[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Re: [obm-l] Área_de_quadrados
Title: Re: [obm-l] Re: [obm-l] Área_de_quadrados
Oi, Giselle:
Corrigindo e complementando minha msg. anterior (se bem que o caso de tres quadrados de area 0,9 eh interessante porque a solucao soh aparece quando voce se livra de uma hipotese restritiva que nao estava contida no enunciado).
O real desafio eh cobrir um triangulo equilatero de area 1 com dois triangulos equilateros de area 0,99 cada um (area total = 1,98 > 1) ou entao, provar que isso eh impossivel.
Um abraco,
Claudio.
on 27.09.03 22:28, Giselle at gisellemnr@ig.com.br wrote:
Mais difícil?!?! Eu não devo estar entendendo nada mesmo. Pra mim é óbvio que vários quadrados de área total 4 conseguem cobrir um de área 1... (4 u.a. > 1 u.a.)
----- Original Message -----
From: Johann Peter Gustav Lejeune Dirichlet <mailto:peterdirichlet2002@yahoo.com.br>
To: obm-l@mat.puc-rio.br
Sent: Monday, October 27, 2003 4:18 PM
Subject: Re: [obm-l] Área_de_quadrados
Em minha opiniao este foi o problema mais dificil da prova!!!
Tente exibir uma cobertura que satisfaça as condiçoes.Nao ha nada obscuro, pelo menos nao para mim...
Yahoo! Mail <http://br.rd.yahoo.com/s/c/m/?http://mail.yahoo.com.br> - o melhor webmail do Brasil. Saiba mais! <http://br.rd.yahoo.com/s/c/m/?http://br.yahoo.com/info/mail.html>