[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Fun��es... (Iezzi)



Voc� est� certo, mas a f�rmula geral tamb�m pode ser:

f(n) = 3(2^n - 1)

provando por inducao:

para n = 0
f(0) = 0 = 3(2^0 - 1)

Vamos supor que vale para n
Entao f(n) = 3(2^n - 1)

Mas f(n+1) = 2f(n) + 3 = 2*3(2^n - 1) + 3 = 3[2^(n+1) - 2 + 1] = 3[2^(n+1) -
1],
que obedece  � f�rmula proposta.

Entao, conclu�mos que:

(i) A f�rmula para f(0)
(ii) Se a f�rmula vale para f(n), vale para f(n+1)

Logo, de (i) e (ii) podemos dizer que a f�rmula vale para qualquer n natural
c.q.d.

[ ]'s

Alexandre Terezan

-----Mensagem Original-----
De: "{O-Grande-Mentecapto}" <mentus@berlin.com>
Para: <obm-l@sucuri.mat.puc-rio.br>
Enviada em: Domingo, 25 de Novembro de 2001 16:11 Terezan
Assunto: Fun��es... (Iezzi)


                 Ol�..

         Estou aqui resolvendo um problema de fun��es do Iezzi, mas como
para esse tipo de exerc�cio 'dissertativo' n�o h� resposta nas �ltimas
p�ginas, n�o sei se cheguei a solu��o correta.

"Seja f uma fun��o, definida no conjunto dos n�meros naturais, tal que:
                         f(n + 1) = 2f(n) + 3
para todo n natural.
a) Supondo f(0) = 0, calcule f(1),f(2),f(3),f(4),... e descubra a "f�rmula
geral" de f(n).
b) Prove por indu��o finita a f�rmula descoberta."
(in IEZZI, Gelson FME vol 1. pp 157)

Fazendo f(1), f(2), f(3) etc.. achamos:
f(1) = 3, f(2) = 9, f(3) = 21,f(4) = 45, f(5) = 93 ... f(n) = ?
"expandindo" as contas, temos:
f(1) = (0.2) + 3
f(2) = (((0.2) + 3).2) + 3
f(3) = ((((0.2) + 3).2) + 3).2) + 3
f(4) = (((((0.2) + 3).2) + 3).2) + 3).2)+3
f(5) = ((((((0.2) + 3).2) + 3).2) + 3).2)+3).2 + 3

Tomando n = 3 e desenvolvendo:
f(3) = 3.2.2 + 3.2 + 3
o mesmo para n = 4:
f(4) = 3.2.2.2 + 3.2.2 + 3.2 + 3
ou 3.2� + 3.2� + 3.2 + 3
Isso decorre de que n+1 � dado por n.2 + 3..
Colocando o 3 em evid�ncia.. e notando que a maior pot�ncia de 2 � igual a
n-1:
f(n) = 3(2^(n-1) + 2^(n-2) + ....  + 2^1 + 2^0)
ou ainda f(n) = 3. somat�ria[para k = 0 at� n - 1] 2^k
A f�rmula funciona para qualquer n pertencente aos naturais e diferente de
zero.
Da� que vem minha d�vida... a f�rmula que eu achei pode ser considerada
'termo' geral, se n�o � v�lida para 0?
         Algu�m tem alguma id�ia de outra f�rmula geral?



Grato pela aten��o..




"Against stupidity, the Gods themselves contend in vain",
     Friedrich von Schiller's
-
[]'s
{O-Grande-Mentecapto}
mentus@berlin.com