[
Date Prev
][
Date Next
][
Thread Prev
][
Thread Next
][
Date Index
][
Thread Index
]
Re: [obm-l] Cubo Perfeito
To
:
obm-l@xxxxxxxxxxxxxx
Subject
: Re: [obm-l] Cubo Perfeito
From
: Iuri <
iurisilvio@xxxxxxxxx
>
Date
: Tue, 31 Jan 2006 21:46:33 -0200
DomainKey-Signature
: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=IABs81CDeeTt4Yo6LaNciocS6XMM9Wb9IANgXeskNw84OO0uw2A+wyJWb+z66abV1LbsgGW6iYsKzfBiWPJXTsfbSUzUHiSpvfzZHZFfy7YSF7yWiET2rhY7CHKdRgFgTNL5McjlzvxvbhobFYaMQOKQeHvdpG9e6YtsNaOKCI0=
In-Reply-To
: <
20060131225734.66012.qmail@web34901.mail.mud.yahoo.com
>
References
: <
20060131225734.66012.qmail@web34901.mail.mud.yahoo.com
>
Reply-To
:
obm-l@xxxxxxxxxxxxxx
Sender
:
owner-obm-l@xxxxxxxxxxxxxx
x^2 - y^2 = (x+y)(x-y) = 432 = 2^4 * 3^3
Isso ai vai dá 5*4=20 sistemas.. Basta resolvê-los. Mas deve haver maneira pra eliminar parte dessas solucoes... daqui a pouco alguem dá uma luz..
Em 31/01/06,
Klaus Ferraz
<
klausferraz@yahoo.com.br
> escreveu:
Ache todas as solucoes inteiras de y^2=x^2-432.
Yahoo! doce lar.
Faça do Yahoo! sua homepage.
References
:
[obm-l] Cubo Perfeito
From:
Klaus Ferraz
Prev by Date:
[obm-l] [obm-l] 3 Questões de Calculo aplicadas ao cotidiano
Next by Date:
[obm-l] Fraude em BINGO
Prev by thread:
[obm-l] Cubo Perfeito
Next by thread:
[obm-l] Fraude em BINGO
Index(es):
Date
Thread