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Starting point, questions, and summary

“To what extent is the behaviour of a dynamical system hyperbolic?”
[GIKN: Gorodetski, Ilyashenko, Klepsyn, Nalsky 05]

nonuniform hyperbolicity [Pesin Theory]

Hénon and Lorenz attractors [nonuniform hyperbolicity]

[reformulation:]

To what extent nonhyperbolic dynamics can be detected ergodically?
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When nonhyperbolic systems have nonhyperbolic (ergodic) measures?

[caveat:]
there are fragile nonhyperbolic systems whose ergodic measures all are
hyperbolic

1120 V. Baladi et al
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FIGURE 4. Local model before identification.
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Abstract. We study the hyperbolicity of a class of horseshoes exhibiting an
internal tangency, i.e. a point of homoclinic tangency accumulated by peri-
odic points. In particular these systems are strictly not uniformly hyperbolic.
However we show that all the Lyapunov exponents of all invariant measures
are uniformly bounded away from 0. This is the first known example of this
kind.

1. Introduction.

1.1. Hyperbolicity and tangencies. We consider C2 diÆeomorphisms © on Rie-
mannian surfaces. Our goal is to study the hyperbolic properties of a class of maps
exhibiting a homoclinic tangency associated to a fixed saddle point S, as in Figure
1. We assume without loss of generality that we are working on R2 and in the

S

S

Figure 1. Homoclinic tangencies inside the limit set

standard Euclidean norm. We recall that a compact invariant set § is uniformly
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Hénon-maps with tangencies

[Cao-Luzzatto-Rios 06]
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FIGURE 4. Fake homoclinic points and heteroclinic segments.

Note that the co-existence of saddles of different indices in the same homoclinic
class prevents its hyperbolicity. Thus, since Q 2 H(P, F0), that homoclinic class is
non-hyperbolic. Nevertheless, we prove that every periodic point of the non-hyperbolic
homoclinic class H(P, F0) is hyperbolic, although the Lyapunov exponents of the periodic
points accumulate to zero. It is interesting to compare this result with the destruction of
hyperbolic sets in the Hénon family in [11] and of horseshoes with internal tangencies
in [10] (see Figure 3), where the Lyapunov exponents of the periodic points of the non-
hyperbolic horseshoe are uniformly bounded away from zero.

Finally, for the bifurcating diffeomorphism F0, the homoclinic class H(Q, F0) is trivial
and thus properly contained in the homoclinic class of P . This gives, as far as we know, the
first example of two saddles whose homoclinic classes where one is properly contained in
the other one: H(Q, F0) = {Q} ⇢ H(P, F0). Recall that for C1-generic diffeomorphisms
(i.e. diffeomorphisms in a residual subset of Diff1(M)) non-disjoint homoclinic classes
coincide, see [5, 12]. For examples of overlapping homoclinic classes (each class is not
contained in the other one and the classes have non-empty intersection) see [25].

We also study the dynamics arising from the unfolding of the cycle. Recall that the
heteroclinic orbits associated with P and Q are generated as follows. We fix local invariant
manifolds W s

loc(Q, Ft ) of Q and W u
loc(P, Ft ) of P . For every t > 0, there is a transverse

homoclinic point Xt 2 W u
loc(P, Ft ) of P , depending continuously on t . The points

Xt converge to some heteroclinic point X0 2 W s
loc(Q, F0) \ W u

loc(P, F0), see Figure 5.
The cycle associated with P and Q generates a string of secondary bifurcations for
t < 0. For instance, transverse homoclinic points of P become heteroclinic intersections
between W u(P, Ft ) and W s(Q, Ft ), thus generating new heterodimensional cycles. In

Horseshoes with internal cycles

[D-Horita-Rios-Samba. 09]
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Nonhyperbolic ergodic measures [more questions]

Existence. How are these measures?

support

entropy

number of zero exponents (very few is known)

Methods of construction

[also/related]

Description of the space of ergodic measures

Approximation [weak? and entropy] of nonhyperbolic measures by
hyperbolic ones in the spirit of the hyperbolic case: approximation by measures supported

on horseshoes [Katok 80] [hyperbolic] [Crovisier 16, Gelfert 17] [dominated]
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Simple setting: intermingled horseshoes in skew products

[GIKN examples]

F : {0, 1}Z × S1 → {0, 1}Z × S1, (α, x) 7→ (σ(α), fα0(x)).

f0 : S1 → S1
[north pole - south pole]

f1 : S1 → S1
irrational rotation (or nearby)

f0 f1

σ : Σ2 → Σ2 σ : Σ2 → Σ2
hyperbolic part

f1

f0

central part

naive idea intermingled horseshoes of different type of hyperbolicity

key minimality of the IFS generated by f0, f1: points have dense orbits in S1
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Differentiable version

[Anosov − horseshoes]︸ ︷︷ ︸
A

(hyperbolic) × [rotations,Morse− Smale]︸ ︷︷ ︸
fα

(central)

F : T2 × S1 → T2 × S1, (α, x) 7→ (A(α), fα(x))

[a priori] nonrobust method

A

fα

T2

transitivity is preserved

saddles of indices 1 y 2 in the same transitive set
pioneers: [Abraham-Smale 70, Simon 72]
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Intermingled horseshoes, one-dim center

σ : Σ2 → Σ2

horseshoe

σ : Σ2 → Σ2

horseshoe

f1

f0

invariant sets

Merg =M−erg ∪M0
erg ∪M+

erg

Per = Per− ∪ Per0 ∪ Per+

− negative central exponent

0 zero central exponent

+ positive central exponent

Σ2 × S1 = Per+ = Per−

transitivity

approximation︸ ︷︷ ︸
weak∗, entropy

of measures inM0
erg by measures inM±erg
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Occurrence of nonhyperbolic dynamics

critical dynamics

parabolic dynamics

cycles

coexistence of saddles of different
indices in the same transitive set

cycles

coexistence

abundance of homoclinic relations invariant manifolds of periodic points meet

cyclically and transversely

homoclinic classes
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main objects of study

1. Homoclinic class

closure of the transverse homoclinic points of a saddle

transitivity (dense orbits)

density of periodic points

may fail to be hyperbolic – coexistence of saddles of different indices
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2. Robustly transitive diffeos
every nearby diffeo is transitive

Examples

Anosov [hyperbolic]

Nonhyperbolic

Derived from Anosov [Mañé 78]

Perturbations of Anosov × identity [Shub 71, Bonatti-D 96]

Perturbations of time-one Anosov transitive vector field
[Bonatti-D 96]

New methods [Bonatti-Gogolev-Potrie 16], [G-Hammerlindel-P 18]
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2. Robustly transitive diffeos
every nearby diffeo is transitive

Properties

Hyperbolic [dim 2] [Mañé 82],
Partially Hyperbolic [dim 3] [D-Pujals-Ures 99],
Domination [Bonatti-D-Pujals 03]

Minimality of strong foliations [Bonatti-D-Ures 02, Ures-RodHertz2 07]

Fuu

F ss

Fuu

F ssdim(E c) = 1
existence of a compact
central leaf

E ss ⊕ E c ⊕ Euu
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Focus on
C 1-topology and also general mechanisms

Nonhyperbolic
homoclinic classes [typically with saddles of different indices]
robustly transitive diffeos [emphasis on partial hyperbolicity]

Two independent aspects of the constructions of nonhyp. measures

Construction how? Sufficient conditions when ?

Paradox: To construct the nonhyperbolic measures (with some persistence)

some hyperbolicity is needed

General principle: “A little hyperbolicity goes a long way...” [Pugh-Shub]
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Some definitions and results

f : M → M diffeo d = dim(M).
ϕ : M → R continuous (potential)

f -invariant probability measure: µ(A) = µ(f −1(A)).

Ergodicity A = f −1(A) =⇒ µ(A) ∈ {0, 1}.
Birkhoff Theorem

time average:

ϕn(x) = 1
n

∑n−1
i=0 ϕ(f i (x)),

spatial average:∫
ϕ dµ.∫

ϕ dµ = ϕ∞(x), µ-a.e. ϕ∞(x) = lim ϕn(x) (if ∃)
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Oseledets Theorem µ ergodic, there are

Lyapunov exponents:
χ1(µ) ≥ χ2(µ) ≥ · · · ≥ χk(µ)

Df -invariant splitting:
TM = E1 ⊕ E2 ⊕ · · · ⊕ Ek

µ-a.e. for all i ∈ {1, . . . , k} and v ∈ Ei \ {0̄}:

lim
n→±∞

log ‖Df nx (vi )‖
n

= χi (µ).

µ hyperbolic χi (µ) 6= 0 for every i .

(uniform) hyperbolicity =⇒ all ergodic measures are hyperbolic
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GIKN-method of periodic approximations

Sufficient conditions for
a weak∗ limit of periodic measures [suported on a periodic orbit] to be ergodic

(µn)→∗µ, where µn supported on periodic pn

Setting
partial hyperbolicity with one-dimensional center E c

key property
the “central” exponent is the integral of the continuous map Df |Ec

χc(µn)→ χc(µ) [this fails when dim(Ec) ≥ 2]

construction of the periodic points pn
jumps [in finite time] from a center-contracting to a center-expanding region.
minimality
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Periodic approximations

Two ingredients:
1 shadowing
2 tails

first generation starting orbit •:
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second generation second orbit:

a new orbit • shadows the first one [most of time, fixed proportion]

and adds a tail

shadowing

tail
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third generation third orbit:

a new orbit • shadows the second one [most of time, fixed proportion]

and adds a new tail

tail

shadowing

and so on.....
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consequences of the tail

extension of the support of the limit measure µ

sup(µ) =
⋂
n

⋃
k≥n

O(pn)

ergodicity of the limit measure

decreasing the exponent in “our” case

1 pn with exponent χn

2 O(pn+1) shadows Opn [90% of the time] and

visits a contracting pivot point q [10% of the time]

3 the exponent χn+1 is less than (9/10)χn → 0.

pn

pn+1

q
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Applications of the GIKN-method

Nonhyperbolic ergodic measures with uncountable support for:

[step] Skew-products [over S1] [Gorodetski-Ilyashenko-Kleptsyn-Nalsky 05]

Some open sets of diffeomorphisms in T3 [Kleptsyn-Nalsky 07]

Nonhyperbolic homoclinic classes of C 1-generic diffeos:
with saddles of different indices [D-Gorodetski 09]

Fully supported on the class (partial hyp) [Bonatti-D-Gorodetski 10]

General result: no index assumption [Chen-Crovisier-Gan-Wang-Yang 16]

these cases have one zero exponent

several zero exponents?
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Applications of GIKN, several zero exponents

dim(E c) ≥ 2 and undecomposable some natural conditions are needed

Several zero exponents
skew-products and IFS’s [Bochi-Bonatti-D 14],
for homoclinic classes [Wang-Zhang 17]
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Caveat on the GIKN-method

GIKN-measure: obtained by the GIKN-method

highly repetitive pattern

GIKN-measures have zero entropy [Kwietniak-Ła̧cka 18]

Nonhyperbolic ergodic measures with positive entropy?

new methods: blenders and flip-flops
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Blenders

one-dimensional version. endomorphisms
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Blenders

two-dimensional version. endomorphisms

S

R1

R2

f

f

figures from What is a blender? [Bonatti-Crovisier-D-Wilkinson 17]
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Key property of blenders

the maximal invariant set and the superposition property

`· · · ⌦ `

nontransverse intersections are persistent
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Blenders

“difeomorphication” of the endomorphism: adding one dimension

skew horseshoes in dimension three

g(Q)

Q

Q

x

y

z
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Blenders from another perspective. Summary

perturbations of nonnormally hyperbolic horseshoes

one-dim dynamics

cu-section

27 / 43



An invariance superposition property

unstable discs

D

f(D)
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Blenders

q

Wu(⇤)

mechanism for generating persistent nontransverse intersections (?!)
Blenders as a mechanism for robust transitivity
[Bonatti-D 95]

Blenders as a mechanism for robust cycles
(heterodimensional cycles and tangencies)
[Bonatti-D 06, 08]
Blender-horseshoes (with geometrical data),
compare thick horseshoes [Newhouse]

Dynamical blenders (construction of
nonhyperbolic measures)
[Bochi-Bonatti-D 16]

Other blenders, other settings
[Nassiri-Pujals 10], [Barrientos-Raibekas-Ki 14],
[Avila-Crovisier-Wilkinson 17]

Superblenders....
[Berger 16]

key for constructing nonhyperbolic ergodic measures with positive entropy
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Ergodic nonhyperbolic measures with positive entropy

(I) Flip-flop families

(II) Control of orbits and averages

(III) Flip-flop configurations
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(I) Flip-flop families

f : X → X homeo., φ : X → R cont., (X , d) metric space

Flip-flop family is a family of compact sets (plaques)

F = F+ ∪ F−

there is α > 0 such that for every D± ∈ F± and x± ∈ D±

φ(x−) < −α < 0 < α < φ(x+)

φ < 0 φ > 0

F− F+
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there is λ ∈ (0, 1) such that every D ∈ F contains D+ and D− with
f (D±) ∈ F± and |D±| < λ|D|

f

D

f (D)

Markovian flavour
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Birkhoff averages

ϕn(x) =
1
n

n−1∑
i=0

ϕ(f i (x)), ϕ∞(x) = lim ϕn(x) if ∃

Flip-flop theorem [Bochi-Bonatti-D 16]

f : X → X homeo with a flip-flop family F associated to ϕ : X → R.
Then there is Ω = f (Ω) compact such that

ϕn → 0 uniformly on Ω

f|Ω has positive entropy

Variational principle
there is ergodic µ with positive entropy and

∫
ϕ dµ = 0
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(II) Control of orbits and averages

Given β > 0, t ∈ N, x ∈ X

(β, t)-controlled: there is (`n)↗∞ of control times such that

`0 = 0,
kn = `n+1 − `n ≤ t,
1
kn

∣∣ϕkn(f `n(x))
∣∣ ≤ β

control at any scale: there are (ti )↗∞ and (βi )↘ 0 such that x is
(βi , ti )-controlled for every i
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Control lemma

x controlled at any scale =⇒ 1
n
ϕn(y)→ 0 for all y ∈ ω(x)

Flip-flop family F implies control at any scale
Every D ∈ F contains x controlled at any scale

Generalizations, variations

control with tails the control is relaxed in some intervals

this allows to extend the support of the measure [Bochi-Bonatti-D 18]
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(III) Flip-flop configurations

(a)

blendercenter contracting saddle
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Flip-flop configurations

(b)

the blender and the saddle are heteroclinically and cyclically related

blender

saddle
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Flip-flop configurations yield flip-flop families (i)

family of plaques

contracting and expanding regions

partially hyperbolic region, one-dim E c

ϕ = log Df|Ec

ϕ > 0ϕ < 0
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Flip-flop configurations yield flip-flop families (ii)

f

D

f (D)
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Applications of the flip-flop method

C 1 robustly nonhyperbolic and transitive diffeos have open and densely

flip-flop configurations

nonhyperbolic ergodic measures with positive entropy [Bochi-Bonatti-D

16]

[additional open hypothesis] dim(E c) = 1 and a central compact leaf

C 1-open and densely

the measure has full support [Bochi-Bonatti-D 16]

the measure has full support and positive entropy [Bonatti-D-Kwietniak 18]
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Insertion of nonhyperbolic measures

[additionally] dim(E c) = 1, central compact leaf, minimal strong foliations

Merg =M−erg ∪M0
erg ∪M+

erg

M∓erg
def
= {µ : χc(µ) ≶ 0} hyper.

M0
erg

def
= {µ : χc(µ) = 0} nonhyp
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3D Picture theorem

geometry of the space of measures

weak∗ and entropy approx. ofM0
erg

M0
erg

convM−erg

convM+
erg

general results
[Sigmund 74,77 ]
[Abdenur-Bonatti-Crovisier 11]
[Gelfert-Kwietniak 17]

C1+α diffeos, clases homocl.
[Gorodetski-Pesin 17]
[Bochi-Bonatti-Gelfert 17]

step skew-products [D-Gelfert-Rams 17]
[one-dim blender ⊕ minimality of the ifs]
Also thermodynamical formalism, entropy of level sets...

C 1 diffeos [D-Gelfert-Santiago 18], [Yang-Zhang18]
[blender-horseshoe ⊕ minimal strong foliations]
[distortion ⊕ fake foliations] [Burns-Wilkinson 10]
Also thermodynamical formalism [D-Gelfert-Santiago]
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many thanks!!!
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