[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Ajuda
Me parece correta.
De fato, bastava escolher o indice r tal que p nao divide p_r - q_r e
colocar f(x_1,...,x_r,...,x_n) = x_r - p_r.
[]s,
Claudio.
on 11.12.04 22:00, diogo_diniz@zipmail.com.br at diogo_diniz@zipmail.com.br
wrote:
>
> Olá pessoal. Será que alguém poderia comentar essa minha solução para o
> problema 4 da OBM nivel U.
>
> Solução:
>
> Basta resolver para k=1 pois se existem polinômios f_i(X), tais que
> f_i(P_i)=0 e f_i(Q) não é multiplo de p então o polinômio
> f(X)=f_1(X).(...).f_k(X)satisfaz.
> Considere então k=1. Vamos definir f da seguinte forma
> f(x_1,...,x_n)=(x_1 - a_1).(...).(x_n - a_n)
> onde a_i= p_i, se p nao divide p_i-q_i e a_i=q_i + 1 se p divide p_i-q_i.
> Como q_i-a_i não é múltiplo de p para todo i e p é primo segue que f(Q)
> nao é múltiplo de p. Além disso como (P_1 - Q)/p nao pertence a Z^n temos
> que a_i = p_i para pelo menos algum i e portanto f(P_1)=0.
>
> obs.: P_1 =(p_1,...,p_n) e Q=(q_1,...,q_n)
>
>
> Diogo Diniz P. S. Silva
>
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================