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Starting point, questions, and summary

“To what extent is the behaviour of a dynamical system hyperbolic?”

[GIKN: Gorodetski, llyashenko, Klepsyn, Nalsky 05]

(] nonuniform hyperbO|ICIty [Pesin Theory]

o Hénon and LorenZ attractors [nonuniform hyperbolicity]

[reformulation:]

To what extent nonhyperbolic dynamics can be detected ergodically?
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When nonhyperbolic systems have nonhyperbolic (ergodic) measures?

[caveat:]

there are fragile nonhyperbolic systems whose ergodic measures all are
hyperbolic

0 v »
X Y
s n
Bowen-eye surgery Hénon-maps with tangencies Horseshoes with internal cycles
[Baladi-Bonatti-Schmitt 99] [Cao-Luzzatto-Rios 06] [D-Horita-Rios-Samba. 09]
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Nonhyperbolic ergodic measures [more questions]

Existence. How are these measures?

@ support
@ entropy

@ number of zero exponents (very few is known)

Methods of construction

[also/related]

@ Description of the space of ergodic measures

@ Approximation [weakx and entropy] of nonhyperbolic measures by
hyperbOIiC ONES in the spirit of the hyperbolic case: approximation by measures supported

on horseshoes [Katok 80] [hyperbolic] [Crovisier 16, Gelfert 17] [dominated]
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Simple setting: intermingled horseshoes in skew products

[GIKN examples]

F:{0,1}4 xSt = {0,1}2 x S, (a,x) = (0(a), fay(x))-

fb . Sl = Sl [north pole - south pole] o T2 = 220 2 oYz = X2
hyperbolic part
ﬂ . Sl — Sl irrational rotation (or nearby)

fo

Central pa

fo f w
intermingled horseshoes of different type of hyperbolicity

key minimality of the IFS generated by fo, fi: points have dense orbits in S*
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\ Differentiable version

[Anosov — horseshoes] (hyperbolic) X [rotations, Morse — Smale] (central)

A fa

F:T?xS* = T2 xSY (o, %) = (A(), fo(x))

@ [a priori] nonrobust method

T

@ transitivity is preserved

@ saddles of indices 1y 2 in the same transitive set
pioneers: [Abraham-Smale 70, Simon 72]
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Intermingled horseshoes, one-dim center

0:22—>220 00:22—>22
horseshoe horseshoe _ = 0 aF
Merg = Mg UM, UM,
— 0
Per = Per™ U Per’ U Per™
fo :
@ — negative central exponent
@ 0 zero central exponent
invariant sets o + positive central exponent

(s

Y5 x St = Pert = Per™

transitivity

0
erg

+

by measures in M,

approximation of measures in M
—_———

weakx*, entropy
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Occurrence of nonhyperbolic dynamics

cycles

critical dynamics
parabolic dynamics
cycles

coexistence of saddles of different
indices in the same transitive set

coexistence

P

o abundance Of homOC“niC re|ations invariant manifolds of periodic points meet

cyclically and transversely

homoclinic classes




main objects of study‘

'1. Homoclinic class|

closure of the transverse homoclinic points of a saddle
@ transitivity (dense orbits)

@ density of periodic points

@ may fail to be hyperbolic — coexistence of saddles of different indices

9/43



2. Robustly transitive diffeos

every nearby diffeo is transitive

@ Anosov [hyperbolic]
@ Nonhyperbolic
e Derived from Anosov [Mase 78]

o Perturbations of Anosov x identity [shub 71, Bonatti-D 96]

e Perturbations of time-one Anosov transitive vector field
[Bonatti-D 96]

o New methOdS [Bonatti-Gogolev-Potrie 16], [G-Hammerlindel-P 18]
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2. Robustly transitive diffeos

every nearby diffeo is transitive

@ Hyperbolic [dim 2] [Made 82],
@ Partially Hyperbolic [dim 3] [D-Pujals-Ures 99],
@ Domination [Bonatti-D-Pujals 03]
@ Minimality of strong foliations [Bonatti-D-Ures 02, Ures-RodHertz 07]
| Es @ EC @ Euu | Fud Fuu
existence of a compact
dim(E°) = 1 = = central leaf
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Focus on

Cl-topology and also general mechanisms

Nonhyperbolic
@ homoclinic classes [typically with saddles of different indices]

@ robustly transitive diffeos [emphasis on partial hyperbolicity]

Two independent aspects of the constructions of nonhyp. measures
Construction Sufficient conditions

Paradox: To construct the nonhyperbolic measures (with some persistence)
some hyperbolicity is needed

General principle: “A little hyperbolicity goes a long way..."  [Pugh-Shub]
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|Some definitions and results|

f: M — M diffeo d = dim(M).
p: M — R continuous (potential)
f-invariant probability measure: p(A) = u(f~1(A)).

° A= f1(A) = u(A) € {0,1}.
° ’ Birkhoff Theorem ‘

time average: spatial average:

on(x) = 3 Ty o(F (%)), [edp.

[edn=puln, wae put)=im gl (3
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° ’ Oseledets Theorem \ 1 ergodic, there are

Lyapunov exponents:
x1(p) = xa(p) = - = x(p)
Df-invariant splitting:
TM=E,0E & ©®E
p-a.e. forallie {1,...,k} and v € E; \ {0}:

_ log||DE(v;
i 1BIDEODI

n—+oo n

° Xi(pe) # 0 for every i.

(uniform) hyperbolicity = all ergodic measures are hyperbolic
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’GIKN—method of periodic approximations

’ Sufficient conditions for‘

a weakx limit of periodic measures [suported on a periodic orbit] t0 be ergodic

(tn)—>xp, where p, supported on periodic p,

partial hyperbolicity with one-dimensional center E€

key property

the “central” exponent is the integral of the continuous map Df |

Xc(ﬂn) — XC(,U,) [this fails when dim(E€) > 2]

’construction of the periodic points p,

jumps [in finite time] from a center-contracting to a center-expanding region.

minimality
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Periodic approximations

Two ingredients:
© shadowing
Q tails

first generation| starting orbit e:
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second generation| second orbit:

@ a new Orbit L] ShadOWS the ﬁrst ONE [most of time, fixed proportion]

@ and adds a tail

shadowing

tail
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third generation | third orbit:
@ a new Orbit L] ShadOWS the SeCOnd ONE [most of time, fixed proportion]

@ and adds a new tail

A Py
> 2

shadowing ***
:'&".:-. :'?a:};‘.
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consequences of the tail‘

© 0

@ extension of the support of the limit measure

sup(u) = (] |J Opw)
n k>n
@ ergodicity of the limit measure

@ decreasing the exponent in “our’ case

pn with exponent x,

O(pn+1) shadows Opp, [90% of the time] and

visits a contracting pivot point g [10% of the time]

the exponent X1 is less than (9/10) x, — 0.
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Applications of the GIKN-method

Nonhyperbolic ergodic measures with uncountable support for:

@ [step] SkeW—pl’OdUCtS [over S] [Gorodetski-llyashenko-Kleptsyn-Nalsky 05]
@ Some open sets of diffeomorphisms in T3 [Kieptsyn-Nalsky 07]

@ Nonhyperbolic homoclinic classes of C!-generic diffeos:

e with saddles of different indices [D-Gorodetski 09]
o Fully supported on the class (partial hyp) [Bonatti-D-Gorodetski 10]
o Genera| I’esu|t: no indeX assumption [Chen-Crovisier-Gan-Wang-Yang 16]

|these cases have one zero exponent|

| several zero exponents? |
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Applications of GIKN, several zero exponents

| dlm(EC) > 2 and undecom posa ble | some natural conditions are needed

@ Several zero exponents

e skew-products and IFS’s [Bochi-Bonatti-D 14],
e for homoclinic classes [Wang-zhang 17]
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| Caveat on the GIKN-method |

GIKN-measure: obtained by the GIKN-method

‘ highly repetitive pattern ‘

GIKN-measures have zero entropy [Kwietniak-tacka 18]

‘ Nonhyperbolic ergodic measures with positive entropy? ‘

|new methods: blenders and flip-flops|
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one-dimensional version. endomorphisms
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two-dimensional version. endomorphisms

figures from What is a blender? [Bonatti-Crovisier-D-Wilkinson 17]

DAy
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Key property of blenders

the maximal invariant set and the superposition property

nontransverse intersections are persistent
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“difeomorphication” of the endomorphism: adding one dimension

skew horseshoes in dimension three




Blenders from another perspective. Summary

perturbations of nonnormally hyperbolic horseshoes

o

u-sectio

—_—

—

one-dim dynamics

DA
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An invariance superposition property‘

unstablg discs

f(D)
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mechanism for generating persistent nontransverse intersections (?!)

W(A)

Blenders as a mechanism for robust transitivity
[Bonatti-D 95]

Blenders as a mechanism for robust cycles
(heterodimensional cycles and tangencies)
[Bonatti-D 06, 08]

Blender-horseshoes (with geometrical data),
compare thick horseshoes [Newhouse]

Dynamical blenders (construction of
nonhyperbolic measures)
[Bochi-Bonatti-D 16]

Other blenders, other settings
[Nassiri-Pujals 10], [Barrientos-Raibekas-Ki 14],
[Avila-Crovisier-Wilkinson 17]

Superblenders....
[Berger 16]

key for constructing nonhyperbolic ergodic measures with positive entropy

Qe
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Ergodic nonhyperbolic measures with positive entropy

(1) |Flip-flop families

(1) |Control of orbits and averages

(111) | Flip-flop configurations
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(1) Flip-flop families

f: X — X homeo., ¢: X — Rcont.,, (X, d) metric space

Flip-flop family is a family of compact sets (plaques)
F=8"uUF
@ there is a > 0 such that for every D* € §* and x* € D*

d(x7) < —a<0<a<ao(xh)

¢ <0 ¢ >0
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@ there is A € (0,1) such that every D € § contains D and D~ with
f(D*) € §F and |D*| < A|D|

A

D)

| Markovian flavour|
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‘ Birkhoff averages‘

ng(f"(x)), 9900()() = lim S‘Qn(X) if 3

‘ Flip-flop theorem [gochi-Bonatti-D 16]‘

f: X — X homeo with a flip-flop family § associated to ¢: X — R.
Then there is Q = f(Q) compact such that

@ , — 0 uniformly on Q

@ fiq has positive entropy

Variational principle ‘

there is ergodic p with positive entropy and [ du =0
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(I1) Control of orbits and averages

‘Given6>0,t€N,x€X‘

(5, t)-controlled: there is (¢,) /* oo of control times such that
° /p=0,
° kn:€n+1_€n§ G

o ()] < 5

control at any scale: there are (t;) /oo and (3;) \, 0 such that x is
(B;, t;)-controlled for every i
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Control lemma

1
x controlled at any scale = —@,(y) =0 forall y € w(x)
n

Flip-flop family § implies control at any scale

Every D € § contains x controlled at any scale

’ Generalizations, variations ‘

Contr0| Wlth taiIS the control is relaxed in some intervals

this allows to extend the support of the measure [Bochi-BonattiD 18]
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(111) Flip-flop configurations

(a)

center contracting saddle blender

a4
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Flip-flop configurations

(b)

the blender and the saddle are heteroclinically and cyclically related

-

<s_addle

,,,,,,

blender
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Flip-flop configurations yield flip-flop families (i)

‘family of plaques‘

’contracting and expanding regions‘

‘partially hyperbolic region, one-dim E®

p<0 ,

w = log Df|EC
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Flip-flop configurations yield flip-flop families (ii)

,,,,,,
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Applications of the flip-flop method

C! robustly nonhyperbolic and transitive diffeos have open and densely

o flip-flop configurations

@ nonhyperbolic ergodic measures with positive entropy [Bochi-Bonatti-D

16]

[additional open hypothesis] dlm(EC) =1 and a central compact leaf

Cl-open and densely

@ the measure has full support [Bochi-Bonatti-D 16]

@ the measure has full support and positive entropy [Bonatti-D-Kwietniak 18]
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Insertion of nonhyperbolic measures

[additionally]  dim(E€) = 1, central compact leaf, minimal strong foliations

= 0
Merg = Mg U Mg, UM,

Mgi‘g déf {,LL XC(M) § 0} hyper.
def c
Mgrg = {/}, X (/14) = 0} nonhyp
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3D Picture theorem |

|geometry of the space of measures

general results

[Sigmund 74,77 ]
[Abdenur-Bonatti-Crovisier 11]
[Gelfert-Kwietniak 17]

convM .

Clt diffeos, clases homocl.
[Gorodetski-Pesin 17]
[Bochi-Bonatti-Gelfert 17]

+
onvM_,
0
weakx and entropy approx. of Mg,
step SkeW—products [D-Gelfert-Rams 17] Cl diffeos [D-Gelfert-Santiago 18], [Yang-Zhang18]
[one-dim blender @ minimality of the ifs] [blender-horseshoe @ minimal strong foliations]
Also thermodynamical formalism, entropy of level sets... [distortion @ fake foliations] [Burns-Wilkinson 10]

Also thermodynamical formalism [D-Gelfert-Santiago]
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many thanks!!!

o = = = = 9ac
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