[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] Triangulos Pitagoricos
Title: Triangulos Pitagoricos
on 02.09.03 13:24, Artur Costa Steiner at artur@opendf.com.br wrote:
Um detalhe interessante: se os lados de um triangulo retangulo estao em PA, entao os lados sao proporcionais a 3, 4 e 5 ( semelhante ao famoso triangulo 3, 4 e 5) e a razao da progressao eh o raio do circuloinscrito no triangulo.
Alias, demonstrar isto, que eh muito parecido com o problema agora enviado aa lista, foi um dos pontos que sugeri em Beleza Matematica.
Artur
Oi, Artur:
Voce deve conhecer a formula geral para os lados dos triangulos retangulos com lados inteiros (os chamados triangulos pitagoricos):
a = k*(m^2 + n^2)
b = k*(m^2 - n^2)
c = k*2mn
onde m e n sao inteiros positivos, de paridades distintas, primos entre si e tais que m > n, e k eh um inteiro positivo qualquer (se k = 1, o triangulo eh dito primitivo).
Assim, m = 2 e n = 1, temos o triangulo 3-4-5, e variando k, todos os demais triangulos pitagoricos semelhantes a ele.
*****
Agora, uma consequencia curiosa dessa formula eh o fato de o raio do circulo inscrito num triangulo pitagorico qualquer ser sempre inteiro.
Pra provar isso, basta calcular a area do triangulo de duas maneiras:
Area = b*c/2 = p*r ==>
r = b*c/(2*p)
onde: p = semi-perimetro e r = raio do incirculo.
Para um triangulo primitivo, temos p = m^2 + mn. Logo:
r = (m^2 - n^2)*(2mn)/(2*(m^2+mn)) = (m - n)*n ==> sempre inteiro.
Em particular, o raio do incirculo do triangulo 3-4-5 (m=2,n=1) eh igual a 1.
*****
A enquete nao mencionou nada sobre estes triangulos pitagoricos porque os principais resultados sobre eles sao um pre-requisito para a demonstracao-padrao do caso n=4 do ultimo teorema de Fermat, que consta da lista.
Um abraco,
Claudio.