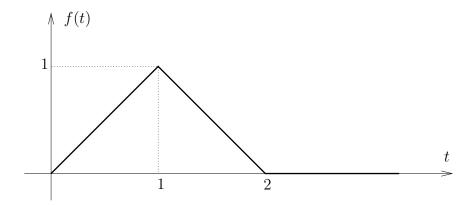
P4 de Equações diferenciais e de diferenças MAT 1154 — 2008.2

Data: 1 de dezembro de 2008

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revisão
1a	2.0		
1b	2.0		
1c	2.0		
2	2.0		
3a	1.0		
3b	1.0		
Total	10.0		


Instruções

- Mantenha seu celular desligado durante toda a prova.
- Não é permitido usar nenhum tipo de calculadora.
- Não destaque as folhas da prova.
- A prova pode ser resolvida a lápis, caneta azul ou caneta preta. Não use caneta vermelha ou verde.
- Você **não** tem o direito de consultar anotações.
- Todas as respostas devem ser justificadas.

1. Resolva os problemas de valor inicial abaixo:

(a)
$$y''(t) - 6y'(t) + 9y(t) = 2e^{3t}, \quad y(0) = 1, \quad y'(0) = 1.$$

(b) $y''(t)+7y'(t)+10y(t)=f(t),\quad y(0)=0,\quad y'(0)=0$ onde f(t) tem o gráfico abaixo.

(c)
$$y'(t) - Ay(t) = b(t),$$

$$A = \begin{pmatrix} 6 & 4 \\ -1 & 6 \end{pmatrix}, \quad b(t) = \begin{pmatrix} 1 - 6t \\ t \end{pmatrix}, \quad y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

2. As seqüências (a_n) e (b_n) satisfazem

$$a_{n+1} = a_n + b_n + 1$$
, $b_{n+1} = a_{n+1} + 3a_n - 9$, $a_0 = 6$, $b_0 = 3$.

Calcule $a_n \in b_n$.

3. Determine o coeficiente a_n da expansão em série de potências

$$f(t) = a_0 + a_1t + \dots + a_nt^n + \dots$$

para cada uma das funções abaixo:

$$f(t) = \frac{1}{t^2 - 5t + 6}.$$

$$f(t) = \int_0^t \frac{1 - \cos \tau}{\tau^2} d\tau.$$