[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Distribuicao de probabilidade da energia disponivel no sistema brasileiro



Conforme eu disse numa outra mensagem (que acho que ficou um tanto confusa,
pois ninguem comentou), a energia eletrica G disponível no sistema
brasileiro em um mes do futuro eh uma variavel aleatoria com uma fdp f
definida em [0, Gmax].  Se r eh o requisito de energia no mes em questao
(suposto conhecido) e D eh o deficit de energia, entao D = r-G se E<r e D=0
se G>=r. Temos entao que a esperanca de deficit para um dado r eh  E(r) =
Integral (0 a r) (r-g) f(g) dg. Supondo-se f continua em [0, Gmax] - o que
parece razoavel - e independente de r - hipotese forte - esta integral
existe e a funcao E eh diferenciavel com relacao a r. Usando a formula de
Leibiniz ou desenvolvendo a integral e computando derivadas ordinarias,
considerando-se o T. Fundamental do C. Integral, concluimos neste caso
simplificado que E'(r) = Integral (0 a r) f(g) dg = Probabilidade(G<=r) =
Probabilidade(D>=0) =  R(r) = probabilidade de haver defcit (parametro
tecnicamente conhecido por risco de deficit). Para variacoes em r da ordem
de + ou - 5% posso entao fazer a estimativa Delta E(r) =~ Delta r * R(r) .
Esta conclusao, valida no caso simplificado, eh muito interessante, pois me
permite estimar variacoes no deficit esperado para variacoes em r apenas
sabendo que f existe e eh continua. Nao eh preciso conhecer como exatamente
f envia g a f(g). Na realidade, f nao eh mesmo conhecida em forma fechada,
eh estimada por modelos de simulacao com base em um metodo semelhante ao de
Monte Carlo. 
Mas no caso mais realista a funcao f depende de r, temos que f pode ser
vista como uma funcao de R^2 em R+ tal que, para um r fixo, f eh a fdp de G
para este r. A esperanca de deficit eh entao dada por E(r) = Integral (0 a
r) (r-g) f(r,g) dg . Assumindo que f e sua derivada parcial com relacao a r,
f_r, sejam continuas, podemos aplicar a formula de Leibiniz, para obter
E'(r) =  (r-r) f(r,g) + Integral (0 a r) d/dr [(r-g) * f(r,g)] dg = Integral
(0 a r) f(r,g) dg + Integral (0 a r) (r-g) f_r(r,g) dg. Logo,  E'(r) = R(r)
+  Integral (0 a r) (r-g) f_r(r,g) dg. Aparece agora uma parcela adicional
dada pela integral acima, cujo calculo, ou mesmo estimativa atraves de
metodos analiticos, parece ser muito dificil.
Minha duvida eh, sera que existe uma ferramenta, algum teorema, do Analise
Matematica que permita estimar analiticamente aquela integral?
Obrigado.
Artur  

________________________________________________
OPEN Internet
@ Primeiro provedor do DF com anti-vírus no servidor de e-mails @


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================