1-Sejam :D1,D2,,...,Dk
os algarismos de A com D1<D2<...<Dk Como 9A=10A - A Podemos representar 9A = D1D2...DK0 - D1D2...DK
= = 10KD1+
10K-1D2+ ...+10(DK – 1)+ 10 – 10K-1D1
-...-100DK = 10K(D1)+
10K-1(D2-D1)+ ...+ 102(DK-1
– DK-2)+10(DK-DK-1)+(10 –DK) OBSERVAMOS QUE TODOS OS TERMOS QUE ESTÃO NOS PARÊNTESIS ESTÃO ENTRE 0 e 9 INCLUSIVE, LOGO A REPRESENTAÇÃO DE 9.A NA BASE 10 É : D1(D2-D1)(D3-D2)...(DK-1-DK-2)(DK-1-DK-1)(10-DK)
OBVIAMENTE A SOMA DOS SEUS ALGARISMOS SERÁ 10-1=9 OK!!. 2-Consider the set of (106
+ 1)pairs {(Fi,Fi+1) tq i=0,1,..,106}taken mod
103.Since the set {(a,b) tq 0< a,b < 999 with a and b
integers} has only 106 elements. The pigeonhole princeple tell us
that there are integers i>j such that Fi+1 – Fj+1 are
both divisible by 1000 but Fi-1-Fj-1
= [Fi+1 –Fj+1]+ [ Fj-Fi]
hence Fi-1-Fj-1 is also divisible by 1000.Arguing
backwards in this way we see that Fi-j+1-F1 and Fi-j-F0
are divisible by 1000 , whence Fi-j-1 is. 3 a) 3p=x1+x2 e –p=x1.x2 assim 3px1+x22-p=(x1+x2)x1+x22+x1x2 x12+x22+2x1x2=(x1+x2)2
como x1 ≠ x2 logo 3px1+x22-p>0 -----Mensagem original----- ae, serah q alguem pode dar uma
ajudazinha nessas questoes? 1.os algarismos de um inteiro
positivo A em sua representaçao no sistema de numeraçao decimal crescem da
esquerda pra direita.determine a soma dos algarismos do numero 9*A. 2.mostre q existe um inteiro
positivo na sequencia de fibonacci q eh divisivel por 1000. 3.seja p um parametro real tal q
a equação x^2-3px-p=0 possui 2 raizes distintas x1 e x2. a)prove q 3px1+x^2-p>0 b)determine o menor valor possivel de A=(p^2/3px1+x2^2+3p)+ +(3px2+x1^2+3p/p^2) qq ajuda eh vahlida! falou! _________________________________________________________________ MSN Photos é a maneira mais fácil e prática de editar e compartilhar sua fotos: http://photos.msn.com.br ========================================================================= Instruções para entrar na lista, sair da lista e usar a lista em http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html O administrador desta lista é <nicolau@mat.puc-rio.br> ========================================================================= |