Os números $x_1 = 2 + \sqrt{3}$ e $x_2 = 2 - \sqrt{3}$ são as raízes da equação $x^2 - 4x + 1$. Observe que $3 < x_1 < 4, 0 < x_2 < 1$.

Sejam $a_k = \lfloor x_1^k \rfloor$, $b_k = x_1^k + x_2^k$. Temos $b_0 = 2$ e $b_1 = 4$. Também temos $b_{k+2} = 4b_{k+1} - b_k$, como pode ser verificado facilmente expandindo os dois lados. Assim, por indução, b_k é inteiro e par para todo k > 0.

Por outro lado para todo k > 0 temos $0 < x_2^k < 1$ donde $b_k - 1 \le x_1^k < b_k$ e portanto, por definição, $a_k = b_k - 1$. Assim a_k é impar para todo inteiro positivo k, como queríamos demonstrar.