[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
RE: [obm-l] biquadrada...
Igor toda equação do tipo ax^4-2ax^2-3a=0 admite como solução sqrt(3).
Pela teoria polinomial sabemos que as raízes irracionais sempre aparecem
em pares, para ser mais exato
Sempre aparecem com seu conjugado portando -sqrt(3) também é raiz
Fazendo a substituição y=x^2
Obtemos uma equação do 2o. Grau ay^2-2ay-3a=0
Cujo delta=4a^2 e portanto sqrt(delta)=2a
Desta forma temo como raízes desta equação y1=3 e y2=-1
Voltando a troca de variáveis vemos que x1=sqrt(3) x2=-sqrt(3) x3=i
x4=-i
Onde i^2=-1
Desta forma x1.x2.x3.x4=sqrt(3).-sqrt(3).i.-i=-3
O mesmo resultado ocorre se considerarmos apenas as respostas reias
Portanto sempre teremos nas condições propostas a multiplicação das
raízes como sendo -3
OBS: O a deve ser sempre diferente de zero.
Uma outra forma de mostrar isso é através das relações de Girardi
X1.x2.x3.x4=a4/a0
Como na equação temos a4=-3a e o ao=a
Chegamos que x1.x2.x3.x4=-3
Um forte abraço
OSNI JOSE RAPELLI
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================