Ergodic measures with only (and many) zero exponents

Lorenzo J. Díaz

PUC-Rio

Luisenthal, October 1st

joint work with J. Bochi (PUC-Rio) and Ch. Bonatti (Dijon).

Robust vanishing of all Lyapunov exponents.

Hidden/implicit part of the title: for Iterated Function Systems or One Step skew products.

Important: the multiple zero exponents hold for **open sets of systems (robust)**

Robust vanishing of all Lyapunov exponents.

Hidden/implicit part of the title: for Iterated Function Systems or One Step skew products.

Important: the multiple zero exponents hold for **open sets of** systems (robust)

Robust vanishing of all Lyapunov exponents.

Hidden/implicit part of the title:

for Iterated Function Systems or One Step skew products.

Important: the multiple zero exponents hold for open sets of systems (robust)

Robust vanishing of all Lyapunov exponents.

Hidden/implicit part of the title:

for Iterated Function Systems or One Step skew products.

Important: the multiple zero exponents hold for open sets of systems (robust)

Goal: Detect non-hyperbolic behavior on the ergodic level.

Construction of ergodic measures with some exponent zero (non-hyperbolic measures).

Attention:

There are non-hyperbolic systems with only hyperbolic measures.

Goal: Detect non-hyperbolic behavior on the ergodic level.

Construction of ergodic measures with some exponent zero (non-hyperbolic measures).

Attention:

There are non-hyperbolic systems with only hyperbolic measures.

Goal: Detect non-hyperbolic behavior on the ergodic level.

Construction of ergodic measures with some exponent zero (non-hyperbolic measures).

Attention:

There are non-hyperbolic systems with only hyperbolic measures.

Goal: Detect non-hyperbolic behavior on the ergodic level.

Construction of ergodic measures with some exponent zero (non-hyperbolic measures).

Attention:

There are non-hyperbolic systems with *only* hyperbolic measures.

Two-dimensional transitive Hénon-like examples in the boundary of hyperbolicity (Cao-Luzzatto-Rios).

- All periodic orbits are hyperbolic,
- 2 Every ergodic measure is hyperbolic.
- 3 Any ergodic measure has a positive and a negative exponent.

Two-dimensional transitive Hénon-like examples in the boundary of hyperbolicity (Cao-Luzzatto-Rios).

- 1 All periodic orbits are hyperbolic,
- Every ergodic measure is hyperbolic.
- 3 Any ergodic measure has a positive and a negative exponent.

Two-dimensional transitive Hénon-like examples in the boundary of hyperbolicity (Cao-Luzzatto-Rios).

- 1 All periodic orbits are hyperbolic,
- Every ergodic measure is hyperbolic,
- Any ergodic measure has a positive and a negative exponent.

Two-dimensional transitive Hénon-like examples in the boundary of hyperbolicity (Cao-Luzzatto-Rios).

- 1 All periodic orbits are hyperbolic,
- Every ergodic measure is hyperbolic,
- Any ergodic measure has a positive and a negative exponent.

non-critical examples

the figure is almost correct.... ([D,Horita,Rios,Sambarino], [Lepladeur,Oliveira,Rios]) somewhat similar to Gelfert's talk.

non-critical examples

the figure is almost correct.... ([D,Horita,Rios,Sambarino], [Lepladeur,Oliveira,Rios]) somewhat similar to Gelfert's talk.

Properties

Skew product and partial hyperbolicity

$$E^s \oplus E^c \oplus E^u$$

 E^s stable, E^u unstable, E^c central.

- Q is expanding in the E^c -direction.
- ② all other periodic points are contracting along E^c ,
- Ergodic measures (not Dirac at Q) are hyperbolic: two negative exponents (E^c, E^s) and a positive one (E^u) .

Properties

Skew product and partial hyperbolicity

$$E^s \oplus E^c \oplus E^u$$

 E^s stable, E^u unstable, E^c central.

- **1** Q is expanding in the E^c -direction,
- ② all other periodic points are contracting along E^c ,
- Ergodic measures (not Dirac at Q) are hyperbolic: two negative exponents (E^c, E^s) and a positive one (E^u) .

Properties

Skew product and partial hyperbolicity

$$E^s \oplus E^c \oplus E^u$$

 E^s stable, E^u unstable, E^c central.

- \bigcirc Q is expanding in the E^c -direction,
- ② all other periodic points are contracting along E^c ,
- **3** Ergodic measures (not Dirac at Q) are hyperbolic: two negative exponents (E^c, E^s) and a positive one (E^u) .

background

 $f: M \to M$, μ ergodic invariant measure:

Oseledts splitting $T_x(M) = E_1(x) \oplus E_2(x) \oplus \cdots \oplus E_k(x)$ defined μ -a.e., dimension independent of x.

and Lyapunov exponents $\chi_1 < \chi_2 < \cdots < \chi_k$

$$\lim_{n\to\infty}\frac{\log||Df^n(v)||}{n}=\chi_j,\quad\forall v\in E_j(x)\setminus\{0\},\quad\mu-\text{a.e.}\,x$$

dim E_j is the multiplicity of χ_j .

 μ is hyperbolic if all exponents are non-zero.

number of zero exponents:

 Λ transitive set with a Df-invariant splitting:

$$T_{\Lambda}M = E^{s} \oplus E^{c} \oplus E^{u}$$
.

 E^s uniformly contracting, E^u uniformly expanding, E^c central non-hyperbolic part with finest dominated splitting

$$E^c = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$

 μ ergodic, χ_i exponent of μ relative to E_i ,

$$\chi_i = 0 \implies \chi_{j \neq i} \neq 0.$$

Conclusion: The number of zero exponents of an ergodic measure is $\leq \dim(E^c)$.

Constrains on the type of dominated splitting of E^c

number of zero exponents:

 Λ transitive set with a Df-invariant splitting:

$$T_{\Lambda}M = E^{s} \oplus E^{c} \oplus E^{u}$$
.

 E^s uniformly contracting, E^u uniformly expanding, E^c central non-hyperbolic part with finest dominated splitting

$$E^c = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$

 μ ergodic, χ_i exponent of μ relative to E_i ,

$$\chi_i = 0 \implies \chi_{j \neq i} \neq 0.$$

Conclusion: The number of zero exponents of an ergodic measure is $\leq \dim(E^c)$.

Constrains on the type of dominated splitting of E^c

number of zero exponents:

 Λ transitive set with a Df-invariant splitting:

$$T_{\Lambda}M = E^{s} \oplus E^{c} \oplus E^{u}$$
.

 E^s uniformly contracting, E^u uniformly expanding, E^c central non-hyperbolic part with finest dominated splitting

$$E^c = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$

 μ ergodic, χ_i exponent of μ relative to E_i ,

$$\chi_i = 0 \implies \chi_{j\neq i} \neq 0.$$

Conclusion: The number of zero exponents of an ergodic measure is $\leq \dim(E^c)$.

Constrains on the type of dominated splitting of E^c .

 $f_0, f_1 \colon M \to M, \qquad \sigma \colon \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ the shift map, one-step skew products:

$$F: \{0,1\}^Z \times M \to \{0,1\}^Z \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha_0}(x)).$$

Family of maps $(f_{\alpha})_{\alpha \in \{0,1\}^{\mathbb{Z}}}$, $f_{\alpha} \colon M \to M$, (nice dependence on α). general skew products:

$$F: \{0,1\}^Z \times M \to \{0,1\}^Z \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha}(x))$$

principle

setting

 $f_0, \, f_1 \colon M \to M, \qquad \sigma \colon \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ the shift map, one-step skew products:

$$F: \{0,1\}^Z \times M \to \{0,1\}^Z \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha_0}(x)).$$

Family of maps $(f_{\alpha})_{\alpha \in \{0,1\}^{\mathbb{Z}}}$, $f_{\alpha} \colon M \to M$, (nice dependence on α).

$$F: \{0,1\}^{\mathbb{Z}} \times M \to \{0,1\}^{\mathbb{Z}} \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha}(x)).$$

principle

setting

 $f_0,\,f_1\colon M o M,\qquad \sigma\colon\{0,1\}^\mathbb{Z} o\{0,1\}^\mathbb{Z}$ the shift map, one-step skew products:

$$F: \{0,1\}^{\mathbb{Z}} \times M \to \{0,1\}^{\mathbb{Z}} \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha_0}(x)).$$

Family of maps $(f_{\alpha})_{\alpha \in \{0,1\}^{\mathbb{Z}}}$, $f_{\alpha} \colon M \to M$, (nice dependence on α). general skew products:

$$F: \{0,1\}^{\mathbb{Z}} \times M \to \{0,1\}^{\mathbb{Z}} \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha}(x)).$$

principle

setting

 $f_0, \, f_1 \colon M \to M, \qquad \sigma \colon \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ the shift map, one-step skew products:

$$F: \{0,1\}^Z \times M \to \{0,1\}^Z \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha_0}(x)).$$

Family of maps $(f_{\alpha})_{\alpha \in \{0,1\}^{\mathbb{Z}}}$, $f_{\alpha} \colon M \to M$, (nice dependence on α). general skew products:

$$F: \{0,1\}^{\mathbb{Z}} \times M \to \{0,1\}^{\mathbb{Z}} \times M, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha}(x)).$$

principle:

All zero exponents (I)

Summary: Two scenarios (depending on the differentiability of the systems) where there are opens sets of one-step skew products with ergodic measures will all (fibered) exponents equal to zero.

- C² dynamics
- [+] full support
- [+] constructive (limit of periodic measures)
- [—] zero entropy

- ¹ dynamics
- [-] support?
- [-] existence result (variational principle
- (3) [+] positive entropy

All zero exponents (I)

Summary: Two scenarios (depending on the differentiability of the systems) where there are opens sets of one-step skew products with ergodic measures will all (fibered) exponents equal to zero.

C^2 dynamics

- [+] full support
- [+] constructive (limit of periodic measures)
- **3** [−] zero entropy

C¹ dynamics

- [—] support?
- [-] existence result (variational principle)
- [+] positive entropy

notation

$$\sigma\colon \{0,1,\ldots,\ell-1\}^{\mathbb{Z}} o \{0,1,\ldots,\ell-1\}^{\mathbb{Z}}$$
 is the shift map. $g_0,\ldots,g_{\ell-1}$ diffeomorphisms $g_i\colon M o M$, let $G=(g_0,\ldots,g_{\ell-1})$ and the one-step skew product map $\varphi_G\colon \{0,1,\ldots,\ell-1\}^{\mathbb{Z}}\times M o \{0,1,\ldots,\ell-1\}^{\mathbb{Z}}\times M$.

 $\varphi_{\mathcal{C}}(\alpha, x) = (\sigma(\alpha), g_{\alpha_0}(x))$

all zero exponents (I)

Ergodic measures with all zero exponents and full support

Given any closed and compact M, dim $M \geq 2$, there are ℓ and open set $\mathcal{U} \subset (\mathrm{Diff}^2(M))^{\ell}$: for every $G = (g_0, \dots, g_{\ell-1}) \in \mathcal{U}$ the map

$$\varphi_{\mathcal{G}}(\alpha, x) = (\sigma(\alpha), g_{\alpha_0}(x))$$

has an ergodic measure with full support and whose exponents are all zero. This measure is a limit of periodic measures.

Warning: Exponents refer to fibered exponents along M.

all zero exponents (I)

Ergodic measures with all zero exponents and full support

Given any closed and compact M, dim $M \ge 2$, there are ℓ and open set $\mathcal{U} \subset (\mathrm{Diff}^2(M))^{\ell}$: for every $G = (g_0, \dots, g_{\ell-1}) \in \mathcal{U}$ the map

$$\varphi_{\mathcal{G}}(\alpha, x) = (\sigma(\alpha), g_{\alpha_0}(x))$$

has an ergodic measure with full support and whose exponents are all zero. This measure is a limit of periodic measures.

Warning: Exponents refer to fibered exponents along M.

All zero exponenst (II)

Ergodic measures with all zero exponents and positive entropy

Given any closed and compact M, dim $M \geq 2$, there are ℓ and open set $\mathcal{U} \subset (\mathrm{Diff}^1(M))^{\ell}$: for every $G = (g_0, \dots, g_{\ell-1}) \in \mathcal{U}$ the map

$$\varphi_{\mathcal{G}}(\alpha, x) = (\sigma(\alpha), g_{\alpha_0}(x))$$

has a compact invariant set Λ_G such that:

- **1** all exponents of any ergodic ν (supp(ν) $\subset \Lambda_G$) are zero,
- ② $h_{\text{top}}(G_{|\Lambda_G}) > 0$. So there is an ergodic μ with positive entropy and only zero exponents $(\text{supp}(\mu) \subset \Lambda_G)$.

[&]quot;Easy' consequence of the methods of the first results.

All zero exponenst (II)

Ergodic measures with all zero exponents and positive entropy

Given any closed and compact M, dim $M \geq 2$, there are ℓ and open set $\mathcal{U} \subset (\mathrm{Diff}^1(M))^{\ell}$: for every $G = (g_0, \dots, g_{\ell-1}) \in \mathcal{U}$ the map

$$\varphi_{\mathsf{G}}(\alpha, x) = (\sigma(\alpha), \mathsf{g}_{\alpha_0}(x))$$

has a compact invariant set Λ_G such that:

- **1** all exponents of any ergodic ν (supp(ν) $\subset \Lambda_G$) are zero,
- ② $h_{\text{top}}(G_{|\Lambda_G}) > 0$. So there is an ergodic μ with positive entropy and only zero exponents $(\text{supp}(\mu) \subset \Lambda_G)$.

"Easy' consequence of the methods of the first results.

the space of maps

Properties of the maps $(g_0,\ldots,g_{\ell-1})$

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions",
- ullet implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).
- consequence of a stronger result on flag dynamics (later on)

the space of maps

Properties of the maps $(g_0,\ldots,g_{\ell-1})$

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions,"
- implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).
- o consequence of a stronger result on flag dynamics (later on)

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions",
- implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).
- consequence of a stronger result on flag dynamics (later on)

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions",
- implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).
- consequence of a stronger result on flag dynamics (later on)

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions',
- implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).

- existence of an attracting point with simple spectrum all exponents positive and different,
- forward minimality,
- maneuverability: "minimality in the space of directions',
- implicit: there are no invariant directions, no-domination.
- warning: possibly the number ℓ is very big (!), this does not seem to be important in applications (we have in mind).
- consequence of a stronger result on flag dynamics (later on)

Intermingled horseshoes of different indices

Method for constructing ergodic measures with a zero exponent. [Gorodetski-Ilyashenko-Kleptsyn-Nalsky]

Ergodic measures as limit of periodic measures.

 $f_0\colon \mathbb{S}^1 o \mathbb{S}^1$ pole north - pole south map,

 $f_1 \colon \mathbb{S}^1 \to \mathbb{S}^1$ irrational rotation (close to an irrational rotation)

key feature **Minimality**: the system f_0 , f_1 is forward minimal (the forward orbit of any point is dense in \mathbb{S}^1)

Intermingled horseshoes of different indices

Method for constructing ergodic measures with a zero exponent. [Gorodetski-Ilyashenko-Kleptsyn-Nalsky]

Ergodic measures as limit of periodic measures.

 $f_0\colon \mathbb{S}^1 o \mathbb{S}^1$ pole north - pole south map,

 $f_1\colon \mathbb{S}^1 o \mathbb{S}^1$ irrational rotation (close to an irrational rotation)

key feature **Minimality**: the system f_0 , f_1 is forward minimal (the forward orbit of any point is dense in \mathbb{S}^1)

Intermingled horseshoes of different indices

Method for constructing ergodic measures with a zero exponent. [Gorodetski-Ilyashenko-Kleptsyn-Nalsky]

Ergodic measures as limit of periodic measures.

 $f_0 \colon \mathbb{S}^1 o \mathbb{S}^1$ pole north - pole south map,

 $f_1\colon\mathbb{S}^1 o\mathbb{S}^1$ irrational rotation (close to an irrational rotation)

key feature Minimality: the system f_0 , f_1 is forward minimal (the forward orbit of any point is dense in \mathbb{S}^1)

Intermingled horseshoes

naive representation

Non-hyperbolic ergodic measures

Summary of previous results:

1-dimensional central direction.

- some one-step skew products over \mathbb{S}^1 [GIKN]
- ullet general skew products over \mathbb{S}^1 [KN]
- open sets of diffeomorphisms in dimension ≥ 3 [KN]
- generic non-hyperbolic diffeomorphisms [DG], [BonattiDG]

have an ergodic measure with full support with a zero exponent. This measure is a weak-limit of periodic measures.

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu).$$

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents.
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- ullet Only C^1 -regularity is required.

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

• key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu)$$
.

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents.
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- \circ Only C^1 -regularity is required.

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

• key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu)$$
.

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- Only C¹-regularity is required.

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

• key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu)$$
.

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents.
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- Only C¹-regularity is required.

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu)$$
.

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents.
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- ullet Only C^1 -regularity is required

 The ergodic measure is the limit of a sequence of periodic measures

$$\mu_n \to^* \mu$$
.

key one dimensional ingredient: the exponent is an integral.

$$\chi_c(\mu_n) \to \chi_c(\mu)$$
.

- This does not hold in higher dimensions.
 Difficulty for obtaining measures with several zero exponents.
- key ingredient: minimality in the central directions (jump in finite time from an repeller to an attractor and vice-versa).
- Only C^1 -regularity is required.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- Difficulty: Exponents are not given by integral and thus they are not limits.
- Trick: Rewrite exponents as integrals (recovering continuity)
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- Price: Increase differentiability. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- ② Difficulty: Exponents are not given by integral and thus they are not limits.
- Trick: Rewrite exponents as integrals (recovering continuity)
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- Price: Increase differentiability. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- ② Difficulty: Exponents are not given by integral and thus they are not limits.
- **3** Trick: Rewrite exponents as integrals (recovering continuity).
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- Price: Increase differentiability. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- ② Difficulty: Exponents are not given by integral and thus they are not limits.
- Trick: Rewrite exponents as integrals (recovering continuity).
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- Price: Increase differentiability. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- ② Difficulty: Exponents are not given by integral and thus they are not limits.
- Trick: Rewrite exponents as integrals (recovering continuity).
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- **The space of Price: Increase differentiability**. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

- Problem: Consider skew products with higher dimensional central direction and construct systems with ergodic measures with all exponents equal to 0.
- ② Difficulty: Exponents are not given by integral and thus they are not limits.
- Trick: Rewrite exponents as integrals (recovering continuity).
- Ingredient: Flag dynamics (a dynamics induced in the space of flags of the tangent bundle).
- **The Price: Increase differentiability**. C^1 -dynamics in the space of flags $\implies C^2$ -dynamics in the ambient.

improved method of Gorodetski-Ilyashenko-Kleptsyn-Nalsky for constructing ergodic measures as limits of periodic measures (version in [BDG]).

initial periodic orbit (and periodic measure)

improved method of Gorodetski-Ilyashenko-Kleptsyn-Nalsky for constructing ergodic measures as limits of periodic measures (version in [BDG]).

initial periodic orbit (and periodic measure)

a second orbit mimics the first one most of the time (fixed proportion) and has a tail.

a third orbit mimics the second one most of the time (fixed proportion) and has a tail.

two effects of the tail:

 spread the support of the limit measure: the support of the measure is

$$\bigcap_{n} \overline{\bigcup_{k \geq n} \mathcal{O}(P_n)}.$$

- approach the exponent to zero:
 - *n*-th orbit P_n with exponent χ_n , a pivot auxiliary orbit with exponent $\simeq 0$
 - ② (n+1)th orbit P_{n+1} mimics P_n 90% of time and Q 10% of time
 - 3 the exponent χ_{n+1} of P_{n+1} is $(9/10) \chi_n \to 0$.

two effects of the tail:

• spread the support of the limit measure: the support of the measure is

$$\bigcap_n \overline{\bigcup_{k\geq n} \mathcal{O}(P_n)}.$$

- approach the exponent to zero:
 - *n*-th orbit P_n with exponent χ_n , a pivot auxiliary orbit with exponent $\simeq 0$
 - ② (n+1)th orbit P_{n+1} mimics P_n 90% of time and Q 10% of time.
 - \bullet the exponent χ_{n+1} of P_{n+1} is $(9/10)\chi_n \to 0$.

two effects of the tail:

 spread the support of the limit measure: the support of the measure is

$$\bigcap_{n} \overline{\bigcup_{k \geq n} \mathcal{O}(P_n)}.$$

- approach the exponent to zero:
 - *n*-th orbit P_n with exponent χ_n , a pivot auxiliary orbit with exponent $\simeq 0$
 - **Q** (n+1)th orbit P_{n+1} mimics P_n 90% of time and Q 10% of time
 - the exponent χ_{n+1} of P_{n+1} is $(9/10) \chi_n \to 0$.

two effects of the tail:

 spread the support of the limit measure: the support of the measure is

$$\bigcap_{n} \overline{\bigcup_{k \geq n} \mathcal{O}(P_n)}.$$

- approach the exponent to zero:
 - **1** *n*-th orbit P_n with exponent χ_n , a pivot auxiliary orbit with exponent $\simeq 0$
 - ② (n+1)th orbit P_{n+1} mimics P_n 90% of time and Q 10% of time.
 - 3 the exponent χ_{n+1} of P_{n+1} is $(9/10)\chi_n \to 0$.

Everything You Always Wanted to Know About Flags But Were Afraid to Ask.

Flags in 5 minutes!

 \mathbb{V} vectorial space of dimension d.

$$\mathbb{F}_1 \subset \mathbb{F}_2 \subset \cdots \subset \mathbb{F}_n = \mathbb{V}, \dim \mathbb{F}_i = i.$$

Flag
$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d)$$
.

(Forgetting orientation) flag \simeq orthonormal basis:

$$F = \{f_1, \dots, f_d\}, \ \{f_1, \dots, f_j\}$$
 orthonormal basis of \mathbb{F}_j

 \mathbb{V} vectorial space of dimension d.

$$\mathbb{F}_1 \subset \mathbb{F}_2 \subset \cdots \subset \mathbb{F}_n = \mathbb{V}$$
, dim $\mathbb{F}_i = i$.

Flag
$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d)$$
.

(Forgetting orientation) flag \simeq orthonormal basis: $F = \{f_1, \dots, f_d\}, \{f_1, \dots, f_j\}$ orthonormal basis of \mathbb{F}_j

 \mathbb{V} vectorial space of dimension d.

$$\mathbb{F}_1 \subset \mathbb{F}_2 \subset \cdots \subset \mathbb{F}_n = \mathbb{V}$$
, dim $\mathbb{F}_i = i$.

Flag
$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d)$$
.

(Forgetting orientation) flag \simeq orthonormal basis: $F = \{f_1, \dots, f_d\}, \{f_1, \dots, f_j\}$ orthonormal basis of \mathbb{F}_j

 \mathbb{V} vectorial space of dimension d.

$$\mathbb{F}_1 \subset \mathbb{F}_2 \subset \cdots \subset \mathbb{F}_n = \mathbb{V}$$
, dim $\mathbb{F}_i = i$.

Flag
$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d)$$
.

(Forgetting orientation) flag \simeq orthonormal basis:

$$F = \{f_1, \dots, f_d\}, \{f_1, \dots, f_j\}$$
 orthonormal basis of \mathbb{F}_j .

Induced dynamics on the flag manifold

$L \colon \mathbb{V} \to \mathbb{W}$ linear isomorphism.

induced map in the flag space

$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto \mathbb{L}(\mathbb{F}) = (\mathit{L}(\mathbb{F}_1), \mathit{L}(\mathbb{F}_2), \dots, \mathit{L}(\mathbb{F}_d))$$

Using orthonormal basis the flag action of L has a triangular form. This will simplify calculations.

TM, $T_{\times}M$

flag manifold $\mathcal{F}M$, the fiber of x consists of the flags of \mathcal{T}_xM .

This resembles the Grassmannian space

Induced dynamics on the flag manifold

 $L \colon \mathbb{V} \to \mathbb{W}$ linear isomorphism.

induced map in the flag space:

$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto \mathbb{L}(\mathbb{F}) = (L(\mathbb{F}_1), L(\mathbb{F}_2), \dots, L(\mathbb{F}_d))$$

Using orthonormal basis the flag action of L has a triangular form. This will simplify calculations.

 $TM. T_{\times}M$

flag manifold $\mathcal{F}M$, the fiber of x consists of the flags of \mathcal{T}_xM .

This resembles the Grassmannian space.

Induced dynamics on the flag manifold

 $L \colon \mathbb{V} \to \mathbb{W}$ linear isomorphism.

induced map in the flag space:

$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto \mathbb{L}(\mathbb{F}) = (L(\mathbb{F}_1), L(\mathbb{F}_2), \dots, L(\mathbb{F}_d))$$

Using orthonormal basis the flag action of L has a triangular form. This will simplify calculations.

TM, $T_{\times}M$

flag manifold $\mathcal{F}M$, the fiber of x consists of the flags of \mathcal{T}_xM .

This resembles the Grassmannian space.

Induced dynamics on the flag manifold

 $L \colon \mathbb{V} \to \mathbb{W}$ linear isomorphism.

induced map in the flag space:

$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto \mathbb{L}(\mathbb{F}) = (L(\mathbb{F}_1), L(\mathbb{F}_2), \dots, L(\mathbb{F}_d))$$

Using orthonormal basis the flag action of L has a triangular form. This will simplify calculations.

TM, $T_{\times}M$

flag manifold $\mathcal{F}M$, the fiber of x consists of the flags of \mathcal{T}_xM .

This resembles the Grassmannian space.

Induced dynamics on the flag manifold

 $L \colon \mathbb{V} \to \mathbb{W}$ linear isomorphism.

induced map in the flag space:

$$\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto \mathbb{L}(\mathbb{F}) = (L(\mathbb{F}_1), L(\mathbb{F}_2), \dots, L(\mathbb{F}_d))$$

Using orthonormal basis the flag action of L has a triangular form. This will simplify calculations.

TM, $T_{\times}M$

flag manifold $\mathcal{F}M$, the fiber of x consists of the flags of \mathcal{T}_xM .

This resembles the Grassmannian space.

induced flag dynamics

 $f: M \to M \text{ induces } \mathcal{F}f: \mathcal{F}M \to \mathcal{F}M$,

$$\mathcal{F}f(\mathbb{F}_1,\mathbb{F}_2,\ldots,\mathbb{F}_d)\mapsto (Df(\mathbb{F}_1),Df(\mathbb{F}_2),\ldots,Df(\mathbb{F}_d)).$$

$$G=(g_0,\ldots,g_{\ell-1})$$
 define the map
$$arphi_G\colon \{0,1,\ldots,\ell-1\}^{\mathbb{Z}} imes M o \{0,1,\ldots,\ell-1\}^{\mathbb{Z}} imes M,$$
 $arphi_G(lpha,x)=(\sigma(lpha),g_{lpha_0}(x))$

$$\mathcal{F}G = (\mathcal{F}g_1, \dots, \mathcal{F}g_{\ell-1})$$
 $\mathcal{F}g_i$ acts in $\mathcal{F}M$.

$$arphi_{\mathcal{F}\mathcal{G}} \colon \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M \to \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M,$$

$$arphi_{\mathcal{F}\mathcal{G}}(\alpha, x) = (\sigma(\alpha), \mathcal{F}g_{\alpha_0}(x)).$$

induced flag dynamics

$$f: M \to M \text{ induces } \mathcal{F}f: \mathcal{F}M \to \mathcal{F}M$$
,

$$\mathcal{F}f(\mathbb{F}_1,\mathbb{F}_2,\ldots,\mathbb{F}_d)\mapsto (Df(\mathbb{F}_1),Df(\mathbb{F}_2),\ldots,Df(\mathbb{F}_d)).$$

$$G=(g_0,\ldots,g_{\ell-1})$$
 define the map

$$\varphi_G : \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times M \to \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times M,$$

$$\varphi_G(\alpha, x) = (\sigma(\alpha), g_{\alpha\alpha}(x))$$

$$\mathcal{F}G = (\mathcal{F}g_1, \dots, \mathcal{F}g_{\ell-1})$$
 $\mathcal{F}g_i$ acts in $\mathcal{F}M$.

$$arphi_{\mathcal{F}\mathcal{G}} \colon \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M \to \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M,$$

$$arphi_{\mathcal{F}\mathcal{G}}(\alpha, x) = (\sigma(\alpha), \mathcal{F}g_{\alpha_0}(x)).$$

induced flag dynamics

$$f: M \to M \text{ induces } \mathcal{F}f: \mathcal{F}M \to \mathcal{F}M,$$

$$\mathcal{F}f(\mathbb{F}_1, \mathbb{F}_2, \dots, \mathbb{F}_d) \mapsto (Df(\mathbb{F}_1), Df(\mathbb{F}_2), \dots, Df(\mathbb{F}_d)).$$

$$G=(g_0,\ldots,g_{\ell-1})$$
 define the map
$$arphi_G\colon \{0,1,\ldots,\ell-1\}^{\mathbb{Z}}\times M o \{0,1,\ldots,\ell-1\}^{\mathbb{Z}}\times M,$$
 $arphi_G(lpha,x)=(\sigma(lpha),g_{lpha_0}(x))$

$$\mathcal{FG} = (\mathcal{F}g_1, \dots, \mathcal{F}g_{\ell-1})$$
 $\mathcal{F}g_i$ acts in $\mathcal{F}M$.

$$arphi_{\mathcal{F}G} \colon \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M \to \{0, 1, \dots, \ell - 1\}^{\mathbb{Z}} \times \mathcal{F}M,$$

$$\varphi_{\mathcal{F}G}(\alpha, x) = (\sigma(\alpha), \mathcal{F}g_{\alpha_0}(x)).$$

All zero exponents

Reformulation of the main result for flags (stronger version):

Ergodic measures with all zero exponents

Given any closed and compact M, dim $M \geq 2$, there are ℓ and open set $\mathcal{U} \subset (\mathrm{Diff}^2(M))^{\ell}$: for every $G = (g_0, \dots, g_{\ell-1}) \in \mathcal{U}$ the map

$$\varphi_{\mathcal{F}G} \colon \{0, \dots, \ell - 1\}^{\mathbb{Z}} \times M \to \{0, \dots, \ell - 1\}^{\mathbb{Z}} \times M,$$

$$\varphi_{\mathcal{F}G}(\alpha, x) = (\sigma(\alpha), \mathcal{F}g_{\alpha}(x))$$

has an ergodic measure with full support and whose exponents are all zero. This measure is a limit of periodic measures.

Notations, ingredients:

X compact metric space, $T: X \to X$, homeomorphism.

 \mathbb{V} vector bundle over X.

a projection $\pi \colon \mathbb{V} \to X$.

 $S \colon \mathbb{V} \to \mathbb{V}$ vector bundle linear isomorphism, $\pi \circ S = T \circ \pi$.

$$\mathbb{V}_{x} = \pi^{-1}(x), \qquad S_{x}^{(n)} \colon \mathbb{V}_{x} \to \mathbb{V}_{T^{n}(x)}.$$

S induces the map $\mathcal{F}S...$ acting on the flag bundle $\mathcal{F}\mathbb{V}$.

u ergodic measure (in the flag bundle $\mathcal{F}\mathbb{V}$) of \mathcal{FS} .

Furstenberg vector:

$$\overrightarrow{\Lambda(
u)} = (\Lambda_1(
u), \dots, \Lambda_d(
u))$$

$$\Lambda_j(
u) = \int_{\mathcal{FV}} \log |\det S_{\mathsf{x}}|_{\mathbb{F}_j} \, d(
u, \mathbb{F}), \quad \mathbb{F} = (\mathbb{F}_1, \dots, \mathbb{F}_d).$$

key move! the numbers $\Lambda_j(\nu)$ (thus $\overline{\Lambda(\nu)}$) are defined as integrals and thus depend continuously on the weak* topology

S induces the map $\mathcal{F}S...$ acting on the flag bundle $\mathcal{F}\mathbb{V}$. ν ergodic measure (in the flag bundle $\mathcal{F}\mathbb{V}$) of $\mathcal{F}S$.

Furstenberg vector:

$$\overrightarrow{\Lambda(\nu)} = (\Lambda_1(\nu), \dots, \Lambda_d(\nu))$$

$$\Lambda_j(
u) = \int_{\mathcal{FV}} \log |\det S_{\mathsf{x}}|_{\mathbb{F}_j} \, d(
u, \mathbb{F}), \quad \mathbb{F} = (\mathbb{F}_1, \dots, \mathbb{F}_d).$$

key move! the numbers $\Lambda_j(\nu)$ (thus $\overline{\Lambda(\nu)}$) are defined as integrals and thus depend continuously on the weak* topology

S induces the map $\mathcal{F}S...$ acting on the flag bundle $\mathcal{F}\mathbb{V}$. ν ergodic measure (in the flag bundle $\mathcal{F}\mathbb{V}$) of $\mathcal{F}S$.

Furstenberg vector:

$$\overrightarrow{\Lambda(\nu)} = (\Lambda_1(\nu), \dots, \Lambda_d(\nu))$$

$$\Lambda_j(\nu) = \int_{\mathcal{FV}} \log |\det S_x|_{\mathbb{F}_j} d(\nu, \mathbb{F}), \quad \mathbb{F} = (\mathbb{F}_1, \dots, \mathbb{F}_d).$$

key move! the numbers $\Lambda_j(\nu)$ (thus $\overline{\Lambda(\nu)}$) are defined as integrals and thus depend continuously on the weak* topology

S induces the map $\mathcal{F}S...$ acting on the flag bundle $\mathcal{F}\mathbb{V}$. ν ergodic measure (in the flag bundle $\mathcal{F}\mathbb{V}$) of $\mathcal{F}S$.

Furstenberg vector:

$$\overrightarrow{\Lambda(\nu)} = (\Lambda_1(\nu), \dots, \Lambda_d(\nu))$$

$$\Lambda_j(\nu) = \int_{\mathcal{FV}} \log |\det S_x|_{\mathbb{F}_j} d(\nu, \mathbb{F}), \quad \mathbb{F} = (\mathbb{F}_1, \dots, \mathbb{F}_d).$$

key move! the numbers $\Lambda_j(\nu)$ (thus $\overline{\Lambda(\nu)}$) are defined as integrals and thus depend continuously on the weak* topology.

Exponents of the flag dynamics

Exponents and determinants

Let χ_1, \ldots, χ_d the exponents of S. Then there is a permutation i_1, \ldots, i_d of $(1, \ldots, d)$ such that

$$\Lambda_j = \chi_{i_1} + \cdots + \chi_{i_j}.$$

Exponents of the flag maps

The exponents of $\mathcal{F}S$ are of the form $\chi_{i_i} - \chi_{i_k}$.

Exponents of the flag dynamics

Exponents and determinants

Let χ_1, \ldots, χ_d the exponents of S. Then there is a permutation i_1, \ldots, i_d of $(1, \ldots, d)$ such that

$$\Lambda_j = \chi_{i_1} + \cdots + \chi_{i_j}.$$

Exponents of the flag maps

The exponents of $\mathcal{F}S$ are of the form $\chi_{i_j} - \chi_{i_k}$.

End of the proof....

z attracting, simple spectrum,

$$0>\chi_1(z)>\chi_2(z)>\cdots>\chi_d(z).$$

 $E_1(z), E_2(z), \dots, E_d(z)$ eigendirections.

stable flag of z (an attracting flag):

$$S(z) = (E_1(z), E_1(z) \oplus E_2(z), \dots, E_1(z) \oplus \dots \oplus E_d(z))$$

attracting points z_n with attracting flags $S(z_n)$ such that

$$\overrightarrow{\Lambda(\delta_{S(z_n)})} o \overrightarrow{0}, \quad \delta_{S(z_n)}$$
 periodic Dirac.

$$\delta_{S(z_n)} \to \nu_{\infty} \implies \overrightarrow{\Lambda(\nu_{\infty})} = \vec{0}$$

End of the proof....

z attracting, simple spectrum,

$$0>\chi_1(z)>\chi_2(z)>\cdots>\chi_d(z).$$

 $E_1(z), E_2(z), \dots, E_d(z)$ eigendirections.

stable flag of z (an attracting flag):

$$S(z) = (E_1(z), E_1(z) \oplus E_2(z), \dots, E_1(z) \oplus \dots \oplus E_d(z)).$$

attracting points z_n with attracting flags $S(z_n)$ such that

$$\overrightarrow{\Lambda(\delta_{S(z_n)})} o \overrightarrow{0}, \quad \delta_{S(z_n)}$$
 periodic Dirac.

$$\delta_{S(z_n)} \to \nu_{\infty} \implies \overrightarrow{\Lambda(\nu_{\infty})} = \vec{0}.$$

End of the proof....

z attracting, simple spectrum,

$$0>\chi_1(z)>\chi_2(z)>\cdots>\chi_d(z).$$

 $E_1(z), E_2(z), \dots, E_d(z)$ eigendirections.

stable flag of z (an attracting flag):

$$S(z) = (E_1(z), E_1(z) \oplus E_2(z), \dots, E_1(z) \oplus \dots \oplus E_d(z)).$$

attracting points z_n with attracting flags $S(z_n)$ such that

$$\overrightarrow{\Lambda(\delta_{S(z_n)})}
ightarrow \vec{0}, \quad \delta_{S(z_n)}$$
 periodic Dirac.

$$\delta_{S(z_n)} \to \nu_{\infty} \implies \overrightarrow{\Lambda(\nu_{\infty})} = \overrightarrow{0}.$$

Previous results implies

$$\overrightarrow{\Lambda(\nu_{\infty})} = (\Lambda_1(\nu_{\infty}), \Lambda_2(\nu_{\infty}), \cdots, \Lambda_d(\nu_{\infty}) = (0, 0, \dots, 0).$$

$$\Lambda_1 = \chi_{i_1} \implies \chi_{i_1} = 0$$

$$\Lambda_2 = \chi_{i_1} + \chi_{i_2} = 0 + \chi_{i_2} \implies \chi_{i_2} = 0$$

Previous results implies

$$\overrightarrow{\Lambda(\nu_{\infty})} = (\Lambda_1(\nu_{\infty}), \Lambda_2(\nu_{\infty}), \cdots, \Lambda_d(\nu_{\infty}) = (0, 0, \dots, 0).$$

$$\Lambda_1 = \chi_{i_1} \implies \chi_{i_1} = 0$$

$$\Lambda_2 = \chi_{i_1} + \chi_{i_2} = 0 + \chi_{i_2} \implies \chi_{i_2} = 0$$

Previous results implies

$$\overrightarrow{\Lambda(\nu_{\infty})} = (\Lambda_1(\nu_{\infty}), \Lambda_2(\nu_{\infty}), \cdots, \Lambda_d(\nu_{\infty}) = (0, 0, \dots, 0).$$

$$\Lambda_1 = \chi_{i_1} \implies \chi_{i_1} = 0$$

$$\Lambda_2 = \chi_{i_1} + \chi_{i_2} = 0 + \chi_{i_2} \implies \chi_{i_2} = 0$$

Previous results implies

$$\overrightarrow{\Lambda(\nu_{\infty})} = (\Lambda_1(\nu_{\infty}), \Lambda_2(\nu_{\infty}), \cdots, \Lambda_d(\nu_{\infty}) = (0, 0, \dots, 0).$$

$$\Lambda_1 = \chi_{i_1} \implies \chi_{i_1} = 0$$

$$\Lambda_2 = \chi_{i_1} + \chi_{i_2} = 0 + \chi_{i_2} \implies \chi_{i_2} = 0$$

Thanks!

technical step: construction of orbits

cone
$$C = \{\vec{\lambda} = (\lambda_1, \dots, \lambda_d) \colon 0 > \lambda_1 > \dots > \lambda_d\}.$$

projective map $\Gamma \colon C \to \mathbb{R}^+, \quad \Gamma(t \vec{\lambda}) = \Gamma(\vec{\lambda})$

generation of orbits

Given (z, S(z)) stable flag, $\vec{\chi}(z)$ (Lyapunov vector) There is $(\bar{z}, S(\bar{z}))$ stable flag, $\vec{\chi}(\bar{z})$ such that (there are some quantifiers.... ϵ, δ, κ)

- ① the angle $\chi(z), \chi(\bar{z})$ is small: $\chi(\bar{z}) \in C$ and $S(\bar{z})$ is defined.
- 2 comparison of (decreasing) exponents:

$$0<|\vec{\chi}(\bar{z})|<\Gamma(\vec{\chi}(z))|\vec{\chi}(z)|,\quad \Gamma(\vec{\chi}(z))\in(0,1),$$

- **3** shadowing: $(\bar{z}, S(\bar{z}) \text{ mimics } (z, S(z)) \text{ during } (1 \kappa)\text{-time}$
- **4** scattering support: the orbit of $(\bar{z}, S(\bar{z}))$ is δ -dense

technical step: construction of orbits

cone
$$C = {\vec{\lambda} = (\lambda_1, \dots, \lambda_d) : 0 > \lambda_1 > \dots > \lambda_d}.$$

projective map $\Gamma : C \to \mathbb{R}^+, \quad \Gamma(t \vec{\lambda}) = \Gamma(\vec{\lambda})$

generation of orbits

Given (z, S(z)) stable flag, $\vec{\chi}(z)$ (Lyapunov vector) There is $(\bar{z}, S(\bar{z}))$ stable flag, $\vec{\chi}(\bar{z})$ such that (there are some quantifiers.... ϵ, δ, κ)

- ① the angle $\chi(z), \chi(\bar{z})$ is small: $\chi(\bar{z}) \in C$ and $S(\bar{z})$ is defined.
- 2 comparison of (decreasing) exponents:

$$0<|\vec{\chi}(\bar{z})|<\Gamma(\vec{\chi}(z))|\vec{\chi}(z)|,\quad \Gamma(\vec{\chi}(z))\in(0,1),$$

- **3** shadowing: $(\bar{z}, S(\bar{z}) \text{ mimics } (z, S(z)) \text{ during } (1 \kappa) \text{-time}$
- **4** scattering support: the orbit of $(\bar{z}, S(\bar{z}))$ is δ -dense

technical step: construction of orbits

cone
$$C = {\vec{\lambda} = (\lambda_1, \dots, \lambda_d) : 0 > \lambda_1 > \dots > \lambda_d}.$$

projective map $\Gamma : C \to \mathbb{R}^+, \quad \Gamma(t \vec{\lambda}) = \Gamma(\vec{\lambda})$

generation of orbits

Given (z, S(z)) stable flag, $\vec{\chi}(z)$ (Lyapunov vector) There is $(\bar{z}, S(\bar{z}))$ stable flag, $\vec{\chi}(\bar{z})$ such that (there are some quantifiers.... ϵ, δ, κ)

- the angle $\chi(z), \chi(\bar{z})$ is small: $\chi(\bar{z}) \in C$ and $S(\bar{z})$ is defined.
- 2 comparison of (decreasing) exponents:

$$0<|\vec{\chi}(\bar{z})|<\Gamma(\vec{\chi}(z))\,|\vec{\chi}(z)|,\quad \Gamma(\vec{\chi}(z))\in(0,1),$$

- **3** shadowing: $(\bar{z}, S(\bar{z}) \text{ mimics } (z, S(z)) \text{ during } (1 \kappa) \text{-time}$
- scattering support: the orbit of $(\bar{z}, S(\bar{z}))$ is δ -dense.

- allows to repeat the procedure,
- 3 criterium of the ergodic measures,
- **4** as $\delta \to 0$ the supp periodic measures increase.