[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: sobre teoria dos números





Marcelo Souza wrote:

> Olá pessoal,
>
>     Sabemos que todo natural é par ou ímpar. Sendo P = par e I=ímpar,
> P + P = P
> I + I = P
> P + I = I
>
> Alguém sabe demonstrar por que???
> Eu demonstrei apenas P + P = P, mas não sei se está certo:
>
> Se P é par, sei que pelo menos um fator primo devera ser dois, então
>
> 2.K + 2.M = P
> 2(K+M)=P, o que é verdade já que qualquer múltiplo de 2 é par (isdto está
> certo???)
> Espero as demostrações
> abraços
> marcelo
> ______________________________________________________
> Get Your Private, Free Email at http://www.hotmail.com

  Demostracao de Impar + Impar = Par :

como 2x -1 = impar e 2x = par, sendo x qualquer natural e a, b, c tb qualquer
natural temos:

(2a - 1) + (2b - 1) = c
2a + 2b - 2 = c
2 (a+b-1) = c      .... x = (a+b-1)
2x=c

portanto c é par .

  Demostracao Par + Impar = Impar

 Com as mesmas condicoes acimas x,a,b,c qualquer natural, temos:

2a + (2b - 1) = c
2 ( a + b) -1 = c   .......x=(a+b)
2x -1 = c

portanto x e impar

Espero ter ajudado,

[  ]'s

 Davi