[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Números de divisores
On Mon, Feb 12, 2007 at 12:03:39PM -0300, ricgjf@ibest.com.br wrote:
> Seja n = 2^95 * 3^19. Determine o número de divisores inteiros
> positivos de n^2 menores que n que não são divisores de n.
O número de divisores (inteiros positivos) de n^2 = 2^190 * 3^38
é 191*39 = 7449. Exceto pelo divisor n, podemos casar os divisores aos pares,
casando m com n^2/m: temos 7448/2 = 3724 pares.
O menor elemento de cada par é menor do que n, o maior é maior.
Assim n^2 tem 3724 divisores menores do que n.
O número de n é 96*20 = 1920. Assim a resposta é 3724 - 1920 = 1804.
[]s, N.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================