[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Soma de binomiais



Desenvolvendo (1+i)^n vc tem C(n,0) + i*C(n,1) -C(n,2) -i*C(n,3) + C(n,4)... Ou seja, a parte real do (1+i)^n é a soma que vc quer.

Re[(1+i)^n] = 1 -  C(n,2) + C(n,4) - ...

(1+i)^n = sqrt(2)^n*cis(45º*n)=sqrt(2)^n*cos(45n) + i*sqrt(2)^n*sen(45), e portanto a parte real é sqrt(2)^n*cos(45ºn). Substituindo n por 4n, temos a soma q vc quer: 1 -  C(4n,2) + C(4n,4) - ... - C(4n,4n-2) + 1 = sqrt(2)^4n*cos(45*4n) = sqrt(2)^4n*cos(180n) =2^(2n)*cos(180n)

cos(180n) = (-1)^n

S=2^(2n)*(-1)^n

Letra A

Iuri


On 10/29/06, J. Renan <jrenan@gmail.com > wrote:
Olá! Peço ajuda na resolução do seguinte exercício..

Para cada n pertencente aos naturais, temos que;

1 -  C(4n,2) + C(4n,4) - ... - C(4n,4n-2) + 1 é igual a:

a) (-1)^n*2^(2n)
b)2^(2n)
c)(-1)^n*2^n
d)(-1)^(n+1)*2^(2n)
e)(-1)^(n+1)*2^n


** C(x,y) denota a combinação de x elementos tomados y a y.


Pensei em fazer o seguinte... organizar a soma e a subtração e substituir o primeiro 1 por C(4n,0) e o último por C(4n,4n), ai ficamos com:

S = C(4n,0) + C(4n,4) + C(4n,8) + ... + C(4n,4n) - [ C(4n,2) + C(4n,6) + C(4n,10) + ... + C (4n,4n-2) ]

Não consigo aplicar aquele conceito da soma de uma linha no triângulo de pascal. Cheguei até onde consegui.. qualquer ajuda seria de grande valia!



Abraços,
Jonas Renan