Estruturas Algébricas II

7 de dezembro de 2010

A prova deve ser feita individualmente, com consulta livre. Todas as questões têm o mesmo valor.

- 1. Dê um exemplo de um polinômio irredutível $P \in \mathbb{Z}[X]$ tal que o grupo de Galois da extensão $\mathbb{Q} \subset K$ seja isomorfo a $\mathbb{Z}/(11)$, onde $K \supset \mathbb{Q}$ é o menor corpo contendo todas as raízes de P.
- 2. Mostre que existe um polinômio irredutível $P \in \mathbb{Z}[X]$ de grau 7 tal que o grupo de Galois da extensão $\mathbb{Q} \subset K$ seja isomorfo ao grupo simétrico S_7 , onde $K \supset \mathbb{Q}$ é o menor corpo contendo todas as raízes de P.
- 3. Seja K a menor extensão normal de \mathbb{Q} com $\sqrt{3+\sqrt{2}}\in K$.
 - (a) Calcule $\dim_{\mathbb{Q}} K$.
 - (b) Descreva o grupo de Galois $G_{\mathbb{Q}\subset K}$.
 - (c) Diga quais são todos os subcorpos de K.
- 4. Diga se cada uma das afirmações abaixo é verdadeira ou falsa; justifique.
 - (a) Seja $P \in \mathbb{Q}[X]$ um polinômio irredutível de grau 5 com 5 raízes reais z_1, \ldots, z_5 . Então nenhum z_i pode ser expresso com radicais (a partir dos inteiros).
 - (b) Para todo grupo finito G_0 existem corpos $K \subset L$ de característica 0 tal que a extensão $K \subset L$ é finita e normal e o grupo de Galois $G_{K \subset L}$ é isomorfo a G_0 .