[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Digitos de 1000!



Excelente! Exatamente a solução que eu achei.

Agora, vamos ver se você é bom mesmo: faça o terceiro do mesmo jeito. :-)

[]s,
Claudio.

----- Original Message -----
From: "Qwert Smith" <lord_qwert@hotmail.com>
To: <obm-l@mat.puc-rio.br>
Sent: Monday, March 22, 2004 2:04 PM
Subject: RE: [obm-l] Digitos de 1000!


> Como qualquer um ve sem nenhuma dificuldade 1000! =
> 40238726007709377354370243392300398571937486421071463254379991042993851239
> 86290205920442084869694048004799886101971960586316668729948085589013238296
> 69944590997424504087073759918823627727188732519779505950995276120874975462
> 49704360141827809464649629105639388743788648733711918104582578364784997701
> 24766328898359557354325131853239584630755574091142624174743493475534286465
> 76611667797396668820291207379143853719588249808126867838374559731746136085
> 37953452422158659320192809087829730843139284440328123155861103697680135730
> 42161687476096758713483120254785893207671691324484262361314125087802080002
> 61683151027341827977704784635868170164365024153691398281264810213092761244
> 89635992870511496497541990934222156683257208082133318611681155361583654698
> 40467089756029009505376164758477284218896796462449451607653534081989013854
> 42487984959953319101723355556602139450399736280750137837615307127761926849
> 03435262520001588853514733161170210396817592151090778801939317811419454525
> 72238655414610628921879602238389714760885062768629671466746975629112340824
> 39208160153780889893964518263243671616762179168909779911903754031274622289
> 98800519544441428201218736174599264295658174662830295557029902432415318161
> 72104658320367869061172601587835207515162842255402651704833042261439742869
> 33061690897968482590125458327168226458066526769958652682272807075781391858
> 17888965220816434834482599326604336766017699961283186078838615027946595513
> 11565520360939881806121385586003014356945272242063446317974605946825731037
> 90084024432438465657245014402821885252470935190620929023136493273497565513
> 95872055965422874977401141334696271542284586237738753823048386568897646192
> 73838149001407673104466402598994902222217659043399018860185665264850617997
> 02356193897017860040811889729918311021171229845901641921068884387121855646
> 12496079872290851929681937238864261483965738229112312502418664935314397013
> 74285319266498753372189406942814341185201580141233448280150513996942901534
> 83077644569099073152433278288269864602789864321139083506217095002597389863
> 55427719674282224875758676575234422020757363056949882508796892816275384886
> 33969099598262809561214509948717012445164612603790293091208890869420285106
> 40182154399457156805941872748998094254742173582401063677404595741785160829
> 23013535808184009699637252423056085590370062427124341690900415369010593398
> 38357779394109700277534720000000000000000000000000000000000000000000000000
> 00000000000000000000000000000000000000000000000000000000000000000000000000
> 00000000000000000000000000000000000000000000000000000000000000000000000000
> 0000000000000000000000000000000000000000000000000000
>
> logo o numero de zeros e 249 e ultimo digito nao nulo e 2
>
> :),
> Auggy
>
>
> >From: "Cláudio \(Prática\)" <claudio@praticacorretora.com.br>
> >Reply-To: obm-l@mat.puc-rio.br
> >To: <obm-l@mat.puc-rio.br>
> >Subject: [obm-l] Digitos de 1000!
> >Date: Mon, 22 Mar 2004 12:08:54 -0300
> >
> >HelpOi, pessoal:
> >
> >Já que o assunto é potências de primos que dividem n!, aqui vai um
> >bonitinho:
> >
> >1) (clássico) Por quantos zeros termina a representação decimal de 1000!
> >
> >2) (menos conhecido e mais difícil) Qual o último algarismo não nulo na
> >representação decimal de 1000!
> >
> >3) (generalização) Qual o último algarismo não nulo de n!?  Dica não
muito
> >útil: é sempre par se n > 1.
> >
> >
> >[]s,
> >Claudio.
> >
>
> _________________________________________________________________
> Check out MSN PC Safety & Security to help ensure your PC is protected and
> safe. http://specials.msn.com/msn/security.asp
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================