[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] =?iso-8859-15?Q?=C1lgebra_Linear?=
Olá a todos,
há algum tempo foi proposto o seguinte problema :
Seja V um espaço vetorial de dimensão n sobre um corpo K
Seja X um subconjunto L.I. de V com n elementos
Prove que X é uma base para V
E algumas soluções foram oferecidas. Eu gostaria de apresentar uma
(pseudo)solução adicional que usa o seguinte teorema :
Teorema
-------
Sejam V e W dois espaços vetoriais sobre um mesmo corpo K
Então V e W são isomorfos <=> dimensão(V) = dimensão(W)
Solução
-------
Seja E=[X] o espaço vetorial gerado por X (sobre o corpo K).
Como X é L.I. e X gera E, X é uma base para E.
Ora, dimensão(E) = cardinalidade(X) = n = dimensão(V)
Pelo Teorema acima, E é isomorfo a V.
Mas sabemos que E < V (onde '<' significa 'contido').
Então temos um isomorfismo entre um subconjunto de V (a saber, E) e o
próprio V.
Gostaria de concluir que E = V mas não consigo...
Bom, mas isto mostra, entre outras coisas, que a imagem de X pelo
isomorfismo acima é uma base de V.
Logo, a menos de isomorfismos, X é realmente uma base de V.
Obs : De fato, E = V (igualdade de conjuntos), mas com esta trilha não
consegui mostrar isto. Talvez alguém possa me ajudar.
[]s
Felipe Pina
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================