[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] BUG MENTAL!
Acredito que como o atleta corre a velocidades constantes ao percorrer a
pista oq conta eh o tempo em que farao os 4 metros restantes. O Atleta mais
lento os 4 metros da pista e o atleta rapido os 4 metros a mais. como o
atleta a corre mais, sempre ganhara.
Agora generalizando, para x metros. O atleta pecorrendo uma distancia d
qualquer soh poderia chegar obviamente ao maximo uma distancia d a frente do
outro logo o x se limita a valores entre 0 e d. onde 0 seria o ponto de
empate e d o valor maximo no qual o atleta mais lento estaria parado no
ponto de partida.
Para o atleta lento ganhar teria de diminuir de seu percurso uma distancia
de x metros.
----- Original Message -----
From: "Filipe de Carvalho Hasché" <filipe_carvalho@hotmail.com>
To: <obm-l@mat.puc-rio.br>
Sent: Wednesday, January 24, 2007 6:06 PM
Subject: Re: [obm-l] BUG MENTAL!
>> > >> Um atleta após ganhar uma prova com 4 metros de
>> > >> vantagem, se propôs começar
>> > >> 4 metros antes da linha de partida. Quem ganhará
>> > o novo páreo?
>
> ===============================================
>
> Seja "d" o comprimento em metros da pista de corrida.
>
> Supondo velocidade constante de ambos, lembremos da famosa formulinha: v =
> s / t ou t = s / v
>
> 1°) Em um intervalo de tempo "t1":
>
> --> O atleta "A" completa os d metros imprimindo uma velocidade "vA":
> vA = d/t1
>
> --> O atleta "B" completa apenas (d-4) metros imprimindo sua velocidade
> "vB": vB =(d-4)/t1
>
>
> 2°) Na revanche, supondo que cada um imprimirá a mesma velocidade da
> corrida anterior, temos:
>
> --> O atleta A precisa percorrer (d+4) metros:
>
> tA = (d+4) / vA ou tA = (d+4) / (d/t1)
>
>
> --> O atleta B precisa percorrer d metros:
>
> tB = d / vB ou tB = d / [(d-4)/t1]
>
>
> 3°) Agora falta descobrir qual tempo foi menor: tA ou tB ?
>
> Basta estudarmos o comportamento das funções:
>
> tA = (d+4)/d e tB = d/(d-4) **
>
> ** Já que a intenção é apenas comparar, podemos suprimir o "t1" de ambas
> as sentenças.
>
> O gráfico de ambas é uma hipérbole.
>
> Analisando o comportamento desses gráficos e levando em conta de que d>4,
> concluímos (Eu e o Cabri, hehehe) que a função tA é menor.
>
> Logo, o corredor B é um prego, mesmo!! Nem com 4m de lambuja consegue
> ganhar.
>
> Quanto maior for a pista (d --> +inf.), o 2° páreo tende ao empate.
> O corredor B nunca vencerá.
>
> Agora vem a indagação:
>
> E se em vez de 4 metros, o enunciado generalizasse para x metros?
> Ou seja: se um cara ganhar com x metros de vantagem, começaria o 2° páreo
> com os mesmos x metros antes da partida.
>
> Divirtam-se!
> Abraços,
> FC.
>
> _________________________________________________________________
> MSN Hotmail, o maior webmail do Brasil. http://www.hotmail.com
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================