[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] RES: [obm-l] Conjunto onde vale o Teorema do Valor Intermediário
Olhei rapidinho, mas acho que nao precisa ser X = R nao. Se I for um
conjunto finito de irracionais, entao X = R - I satisfaz aa sua condicao,
certo? Por exemplo X = (-oo , raiz(2)) U (raiz(2) , oo)
Artur
-----Mensagem original-----
De: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em
nome de Ralph Teixeira
Enviada em: terça-feira, 26 de setembro de 2006 12:05
Para: obm-l@mat.puc-rio.br
Assunto: [obm-l] Conjunto onde vale o Teorema do Valor Intermediário
Uma aqui para vocês (cuja resposta eu ainda não sei).
Seja X um conjunto contendo os racionais e contido em R. Suponha que
vale o TVI em X, isto eh, se f:X em X é contínua e f(a)<c<f(b) (com a, b, c
em X) então existe x em (a,b) (e em X) tal que f(x)=c. Aposto que X=R... mas
como provar isto?
Abraço,
Ralph
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================