[
Date Prev
][
Date Next
][
Thread Prev
][
Thread Next
][
Date Index
][
Thread Index
]
[obm-l] Sequencia
To
:
obm-l@xxxxxxxxxxxxxx
Subject
: [obm-l] Sequencia
From
: Klaus Ferraz <
klausferraz@xxxxxxxxxxxx
>
Date
: Tue, 3 Apr 2007 14:17:43 -0700 (PDT)
DomainKey-Signature
: a=rsa-sha1; q=dns; c=nofws; s=s1024; d=yahoo.com.br; h=X-YMail-OSG:Received:X-Mailer:Date:From:Subject:To:MIME-Version:Content-Type:Message-ID; b=qxuwenelAsJBbNFqSAhRJK+TuvNj9YgNFsszaqsvOhg2ESts0cVIh7fFOVOyh/rdfg1J6wjkWfcNQB4Ti9kE2Qjr86K5n9quvZ42cvmNMmtH+5K/WpJu/ZLnDb3n0/bpqr9sR/FZfuYu53FyxvTp+KTC+UjyYFPQR7t/fnODDtg=;
Reply-To
:
obm-l@xxxxxxxxxxxxxx
Sender
:
owner-obm-l@xxxxxxxxxxxxxx
Sejam a_0 e b_0 dados com 0<a_0<b_0. Sejam
a_(n+1) = (a_n + b_n)/2 e b_(n+1) = (a_n*b_n)^1/2
Mostre que que existe m (chamado média aritmético-geometrica de a_0 e b_0)
tal que a_n-->m <--b_n.
Vlw.
__________________________________________________
Fale com seus amigos de graça com o novo Yahoo! Messenger
http://br.messenger.yahoo.com/
Follow-Ups
:
Re: [obm-l] Sequencia
From:
Marcelo Salhab Brogliato
Prev by Date:
Re:[obm-l] tabuleiro
Next by Date:
Re: [obm-l] Sequencia
Prev by thread:
Re: [obm-l] Exclusão da Lista
Next by thread:
Re: [obm-l] Sequencia
Index(es):
Date
Thread