Sauda,c~oes,
Se não estou enganado, cilindro equilátero é aquele
no
qual a relação entre o diâmetro e a altura é a mesma
que
os lados e a altura de
um triângulo equilátero.
Hipérbole equilátera eu esqueci mas acho que a
hipérbole
y = 1/x é equilátera.
E tem também a hipérbole retangular??
A propósito desta hipérbole, ver o email abaixo. Ele veio
de
uma outra lista.
[ ]'s
Lu'is
>From: yiu@fau.edu >Reply-To: Hyacinthos@yahoogroups.com >To: Hyacinthos@yahoogroups.com >Subject: [EMHL] Re: Altitude problem >Date: Tue, 29 May 2001 18:45:34 -0000 > >Dear Antreas, > > >[APH]: >Let ABC be a triangle and AD the altitude from A. > > DC AC >If BC is fixed, and -- = (--)^2, which is the locus of A ? > DB AB > > >[PY]: >The locus of A is the circle with BC as diameter. This is the >converse of Euclid's proof of Pythagoras theorem. > >Dear Paul, > >That's at first glance. > >At second glance, the locus is something more: > > (circle with diam BC) + (perp. bis. of BC) > >That is what you call an ``impure'' locus. > > >and at third glance, the locus is something more ! > >[PY]And the rectangular hyperbola with B and C as vertices! > >Best regards >Sincerely >Paul > >APH >
|