[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] (n!)^(1/n) -> iinf



On Sun, Jan 25, 2004 at 03:55:08PM -0200, Artur Costa Steiner wrote:
> Um exercicio interessante eh demonstrar que (n!)^(1/n) -> inf.

Que tal assim?

lim log((n!)^(1/n)) = lim (log n!)/n

mas sabemos que

lim n!/(n^n e^(-n) sqrt(2 pi n)) = 1

donde

lim (log(n!) - log(n^n e^(-n) sqrt(2 pi n))) = 0

e com mais forte razão

lim (log n!)/(log(n^n e^(-n) sqrt(2 pi n))) = 1

donde

lim log((n!)^(1/n)) = 
lim log(n^n e^(-n) sqrt(2 pi n)))/n =
lim log(n) - lim e + lim log(sqrt(2 pi n))/n = +infinito
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================