[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Problema



Bem, essa pergunta eu tambem iria fazer.
E que e meio estranho voce ver uma mensagem da lista para a lista...
Que tal voce colocar um pseudonimo, algo como Eder na Lista OBM?
Isto nao gasta nada (alem de alguns caracteres :) )
Te mais!!!
 

Lista OBM <obm_lista@yahoo.com.br> wrote:
Meu caro Cláudio, meu nome é Éder Franklin da Silva. Meu login é Lista OBM porque tenho mais de um e-mail no Yahoo (pra ser mais exato possuo 4 e-mail´s) e porque essa lista envia muitas mensagens por dia. Daí preferi criar um e-mail especialmentre para ela e, nada mais natural colocar um login (Lista OBM ) que se indentique com o nome dela. Agora não entendi porque você quer saber meu nome.
Ah, obrigado pela solução. Acho que está correta.
 
Grato, Éder Franklin da Silva.
 
Está bom assim?

"claudio.buffara" <claudio.buffara@terra.com.br> wrote:
From: Lista OBM <obm_lista@yahoo.com.br>
To: obm-l@mat.puc-rio.br
Sent: Fri, 28 May 2004 11:41:34 -0300 (ART)
Subject: [obm-l] Problema

> Gostaria de saber se alguém poderia me ajudar com o seguinte problema:
> Sejam A e B anéis ordenados. Diz-se que um homomorfismo injetivo fA --> B preserva ordem se, para todo a > 0 em A, tivermos f(a) > 0. Sejam K um corpo ordenado e fQ --> K um homomorfismo injetivo dos números racionais em K. Mostre que, necessariamente, f preserva a ordem.
>  
> Grato desde já com a possível ajuda de vocês.
>
Antes de mais nada, qual o seu nome? Espero sinceramente que nao seja "Lista OBM"...
 
Agora, sobre o problema:
 
Como f eh injetivo, K contem uma copia isomorfica de Q. Alem disso, eh facil ver que f(1) = 1_k = elemento neutro da multiplicacao em K, e que isso implica que se m/n pertence a Q (m, n inteiros), entao f(m/n) = m_k/n_k, onde:
m_k = 1_k + 1_k + ... + 1_k (m parcelas).
 
Como K eh ordenado, 1_k = 1_k*1_k > 0_k, ou seja, f(1) > 0_k ==> f(1) eh positivo em K.
Logo, f(m) = f(1+1+...+1) = 1_k + 1_k + ... + 1_k = m_k tambem eh positivo em K.
 
1_k = f(1) = f(m*1/m) = f(m)*f(1/m) = m_k*f(1/m) ==>
f(1/m) = 1_k/m_k.
Logo, m > 0 ==> 1/m > 0 ==> f(1/m) = 1/m_k > 0_k.
 
Assim, provamos que se m > 0 e n > 0 em Q, entao f(m) > 0_k e f(1/n) > 0_k.
 
Agora, dado um racional positivo m/n (m,n inteiros), podemos assumir s.p.d.g. que m > 0 e n > 0 e, portanto, f(m/n) = f(m*1/n) = f(m)*f(1/n) > 0_k.
 
Ou seja, se a > 0 em Q, entao f(a) > 0_k em K.
 
[]s,
Claudio.
 
 
 
 
 
 
 
 



Yahoo! Messenger - Fale com seus amigos online. Instale agora!


TRANSIRE SVVM PECTVS MVNDOQVE POTIRI

CONGREGATI EX TOTO ORBE MATHEMATICI OB SCRIPTA INSIGNIA TRIBVERE

Fields Medal(John Charles Fields)
 
N.F.C. (Ne Fronti Crede)



Yahoo! Mail - Participe da pesquisa global sobre o Yahoo! Mail. Clique aqui!