgFrcufmuLkXZ7DcnXbnq3F/e0oqguRvVGJzfokjT25Mqi2gxClPRKnisjXbZxr8pduTv06gdsoNjoxcKYfSzYig1g2F2k+8q6Buq9iJaZ/MfElvpPllHNiYNmwUWroWv3kpBn5D5hmjzzRL6zbh7o=
- In-Reply-To: <JG3WXN$FEEFA3716B430C4FD5F94A63E5477D08@uol.com.br>
- References: <JG3WXN$FEEFA3716B430C4FD5F94A63E5477D08@uol.com.br>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Ola,
nao entendia sua pergunta, vamos la:
sen(2x) = 2senxcosx = 2senx
vamos dizer que senx=0, entao, um conjunto de solucoes é: x = k*pi
agora, para senx != 0, temos:
2cosx = 2
cosx=1... x = k*2*pi
como a conjunto solucao eh a uniao destas solucoes:
U = { x | x = k*pi, k inteiro }
abracos,
Salhab
On 4/6/07, vitoriogauss <vitoriogauss@uol.com.br> wrote:
> sen2x = 2senx ...só para x real?????????
>
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================