Nonhyperbolic ergodic measures

Lorenzo J. Díaz

PUC-Rio, Brazil

ICM 2018

Starting point, questions, and summary

"To what extent is the behaviour of a dynamical system hyperbolic?"

[GIKN: Gorodetski, Ilyashenko, Klepsyn, Nalsky 05]

- nonuniform hyperbolicity [Pesin Theory]
- Hénon and Lorenz attractors [nonuniform hyperbolicity]

[reformulation:]

To what extent nonhyperbolic dynamics can be detected ergodically?

When nonhyperbolic systems have nonhyperbolic (ergodic) measures?

[caveat:]

there are **fragile** nonhyperbolic systems whose ergodic measures **all** are hyperbolic

Bowen-eye surgery

[Baladi-Bonatti-Schmitt 99]

Hénon-maps with tangencies
[Cao-Luzzatto-Rios 06]

Horseshoes with internal cycles

[D-Horita-Rios-Samba. 09]

Nonhyperbolic ergodic measures [more questions]

Existence. How are these measures?

- support
- entropy
- number of zero exponents (very few is known)

Methods of construction

[also/related]

- Description of the space of ergodic measures
- Approximation [weak* and entropy] of nonhyperbolic measures by hyperbolic ones in the spirit of the hyperbolic case: approximation by measures supported on horseshoes [Katok 80] [hyperbolic] [Crovisier 16, Gelfert 17] [dominated]

Simple setting: intermingled horseshoes in skew products

[GIKN examples]

$$F: \{0,1\}^Z \times \mathbb{S}^1 \to \{0,1\}^Z \times \mathbb{S}^1, \quad (\alpha,x) \mapsto (\sigma(\alpha), f_{\alpha_0}(x)).$$

 $f_0 \colon \mathbb{S}^1 o \mathbb{S}^1$ [north pole - south pole] $f_1 \colon \mathbb{S}^1 o \mathbb{S}^1$ irrational rotation (or nearby)

naive idea intermingled horseshoes of different type of hyperbolicity

key minimality of the IFS generated by f_0, f_1 : points have dense orbits in \mathbb{S}^1

Differentiable version

$$\underbrace{[\mathrm{Anosov-horseshoes}]}_{\pmb{A}} \ \ \underbrace{[\mathrm{notations},\mathrm{Morse-Smale}]}_{\pmb{f_\alpha}} \ \ \underbrace{[\mathrm{central})}_{\pmb{f_\alpha}}$$

$$F\colon \mathbb{T}^2\times\mathbb{S}^1\to\mathbb{T}^2\times\mathbb{S}^1,\quad (\alpha,x)\mapsto (A(\alpha),f_\alpha(x))$$

• [a priori] nonrobust method

- transitivity is preserved
- saddles of indices 1 y 2 in the same transitive set pioneers: [Abraham-Smale 70, Simon 72]

Intermingled horseshoes, one-dim center

$$\begin{split} \mathcal{M}_{\mathrm{erg}} &= \mathcal{M}_{\mathrm{erg}}^{-} \cup \mathcal{M}_{\mathrm{erg}}^{0} \cup \mathcal{M}_{\mathrm{erg}}^{+} \\ \mathrm{Per} &= \mathrm{Per}^{-} \cup \mathrm{Per}^{0} \cup \mathrm{Per}^{+} \end{split}$$

- negative central exponent
- 0 zero central exponent
- + positive central exponent

$$\Sigma_2 \times \mathbb{S}^1 = \overline{\operatorname{Per}^+} = \overline{\operatorname{Per}^-}$$
 transitivity

approximation of measures in $\mathcal{M}_{\mathrm{erg}}^0$ by measures in $\mathcal{M}_{\mathrm{erg}}^\pm$

weak*, entropy

Occurrence of nonhyperbolic dynamics

- critical dynamics
- parabolic dynamics
- cycles
- coexistence of saddles of different indices in the same transitive set

 abundance of homoclinic relations invariant manifolds of periodic points meet cyclically and transversely

main objects of study

1. Homoclinic class

closure of the transverse homoclinic points of a saddle

- transitivity (dense orbits)
- density of periodic points
- may fail to be hyperbolic coexistence of saddles of different indices

2. Robustly transitive diffeos

every nearby diffeo is transitive

Examples

- Anosov [hyperbolic]
- Nonhyperbolic
 - Derived from Anosov [Mañé 78]
 - ullet Perturbations of Anosov imes identity [Shub 71, Bonatti-D 96]
 - Perturbations of time-one Anosov transitive vector field [Bonatti-D 96]
 - New methods [Bonatti-Gogolev-Potrie 16], [G-Hammerlindel-P 18]

2. Robustly transitive diffeos

every nearby diffeo is transitive

Properties

- Hyperbolic [dim 2] [Mañé 82],
- Partially Hyperbolic [dim 3] [D-Pujals-Ures 99],
- Domination [Bonatti-D-Pujals 03]

Minimality of strong foliations [Bonatti-D-Ures 02, Ures-RodHertz² 07]

existence of a compact central leaf

Focus on

C¹-topology and also general mechanisms

Nonhyperbolic

- homoclinic classes [typically with saddles of different indices]
- robustly transitive diffeos [emphasis on partial hyperbolicity]

Two independent aspects of the constructions of nonhyp. measures

Construction how?

Sufficient conditions when ?

Paradox: To construct the nonhyperbolic measures (with some persistence) some hyperbolicity is needed

General principle: "A little hyperbolicity goes a long way..." [Pugh-Shub]

Some definitions and results

$$f: M \to M$$
 diffeo $d = \dim(M)$.

$$arphi \colon M o \mathbb{R}$$
 continuous (potential)

$$f$$
-invariant probability measure: $\mu(A) = \mu(f^{-1}(A))$.

• | Ergodicity |
$$A = f^{-1}(A) \Longrightarrow \mu(A) \in \{0, 1\}.$$

Birkhoff Theorem

time average:

$$\varphi_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i(x)), \qquad \qquad \int \varphi \, d\mu.$$

$$\int \varphi \, d\mu = \varphi_{\infty}(x), \quad \mu\text{-a.e.} \quad \varphi_{\infty}(x) = \lim \ \varphi_{n}(x) \quad (\text{if } \exists)$$

Oseledets Theorem μ ergodic, there are

Lyapunov exponents:

$$\chi_1(\mu) \geq \chi_2(\mu) \geq \cdots \geq \chi_k(\mu)$$

Df-invariant splitting:

$$TM = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$

 μ -a.e. for all $i \in \{1, \ldots, k\}$ and $v \in E_i \setminus \{\overline{0}\}$:

$$\lim_{n\to\pm\infty}\frac{\log\|Df_x^n(v_i)\|}{n}=\chi_i(\mu).$$

• μ hyperbolic $\chi_i(\mu) \neq 0$ for every i.

(uniform) hyperbolicity \Longrightarrow all ergodic measures are hyperbolic

GIKN-method of periodic approximations

Sufficient conditions for

a weak* limit of periodic measures [suported on a periodic orbit] to be ergodic

$$(\mu_n) \rightarrow_* \mu$$
, where μ_n supported on periodic p_n

Setting

partial hyperbolicity with one-dimensional center E^{c}

key property

the "central" exponent is the integral of the continuous map $Df|_{E^c}$

$$\chi_{c}(\mu_{n})
ightarrow \chi_{c}(\mu)$$
 [this fails when $\dim(E^{c}) \geq 2$]

construction of the periodic points p_n

jumps [in finite time] from a center-contracting to a center-expanding region. minimality

Periodic approximations

Two ingredients:

- shadowing
- tails

first generation

starting orbit ullet:

second generation second orbit:

- a new orbit shadows the first one [most of time, fixed proportion]
- and adds a tail

third generation third orbit:

- a new orbit shadows the second one [most of time, fixed proportion]
- and adds a new tail

consequences of the tail

 \bullet extension of the support of the limit measure μ

$$\sup(\mu) = \bigcap_n \bigcup_{k \geq n} \mathcal{O}(p_n)$$

- ergodicity of the limit measure
- decreasing the exponent in "our" case

- \bigcirc p_n with exponent χ_n
- 2 $\mathcal{O}(p_{n+1})$ shadows $\mathcal{O}p_n$ [90% of the time] and visits a contracting pivot point q [10% of the time]
- 3 the exponent χ_{n+1} is less than $(9/10) \chi_n \to 0$.

Applications of the GIKN-method

Nonhyperbolic ergodic measures with uncountable support for:

- [step] Skew-products [over S¹] [Gorodetski-Ilyashenko-Kleptsyn-Nalsky 05]
- ullet Some open sets of diffeomorphisms in \mathbb{T}^3 [Kleptsyn-Nalsky 07]
- Nonhyperbolic homoclinic classes of C^1 -generic diffeos:
 - with saddles of different indices [D-Gorodetski 09]
 - Fully supported on the class (partial hyp) [Bonatti-D-Gorodetski 10]
 - General result: no index assumption [Chen-Crovisier-Gan-Wang-Yang 16]

these cases have one zero exponent

several zero exponents?

Applications of GIKN, several zero exponents

 $\dim(E^c) \geq 2$ and undecomposable some natural conditions are needed

- Several zero exponents
 - skew-products and IFS's [Bochi-Bonatti-D 14],
 - for homoclinic classes [Wang-Zhang 17]

Caveat on the GIKN-method

GIKN-measure: obtained by the GIKN-method

highly repetitive pattern

GIKN-measures have zero entropy [Kwietniak-Łącka 18]

Nonhyperbolic ergodic measures with positive entropy?

new methods: blenders and flip-flops

Blenders

one-dimensional version. endomorphisms

Blenders

two-dimensional version. endomorphisms

figures from What is a blender? [Bonatti-Crovisier-D-Wilkinson 17]

Key property of blenders

the maximal invariant set and the superposition property

nontransverse intersections are persistent

Blenders

"difeomorphication" of the endomorphism: adding one dimension

skew horseshoes in dimension three

Blenders from another perspective. Summary

perturbations of nonnormally hyperbolic horseshoes

An invariance superposition property

Blenders

mechanism for generating persistent nontransverse intersections (?!)

- Blenders as a mechanism for robust transitivity [Bonatti-D 95]
- Blenders as a mechanism for robust cycles (heterodimensional cycles and tangencies)
 [Bonatti-D 06, 08]
 Blender-horseshoes (with geometrical data), compare thick horseshoes [Newhouse]
- Dynamical blenders (construction of nonhyperbolic measures)
 [Bochi-Bonatti-D 16]
- Other blenders, other settings [Nassiri-Pujals 10], [Barrientos-Raibekas-Ki 14], [Avila-Crovisier-Wilkinson 17]
- Superblenders....
 [Berger 16]

key for constructing nonhyperbolic ergodic measures with positive entropy

Ergodic nonhyperbolic measures with positive entropy

- (I) Flip-flop families
- (II) Control of orbits and averages
 - (III) Flip-flop configurations

(I) Flip-flop families

 $f: X \to X$ homeo., $\phi: X \to \mathbb{R}$ cont., (X, d) metric space

Flip-flop family is a family of compact sets (plaques)

$$\mathfrak{F}=\mathfrak{F}^+\cup\mathfrak{F}^-$$

• there is $\alpha>0$ such that for every $D^\pm\in \mathfrak{F}^\pm$ and $x^\pm\in D^\pm$

$$\phi(x^-) < -\alpha < 0 < \alpha < \phi(x^+)$$

• there is $\lambda \in (0,1)$ such that every $D \in \mathfrak{F}$ contains D^+ and D^- with $f(D^\pm) \in \mathfrak{F}^\pm$ and $|D^\pm| < \lambda |D|$

Birkhoff averages

$$\varphi_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i(x)), \qquad \varphi_{\infty}(x) = \lim \varphi_n(x) \quad \text{if } \exists$$

Flip-flop theorem [Bochi-Bonatti-D 16]

 $f: X \to X$ homeo with a flip-flop family \mathfrak{F} associated to $\varphi: X \to \mathbb{R}$. Then there is $\Omega = f(\Omega)$ compact such that

- $\varphi_n \to 0$ uniformly on Ω
- $f_{|\Omega}$ has positive entropy

Variational principle

there is ergodic μ with positive entropy and $\int \varphi \, d\mu = 0$

(II) Control of orbits and averages

Given
$$\beta > 0$$
, $t \in \mathbb{N}$, $x \in X$

 (β, t) -controlled: there is $(\ell_n) \nearrow \infty$ of control times such that

- $\ell_0 = 0$,
- $\bullet \ k_n = \ell_{n+1} \ell_n \le t,$
- $\bullet \ \frac{1}{k_n} \left| \varphi_{k_n}(f^{\ell_n}(x)) \right| \leq \beta$

control at any scale: there are $(t_i) \nearrow \infty$ and $(\beta_i) \searrow 0$ such that x is (β_i, t_i) -controlled for every i

Control lemma

$$x$$
 controlled at any scale $\implies \frac{1}{n}\varphi_n(y) \to 0$ for all $y \in \omega(x)$

Flip-flop family \mathfrak{F} implies control at any scale Every $D \in \mathfrak{F}$ contains x controlled at any scale

Generalizations, variations

control with tails the control is relaxed in some intervals

this allows to extend the support of the measure [Bochi-Bonatti-D 18]

(III) Flip-flop configurations

(a)

center contracting saddle

blender

Flip-flop configurations

(b)

the blender and the saddle are heteroclinically and cyclically related

Flip-flop configurations yield flip-flop families (i)

family of plaques

contracting and expanding regions

 $\varphi = \log \, D f_{|_{E^c}}$

partially hyperbolic region, one-dim $E^{\rm c}$

Flip-flop configurations yield flip-flop families (ii)

Applications of the flip-flop method

 C^1 robustly nonhyperbolic and transitive diffeos have open and densely

- flip-flop configurations
- nonhyperbolic ergodic measures with positive entropy [Bochi-Bonatti-D
 16]

[additional open hypothesis] $\dim(\mathcal{E}^{\mathrm{c}})=1$ and a central compact leaf

C^1 -open and densely

- the measure has full support [Bochi-Bonatti-D 16]
- the measure has full support and positive entropy [Bonatti-D-Kwietniak 18]

Insertion of nonhyperbolic measures

[additionally] $\dim(E^{c})=1$, central compact leaf, minimal strong foliations

$$\mathcal{M}_{\mathrm{erg}} = \mathcal{M}_{\mathrm{erg}}^{-} \cup \mathcal{M}_{\mathrm{erg}}^{0} \cup \mathcal{M}_{\mathrm{erg}}^{+}$$
 $\mathcal{M}_{\mathrm{erg}}^{\mp} \stackrel{\mathrm{def}}{=} \{\mu \colon \chi^{\mathrm{c}}(\mu) \lessgtr 0\}$ hyper.
 $\mathcal{M}_{\mathrm{erg}}^{0} \stackrel{\mathrm{def}}{=} \{\mu \colon \chi^{\mathrm{c}}(\mu) = 0\}$ nonhyp

3D Picture theorem

Step Skew-products [D-Gelfert-Rams 17] [one-dim blender \oplus minimality of the ifs] Also thermodynamical formalism, entropy of level sets...

C¹ diffeos [D-Gelfert-Santiago 18], [Yang-Zhang18] [blender-horseshoe ⊕ minimal strong foliations] [distortion ⊕ fake foliations] [Burns-Wilkinson 10] Also thermodynamical formalism [D-Gelfert-Santiago]

many thanks!!!