[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re:[obm-l] somatorio
De: |
owner-obm-l@mat.puc-rio.br |
Para: |
obm-l@mat.puc-rio.br |
Data: |
Sat, 27 May 2006 03:41:49 +0000 (GMT) |
Assunto: |
[obm-l] somatorio |
> Calcule : sum(k=0->n)k^2*C(n,k)*5^k
>
> gab: 5n(5n+1)6^(n-2).
Usando repetidamente o fato de que k*C(n,k) = n*C(n-1,k-1), temos:
k^2*C(n,k) =
k*n*C(n-1,k-1) =
n*(k-1)*C(n-1,k-1) + n*C(n-1,k-1) =
n*(n-1)*C(n-2,k-2) + n*C(n-1,k-1).
Logo, a soma fica:
n*(n-1)*SOMA(k=0...n) C(n-2,k-2)*5^k +
+ n*SOMA(k=0...n) C(n-1,k-1)*5^k =
n*(n-1)*5^2*SOMA(j=0...n-2) C(n-2,j)*5^j +
n*5*SOMA(j=0...n-1) C(n-1,j)*5^j =
25*n*(n-1)*(1 + 5)^(n-2) + 5*n*(1 + 5)^(n-1) =
(25*n^2 - 25*n + 30*n)*6^(n-2) =
5*n*(5*n+1)*6^(n-2)
[]s,
Claudio.