Nao eh nao. Tem o 0 no centro do intervalo, e 1/x^2 torna-se ilimitada em uma vizinhanca de 0. O teorema fundamental do calculo integral, que vc usou aqui, nao vale para integrais improprias. Faca um grafico de 1/x^2 no intervalo [-2, 2].
Artur
se a integral de 1/x^2 = -1/x
entao temos:
-1/2-(-1/-2)=-1
On 11/28/05, Artur Costa Steiner <artur.steiner@mme.gov.br
> wrote:
Uma das primitivas de 1/x^2 eh -1/x, a qual vai para infinito aa esquerda de
0 e para menos infinito aa direita. Temos que Integral(-2 a 0) f(x) dx = oo
e Integral(o a 2) f(x) dx = oo, de modo que a integral impropria pedida,
pelça definicao usual, eh infinito.
Artur
-----Mensagem original-----
De:
owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em
nome de Camilo Damiao
Enviada em: segunda-feira, 28 de novembro de 2005 18:05
Para: Lista da obm
Assunto: [obm-l] Questao de Calculo
Será que alguem me ajuda com essa integral aki...
Parece trivial mas a resposta não bate...
Integral definida de -2 até 2 de 1/x^2 dx...
Desde já agradeço...
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================