[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] probabilidade e estatística



Olá

  Estou com dúvida em dois exercícios do tipo Verdadeiro ou Falso ( 
justificando):

1)Sejam: X uma v.a. contínua com fdp f e fda F e X1,...,Xn uma amostra 
aleátória de X. Se M é o valor mínimo da amostra, então a fdp de M será dada 
por g(m)=n{[F(m)]^(n-1)]}*f(m)

2) Seja o modelo de regressão yt=B1+B2*yt + et, onde xt é não estocástica e 
et satisfaz as hipóteses usuais do modelo de regressão. O R^2 dessa 
regressão será extamente igual a 1 se, e só se, o valor do estimador de MQO 
de D2 da equação xt = D1 + D2*yt + ut for exatamente igual ao inverso do 
valor do estimador de MQO de B2.

Tinha uma cujo enunciado era:
Seja X um va contínua com fdp f e fda F. Defina Y como outra va tal que 
Y=F(X). Então F será uniformemente distribuida sobre [0,1]

Minha resposta: Como X é contínua e F é não decrescente, temos que existe a 
inversa de F, F^-1. Seja Fy a fda de Y. Daí 
Fy(a)=P(Y<a)=P(F(X)<a)=P(X<F^-1(a))=F[F^-1(a)]=a.Logo Fy(y)=y e, assim, 
fy(y)=1. Resposta: Verdadeiro. Isto está correto?

Obrigado por qualquer ajuda.

Murilo

_________________________________________________________________
MSN Hotmail, o maior webmail do Brasil.  http://www.hotmail.com

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================