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Abstract

Homoclinic classes of generic C1-diffeomorphisms are maximal transitive sets and pairwise
disjoint. We here present a model explaining how two different homoclinic classes may inter-
sect, failing to be disjoint. For that we construct a one-parameter family of diffeomorphisms
(gs)s∈[−1,1] with hyperbolic points P and Q having nontrivial homoclinic classes, such that, for
s < 0, the classes of P and Q are disjoint, for s = 0, the classes collide and their intersection is
a saddle-node, and, for s > 0, after an explosion, the two classes are equal. Our constructions
involve bifurcations through heterodimensional and saddle-node cycles.

Introduction

In this paper we study the collision of non-trivial homoclinic classes via saddle-node bifurcations and
the dynamics before and after this collision. The main motivation of this paper comes from recent
results about maximal transitive sets: for generic1 C1-diffeomorphisms, the homoclinic classes are
either disjoint or equal ([Ar] and [CMP]). Our objective is to understand how two homoclinic
classes may be non-disjoint and different as well as the dynamical consequences of this pathology.

Let us start by recalling some definitions. Given a diffeomorphism f , an f -invariant set Λ is
transitive if there is an x ∈ Λ whose forward orbit is dense in Λ, i.e., Λ = ∪i∈Nf i(x). A transitive
set is maximal if it is a maximal element of the family of all transitive sets partially ordered by
inclusion. Observe that any transitive set is contained in a maximal one. A transitive set Λ
is saturated if it contains every transitive set Σ such that Λ ∩ Σ 6= ∅. Clearly, every saturated
transitive set is also maximal. The homoclinic class of a saddle P of f , denoted by H(P, f), is
the closure of the transverse intersections of the orbits of the stable and unstable manifolds of P .
Every homoclinic class is a transitive set, not necessarily maximal nor saturated.

The problem of characterizing and describing (for a large class of systems) maximal and sat-
urated transitive sets is a key problem in dynamics. In fact, these saturated transitive sets are
the natural candidates for playing the role of the elementary pieces of dynamics (similar to the
role of the basic sets in the Smale hyperbolic theory, [Sm]). Recently, [Ab] states that for generic
C1-diffeomorphisms f having finitely many different homoclinic classes the non-wandering set of f ,
Ω(f), is the disjoint union of such classes. Moreover, these classes verify a weak form of hyperbol-
icity (existence of a dominated splitting, see [BDP]) and are the maximal invariant sets of a fixed
filtration (see Section 6.3) independent of the generic diffeomorphism in a neighborhood of f .

∗This paper was partially supported by CAPES, CNPq, Faperj, and Pronex Dynamical Systems (Brazil)
1by a generic diffeomorphism we mean a diffeomorphism in a residual subset R of Diff1(M).
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Consider a closed manifold M and denote by Diff1(M) the space of C1-diffeomorphisms en-
dowed with the usual uniform topology. In [Ar], it is proved that homoclinic classes of generic
diffeomorphisms are maximal transitive sets. [CMP] generalizes this result by proving that ho-
moclinic classes of generic diffeomorphisms are saturated transitive sets. Thus homoclinic classes
of generic diffeomorphisms are either equal or disjoint. We observe that there are locally generic
diffeomorphisms having saturated transitive sets without periodic orbits (so which are not homo-
clinic classes), see [BD2]. The goal of this paper is to give examples of homoclinic classes which are
not saturated transitive sets, presenting an explanation of how this pathology arises. In fact, we
exhibit homoclinic classes which are not contained in any saturated transitive set. For simplicity,
we consider diffeomorphisms defined on three manifolds, but our constructions can be carried out
to higher dimensions after straightforward modifications.

We construct a diffeomorphism f with saddles P and Q with Morse index (dimension of the
unstable bundle) one and two such that their homoclinic classes are nonhyperbolic, nontrivial, and
maximal transitive, and whose intersection is just a saddle-node. So these classes are not saturated
transitive sets. In fact, as mentioned above, we will prove that they are not contained in any
saturated transitive set.

Theorem A. Let M be a 3-dimensional closed manifold. There exist an open set W ⊂ M and a
family of diffeomorphisms (gs)s∈[−1,1], gs : M → M , such that, for every s, the diffeomorphism gs

has hyperbolic fixed points P and Q of Morse indices 1 and 2 such that the maximal invariant set
of gs in W , denoted by Λs, verifies the following:

• For every small s < 0, the set Λs ∩ Ω(gs) is the disjoint union of the homoclinic classes
H(P, gs) and H(Q, gs), where H(P, gs) and H(Q, gs) are non-hyperbolic and locally maximal.

• For s = 0, Λ0 = Λ0 ∩ Ω(g0) = H(P, g0) ∪ H(Q, g0), where H(P, g0) and H(Q, g0) are locally
maximal and H(P, g0) ∩ H(Q, g0) = {S}, where S is a saddle-node fixed point.

• For every small s > 0, Λs = Λ0 ∩ Ω(g0) = H(P, gs) = H(Q, gs).

This result means that the homoclinic classes of P and Q collide at s = 0 and thereafter
explode (the point P that does not belong to H(Q, g0) is in H(Q, gs) for every small positive s,
and the same holds for the point Q and H(P, gs)). Finally, the homoclinic classes also collapse:
H(Q, gs) = H(P, gs) for positive s.

In the previous theorem the open set W is a level of a filtration, (see Section 6.3). Theorem A
now implies the following:

Theorem B. Under the hypotheses of Theorem A, the homoclinic classes H(P, g0) and H(Q, g0)
are not saturated and they are not contained in any saturated transitive set.

Our construction involves saddle-node bifurcations and heterodimensional cycles. We introduce
a codimension-two bifurcation, the saddle-node heterodimensional cycles, and study the lateral
homoclinic classes of a saddle-node. Let us explain all that in details.

Consider a diffeomorphism f having two hyperbolic fixed points P and Q with Morse indices
1 and 2, respectively. Then, f has a heterodimensional cycle associated to P and Q if the 2-
dimensional stable manifold of P and unstable manifold of Q, denoted by W s(P, f) and W u(Q, f),
have a non-empty transverse intersection, and the 1-dimensional unstable manifold of P , W u(P, f),
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and stable one of Q, W s(Q, f), have a quasi-transverse intersection throughout the orbit of a
point x0, i.e., Tx0

W s(Q, f)+Tx0
W u(P, f) = Tx0

W s(Q, f)⊕Tx0
W u(P, f), thus dim(Tx0

W s(Q, f)+
Tx0

W u(P, f)) = 2. A heterodimensional cycle is depicted in Figure 1 in Section 1. Bifurcations
through heterodimensional cycles have been systematically studied in the series of papers [D1, D2,
DR1, DR2, DU, DR4, DR5].

A saddle-node S of a diffeomorphism f is a periodic point (we here assume to be fixed) such that
the derivative of f at S has 1 as its only eigenvalue in the unitary circle. We consider saddle-nodes
of saddle-type (i.e., the derivative of f at S simultaneously has eigenvalues inside and outside the
unitary circle). Thus the tangent bundle of M at S has a Df -invariant splitting Ess ⊕ Ec ⊕ Euu,
where Ess (resp. Euu) is the bundle spanned by the eigenvectors associated to the contracting
(resp. expanding) eigenvalues, and Ec is the eigenspace associated to the eigenvalue 1 (in our
context, all these spaces have dimension 1). By the theory of invariant manifolds, see [HPS], there
exist the strong stable and unstable manifolds of the saddle-node, defined as the unique f -invariant
manifolds tangent at S to Ess and to Euu and denoted by W ss(S, f) and W uu(S, f), respectively.

Motivated by the fact that (generic) saddle-nodes (of saddle type) simultaneously behave as
points of index two and one (the stable and unstable manifolds of the saddle-node have both
dimension 2), we introduce saddle-node heterodimensional cycles. A diffeomorphism f has a saddle-
node heterodimensional cycle associated to a saddle-node S and the saddle P of Morse index one if
the (two-dimensional) unstable manifold of S and stable manifold of P have nonempty transverse
intersection and the (one-dimensional) invariant manifolds W ss(S, f) and W u(P, f) have a quasi-
transverse intersection along the orbit of some point. A saddle-node heterodimensional cycle is
depicted in Figure 4 in Section 4. One similarly defines saddle-node heterodimensional cycles
associated to a (saddle-type) saddle-node S and a saddle Q of Morse index two.

Roughly speaking, in our construction we consider a diffeomorphism f simultaneously having
two saddle-node heterodimensional cycles. We consider a two parameter family (ft,s)t,s∈[−1,1] of
diffeomorphisms such that f0,0 has a pair of saddle-node heterodimensional cycles, one associated
to a saddle-node S and a saddle P of Morse index one and other one associated to a saddle Q of index
one and the saddle-node S. The parameter t describes the unfolding of the cycles (relative motion
between compact parts of W u(P, ft,0) and W ss(S, ft,0) and of W s(Q, ft,0) and W uu(S, ft,0)). The
parameter s describes the unfolding of the saddle-node: for positive s there are two saddles S+

s and
S−

s of indices 2 and 1, colliding at s = 0 to the saddle-node S and disappearing for negative s. We
see that, fixed any small t̄ > 0, for s > 0 (before the collapse of the saddles), H(P, ft̄,s) = H(S+

s , ft̄,s)
and H(Q, ft̄,s) = H(S−

s , ft̄,s) for all small positive s. Moreover, H(P, ft̄,s) ∩ H(Q, ft̄,s) = ∅. At
the saddle-node bifurcation we have H(P, ft̄,0) ∩ H(Q, ft̄,0) = {S}. Finally, for s < 0, after the
disappearing of the saddles, H(P, ft̄,s) = H(Q, ft̄,s). See the results in Section 6. Theorem A
follows by considering the arc gs = ft̄,−s. To deduce Theorem B from Theorem A, we consider a
filtration having the open set W as a level and analyze the orbits of recurrent points of Λs.

In forthcoming papers, we will illustrate how this type of bifurcation naturally appear as sec-
ondary bifurcations in the unfolding of heterodimensional cycles and give a model for the collision,
explosion, and collapse of (nontrivial) hyperbolic homoclinic classes, see [DR6].

Let us say a few words about our constructions. As mentioned, our setting necessarily cor-
responds to a non-generic situation, so we focus our attention on an example (we have not done
any effort for generality). We begin by presenting (in Section 1) a model for the unfolding of a
heterodimensional cycle. This model (motivated by [D1] and [BD1]) allows us to give a rather
transparent explanation of the dynamics in the unfolding of a heterodimensional cycle by reducing

3



it to the study of the dynamics of an iterated system of functions defined on an interval, this is
done in Section 2. Recall that the dynamics of a (linear) Smale horseshoe is given by two affine
expanding maps of the interval (say I = [0, 1]) whose domains of definition are two disjoint closed
subintervals of I (say [0, 1/3] and [1/3, 1]). The interval (1/3, 2/3) is the main gap of the horseshoe
and corresponds to points in the basin of attraction of a sink. The affine model for heterodimen-
sional cycles is a system of iterated functions with infinitely many maps Fi defined on subintervals
Ii of I which are non-disjoint (the interior of the intervals Ii are pairwise disjoint, but Ii and Ii+1

have a common extreme). Thus in this model there are no gaps and there are no escaping points.
In Section 3, we prove that, after unfolding the cycle, the dynamics of the model family is

non-hyperbolic: the point of index 1 in the cycle belongs to the homoclinic class of the point of
index 2 in the cycle. Here, using the one-dimensional reduction, we give a shorter and clearer proof
of the results in [D1]. Since our constructions rely heavily on this proof and there is not any written
version of this approach, we have decided to include a short description of it.

In Section 4, we introduce the lateral homoclinic classes of a saddle-node S of a diffeomorphism f
as above, H+(S, f) and H−(S, f), respectively defined as the closure of the transverse intersections
W u(S, f) ⋔ W ss(S, f) and W s(S, f) ⋔ W uu(S, f). These lateral homoclinic classes essentially be-
have as the usual ones. We see that for arcs ft unfolding at t = 0 the saddle-node heterodimensional
cycle (associated to a saddle P of index one and the saddle-node S) one has H(P, ft) ⊂ H+(S, ft)
for all small positive t. Moreover, under mild conditions, one also gets H+(S, ft) = H(P, ft) for all
small t > 0. The inclusion H(P, ft) ⊂ H+(S, ft) follows adapting (in a rather straightforward way)
the results for the model family in Section 3. For the inclusion H+(S, ft) ⊂ H(P, ft) we need new
ingredients that we borrow from [D2].

Using the results in Sections 3 and 4, we get a complete description of the homoclinic classes
H(P, ft̄,s) and H(Q, ft̄,s) before the collapse of the saddles S+

s and S−
s to the saddle-node. Finally,

to study H(P, ft̄,s) and H(Q, ft̄,s) after the collision, we introduce new systems of iterated functions
and analyze their dynamics.

Acknowledgements: We thank W. Horita for the careful reading of a draft version of this paper
and C. Bonatti for suggesting the use of the model family in Section 1.

1 Heterodimensional cycles: a model family

In this section, we construct a model one-parameter family (ft)t∈[−1,1] of diffeomorphisms unfolding
a heterodimensional cycle. The study of the semi-local dynamics of ft will be reduced to the analysis
of a one-parameter family of endomorphisms with infinitely many discontinuities which describe
the dynamics of ft in the central direction, see Section 2.

Consider a diffeomorphism f with a heterodimensional cycle having the following dynamical
configuration. In local coordinates in R

3, the cycle is associated to saddle fixed points Q = (0, 0, 0)
and P = (0, 1, 0) of indices 2 and 1, respectively, verifying the following conditions:

Partially hyperbolic (semi-local) dynamics of the cycle:

• In the cube [−1, 1] × [−1, 2] × [−1, 1] the diffeomorphism has the form

f(x, y, z) = (λsx, F (y), λuz),
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where F : [−1, 2] → (−1, 2) is an increasing map with exactly two fixed points, a source at
0 and a sink at 1, and 0 < λs < dm < 1 < dM < λu, where 0 < dm < F ′(x) < dM for all
x ∈ [0, 1].

• There is δ > 0 such that F is linear in [−δ, δ] and affine in [1− δ, 1 + δ]. We denote by β > 1
and 0 < λ < 1, the derivative of F at 0 and 1, respectively.

Observe that [−1, 1]×{(0, 0)} ⊂ W s(Q), {0}× [0, 1)× [−1, 1] ⊂ W u(Q), {(0, 0)}× [−1, 1] ⊂ W u(P ),
and [−1, 1] × (0, 1] × {0} ⊂ W s(Q). Thus the curve γ = {0} × (0, 1) × {0} (called connexion) is a
normally hyperbolic curve contained in W u(Q) ⋔ W s(P ).

Existence and unfolding of the cycle:

• The cycle: There exist k0 ∈ N and a small neighborhood U of (0, 1,−1/2) ∈ W u(P ) such
that the restriction of fk0 to U is a translation,

fk0(x, y, z) = (x − 1/2, y − 1, z + 1/2).

Thus fk0(0, 1,−1/2) = (−1/2, 0, 0) ∈ W u(Q) and W s(Q) and W u(P ) meet throughout the
orbit of the heteroclinic point (−1/2, 0, 0). By construction, (−1/2, 0, 0) is a quasi-transverse
heteroclinic point.

• The unfolding of the cycle: Consider the family (ft)t∈[−ε,ε] of diffeomorphisms coinciding

with f in [−1, 1] × [−1, 2] × [−1, 1] and such that the restriction of fk0

t to U is of the form

fk0

t (x, y, z) = (x − 1/2, y − 1 + t, z + 1/2) = fk0(x, y, z) + (0, t, 0).

So, for t > 0, {(−1/2, t)}×[−1, 1] ⊂ W u(P, ft) and xt = (−1/2, t, 0) is a transverse homoclinic
point of P (for ft). Similarly, yt = (−1/2, 0, 0) is a transverse homoclinic point of Q.

P
Q

W s(P )

W u(P )
W s(Q)

W u(Q)

t < 0 t = 0 t > 0

Figure 1: The model cycle and its unfolding

Consider a small neighborhood of the heterodimensional cycle associated with f0, that is, an open
set W containing the connexion γ = {0} × [0, 1] × {0} and the f0-orbit of the heteroclinic point
(−1/2, 0, 0). For small t, let Λt be the maximal ft-invariant set in W , Λt = ∩n∈Zfn

t (W ). Consider
also the forward and backward ft-invariant sets in W , Λ+

t = ∩n≥0f
−n
t (W ) and Λ−

t = ∩n≥0f
n
t (W ).
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Fix a small positive ρ and consider the fundamental domains of F given by D+ = [β−1ρ, ρ] and
D− = [1− ρ, λ(1− ρ)] contained in the neighborhoods of 0 and 1 where F is affine. We can choose
ρ such that FN (D+) = D− for some N ∈ N (for notational simplicity let us put N = 1). The map
FN is the transition from 0 to 1 2. Assume that that F ′(1) = λ and F ′(0) = β verify:

(T1) F ′(x) ≥ 1

2

1 − λ

1 − β−1
, for all x ∈ D+,

(T2) (1 − λ) < β−1, and

(T3)
(1 − λ)λ

2 (1 − β−1)β
= ℓ > 1.

To get condition (T1) it is enough to consider F with small distortion. For conditions (T2) and
(T3) it is enough to take β close enough to 1+. In fact, later we will consider the case where Q is
a saddle-node (saddle-node heterodimensional cycles) and β = 1, see Section 4. Our first result is:

Theorem 1.1. For every t > 0 sufficiently small, H(P, ft) ⊂ H(Q, ft) and Λt ⊂ H(Q, ft).

This theorem was stated in [D1]. Here we give a more conceptual prove of it, which enables
us to introduce some technical tools to be used systematically later on. First, in Section 2 we will
introduce the system of iterated functions associated to the cycle (this approach is motivated by
[DR5]). In Section 3, we deduce the theorem from the results in Section 2.

2 Expanding one-dimensional dynamics associated to the cycle

For each small t > 0, consider the scaled fundamental domains D±
t defined as follows: let D−

t =
[1 − t, λ(1 − t)] and define kt as the smaller k ∈ N with F−k(D−

t ) ⊂ [0, t]. We define

D+
t = [at, bt] = [β−1(bt), bt] = F−kt(D−

t ), where β−2t < at < bt ≤ t.

We next define an expanding map Rt, Rt : D+
t → D+

t , with discontinuities describing the central
dynamics of the return map of ft defined on [−1, 1] × D+

t × [−1, 1]. First, for each small t > 0
define the transition map Tt from D+

t to D−
t by

Tt : D+
t → D−

t , x 7→ Tt(x) = F kt(x).

Lemma 2.1. The map Tt verifies T ′
t(x) > ℓ > 1 for all x ∈ D+

t , where ℓ is as in condition (T3).

2This transition plays a key role for determining the dynamics after unfolding the cycle and it is determined by the
Mather invariant of F , [Ma]: in a neighborhood of 0, the map F is the time-one of the vector field X(y) = (log β) y ∂

∂y
,

whose flow is y 7→ βt y. Similarly, in a neighborhood of 1, F is the time-one of Y (y) = (log λ) (y − 1) ∂
∂y

. Consider,

for y close to 0+, an large n such that F n(x) is close to 1− and write DF n(y)(X(y)) = µ(y)Y (F n(y)). Using the
local F -invariance of X and Y (near 0 and 1), one has that µ(x) does not depend on n and that µ(x) = µ(F (x)).
The function µ is the Mather invariant of F which describes its distortion. For instance, if µ is identically 1, then F

is exactly the exponential of a vector field.
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Proof: Given x ∈ D+
t let kt = nt(x) + 1 + mt(x), where Fnt(x)(x) ∈ D+ and F i(x) 6∈ D+ for all

1 ≤ i < nt(x). We claim that

1

β t
≤ βnt(x) ≤ β2

t
and λ t ≤ λmt(x) ≤ t

λ
. (1)

For first inequalities just note x ∈ D+
t ⊂ (β−2 t, t] and βnt(x) x ∈ [β−1, 1]. The other ones follow

analogously. As Tt(x) = λmt(x) F (βnt(x) x), hypotheses (T1) and (T3) and the estimates in (1) give

|T ′
t (x)| = λmt(x) |F ′(x)|βnt(x) ≥ (λ t)

(
1

2

1 − λ

1 − β−1

) (
1

β t

)

=
1

2

λ (1 − λ)

β (1 − β−1)
= ℓ > 1,

as we claimed. �

Since Tt(x) ∈ D−
t = [1 − t, 1 − λt] for all x ∈ D+

t , we can define the map Gt by

Gt : D+
t → [0, t], x 7→ Gt(x) = Tt(x) + (t − 1).

1t

gdt

0 1

t

D+
t

D+
t

D+
t

D−
t

I0
I1

I2

RtGt

Tt

βi(x)

Figure 2: The expanding maps Tt, Gt and Rt

Remark 2.2. The map Gt is monotone increasing and Gt(D
+
t ) = [0, t(1 − λ)].

Claim 2.3. Let (at, bt] = D̃+
t ⊂ D+

t . Given x ∈ D̃+
t let i(x) ∈ Z be the minimum i with βi(Gt(x)) ∈

D+
t . Then there is i0 > 0 (maximum with such property) such that i(x) ≥ i0 for all x ∈ D̃+

t .

Proof: Recall first that bt ∈ (β−1 t, t]. On the other hand, from (1 − λ) < β−1 (condition (T2))
and Remark 2.2, Gt(D̃

+
t ) = (0, t (1 − λ)] ⊂ (0, β−1 t). Thus the right extreme of Gt(D̃

+
t ) is less

than the left extreme of D+
t , hence i(x) > 0 for all x ∈ D̃+

t , ending the proof of the claim. �

Finally, the return map Rt is defined by

Rt : D̃+
t → D+

t , Rt(x) = βi(x)(Gt(x)) = βi(x) (Tt(x) + (t − 1)).

Next we study the dynamics of Rt: the map Rt is uniformly expanding and has (infinitely many)
discontinuities where the lateral derivatives are well defined. These discontinuities will play a key
role in our constructions. The definition of i0 ∈ N in Claim 2.3 implies that β−i0(at) ∈ Gt(D

+
t ). For

each i ≥ i0 define di ∈ D̃+
t by Gt(di) = β−i(at). By construction, the sequence (di)i≥i0 corresponds

to the discontinuities of Rt and verifies the following:
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• di+1 < di and di → at,

• Let [di+1, di] = Ii, i > i0, and Ii0 = [di0 , bt]. The map Rt is continuous and strictly increasing
in the interior of each interval Ii. We continuously extend Rt to the whole Ii, obtaining a
bi-valuated return map Rt with Rt(di) = {at, F (at) = bt} for all i > i0. In particular, the
restriction of Rt to any Ii, i > i0, is onto. We let Rt(bt) = ct ≤ bt.

The main properties of Rt are summarized in the next lemma.

Lemma 2.4. The restriction of Rt to each interval Ii, i > i0, is onto and R′
t(x) > ℓ > 1 for all

x ∈ (at, bt] (if x = di this means that the lateral derivatives of Rt at x are greater than ℓ). Moreover,
0 ∈ Gt(Rt(di)) for all i ≥ i0.

The expansiveness of Rt follows from Lemma 2.1 and Claim 2.3. Condition 0 ∈ Gt(Rt(di))
follows from at ∈ Rt(di) and 0 ∈ Gt(at).

Lemma 2.5. Consider small t > 0 and an open subinterval J of D̃+
t . Then there is k ∈ N∪{0} such

that Rk
t (J) contains a discontinuity of Rt. In particular, there is x ∈ J such that Gt(R

k
t (x)) = 0.

Proof: If the interval J contains a discontinuity we are done. Otherwise, let i > 0 be such that the
intervals J , Rt(J), . . . , Ri

t(J) do not contain discontinuities. Thus, for each k ∈ {0, . . . , i}, there is
ik ≥ i0 such that Rk

t (J) ⊂ Iik . Lemma 2.4 implies that |Rk
t (J)| ≥ ℓk|J |, ℓ > 1, for all k ∈ {0, . . . , i}.

Since the size of the intervals Ii is upper bounded, this inequality implies that there is a first m ∈ N

such that Rm
t (J) is not contained in any Ii, thus it intersects the set of discontinuities of Rt. �

3 The maximal invariant set: Proof of Theorem 1.1

Next proposition is the main technical result of this section. Heuristically, it means that the one-
dimensional stable manifold of Q topologically behaves as a two-dimensional manifold.

Proposition 3.1. For every small t > 0 and every two-disk χ with W s(P, ft) ⋔ χ 6= ∅, W s(Q, ft) ⋔

χ 6= ∅. In particular, W s(P, ft) is contained in the closure of W s(Q, ft).

Proof of the inclusion H(P, ft) ⊂ H(Q, ft) in Theorem 1.1. By the definition of H(P, ft), it
suffices to see that any x ∈ W s(P, ft) ⋔ W u(P, ft) is accumulated by homoclinic points of Q. By
the configuration of the cycle, W u(P, ft) ⊂ closure (W u(Q, ft)), thus, given any x ∈ H(P, ft) and
any n > 0, there is a disk ∆n, contained in W u(Q, ft) and in the ball of radius 1/n centered at x,
whose interior meets transversely W s(P, ft). By Proposition 3.1, ∆n ⋔ W s(Q, ft) 6= ∅. Thus there
is yn ∈ ∆n ∩ H(Q, ft). By construction, yn → x, proving the inclusion H(P, ft) ⊂ H(Q, ft).

3.1 Proof of Proposition 3.1

We now go into the details of the proof of Proposition 3.1. We first introduce some definitions.

• A set ∆ ⊂ [−1, 1] × [−1, 2] × [−1, 1] is a vertical strip if ∆ = {x1} × [l1, l2] × [r1, r2], where
l1 < l2 and r1 < 0 < r2. The segment {x1} × [l1, l2] × {0} is the basis of ∆. The width
and the height of ∆ are w(∆) = (l2 − l1) and h(∆) = (r2 − r1). The strip ∆ is complete if
r2 = 1 and r1 = −1, well located if [l1, l2] is contained in the interior of D+

t , and perfect if it
simultaneously is complete and well located.
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• A subset J ⊂ [−1, 1]× [−1, 2]× [−1, 1] is a vertical segment if J = {x1}×{l1}× [r1, r2], where
r1 < 0 < r2. The point (x, ℓ1, 0) is the basis of J . The height of J is h(J) = (r2 − r1). As
above, the segment J is complete if r1 = −1 and r2 = 1, well located if l1 is in the interior of
D+

t , and perfect if it simultaneously is complete and well located.

• A vertical segment J (resp. strip ∆) is at the right of Q if l1 ∈ (0, 1].

Given an interval α ⊂ [−1, 2], let ∆({x} ×α×{0}) = {x} ×α× [−1, 1] be the unique complete
vertical strip with basis {x}×α×{0}. Similarly, J(x, y, 0) is the unique complete vertical segment
with basis (x, y, 0). The next algorithm associates to perfect segments and strips their successors:

Algorithm 3.2. Let ∆ = ∆({x}×α×{0}) be a perfect strip and define Gt(∆) as the perfect strip
such that:

• the basis of Gt(∆) is of the form ({x′} × Gt(α) × {0}), where x′ = λkt
s x − 1/2,

• Gt(∆) is contained in fkt
t (∆) (where F kt(D+

t ) = D−
t ).

Suppose now that α does not contain discontinuities, i.e. α ⊂ (di+1, di) for some i. Define Rt(∆)
as the perfect strip such that:

• the basis of Rt(∆) is of the form ({x̂} × Rt(α) × {0}), where x̂ = λi
s(λ

kt
s x − 1/2),

• Rt(∆) is contained in fkt+i
t (∆).

Similarly, to a perfect segment J = J(x, y, 0) we associate perfect segments Gt(J) and Rt(J) (pro-
vided y 6= di for all i).

The strips Gt(∆) and Rt(∆) in Algorithm 3.2 are obtained as follows. Given a set A and a point
x ∈ A, let C(x,A) be the connected component of A containing x. Take a small neighborhood V
of fk0

0 ({0, 1} × [−1, 1]) ⊂ W u(P, f0), k0 as in the definition of the cycle in Section 1, then

Gt(∆) = C(fkt
t (x, y, 0), fkt

t (∆) ∩ V ) ∩ [−1, 1]3),

Rt(∆) = C(f i
t (x

′, y′, 0), fkt+i
t (∆) ∩ V ) ∩ [−1, 1]3),

where (x, y, 0) is any point in the basis of ∆, x′ = (λkt
s x − 1/2), and y′ ∈ Gt(α). The construction

for the successors of segments is analogous.

Lemma 3.3. The manifold W u(P, ft) contains a perfect segment for all small t > 0.

Proof: Consider the transverse homoclinic point xt = (−1/2, t, 0) of P . Recall that t ≥ bt

and β−1 t ∈ D+
t = [at, bt]. Let us assume that t > bt, and thus β−1t ∈ (at, bt) (the case t = bt

follows similarly, so it will be omitted). Consider the complete vertical segment Rt(J), where
J = J(−(λ−1

s /2), β−1t, 0) ⊂ W u(P, ft). If Rt(β
−1t) belongs to the interior of D+

t , then Rt(J) ⊂
W u(P, ft) is the announced segment. Otherwise, Rt(β

−1t) = bt and there is a homoclinic point
of P of the form (x′, bt, 0). Using the λ-lemma and the product structure of the cycle, one gets
homoclinic points (xn, yn, 0) of P and complete segments Jn = J(xn, yn, 0) ⊂ W u(P, ft) such that
xn → x′, yn → bt, and yn is increasing. Thus yn is in the interior of D+

t for every big n and
Jn ⊂ W u(P, ft) is perfect. �

For clearness we first prove Proposition 3.1 in the following special case:
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Proposition 3.4. Let χ ⊂ [−1, 1] × [−1, 2] × [−1, 1] = {x} × A, where A is a disk of R
2 whose

interior contains a point of the form (y, 0) with y ∈ (0, 2). Then χ intersects transversely W s(Q, ft).

We claim that is enough to prove the Proposition 3.4 for perfect strips:

Lemma 3.5. Let ∆ be a perfect strip. Then there is k ∈ N such that fk
t (∆) ⋔ W s(Q, ft) 6= ∅.

Proof: Suppose that ∆ = ∆({x0}×α×{0}), α in the interior of D+
t . By Lemma 2.5, there exist

y0 in the interior of α and k ∈ N such that Gt(R
k
t (y0)) = 0. Thus the vertical strip Gt(Rk

t (∆))
(contained in the forward orbit of ∆) intersects transversely [−1, 1] × {(0, 0)} ⊂ W s(Q, ft). �

Proof of Proposition 3.4: By Lemma 3.3, W u(P, ft) contains a perfect vertical segment J .
Since, by definition, χ meets transversely W s(P, ft), the λ-lemma implies that forward orbit of χ
contains a sequence of complete strips χn accumulating to J . Thus χn contains a perfect strip for
all n large. Lemma 3.5 implies that χn (and thus χ) transversely meets W s(Q, ft). �

Proof of Proposition 3.1: We can assume that χ is transverse to W s
loc(P, ft) and contained in

[−1, 1] × [−1, 2] × [−1, 1]. If χ contains a subset of the form {x} × A, where A is an open subset
of R

2 containing a point (0, y) with y ∈ (0, 2), Proposition 3.4 implies the result. For the general
case, consider a point (x0, y0, 0), y0 ∈ (0, 2), in the interior of χ ⋔ W s

loc(P, ft) and for every big n
the vertical strip

Σn = {x0} × [y0 − 1/n, y0 + 1/n] × [−1/n, 1/n].

The strips Σn verify the hypotheses of Proposition 3.4, hence there is (x0, yn, zn) ∈ Σn ⋔ W s(Q, ft)
such that Hn = [−1, 1] × {(yn, zn)} ⊂ W s(Q, ft). Since (x0, yn, zn) → (x0, y0, 0), it is immediate
that Hn meets transversely χ for all large n, ending the proof of the proposition. �

3.2 The maximal ft-invariant set

To prove the second part of Theorem 1.1 (the inclusion Λt ⊂ H(Q, ft)), let V0 be the connected
component of the neighborhood of the cycle W containing the heteroclinic point (−1/2, 0, 0). There
are two types of points of Λt: (a) those points whose orbit does not meet V0 (i.e., the set γ =
{0} × [0, 1] × {0} ⊂ W s(P, ft) ∩ W u(Q, ft)) and (b) those having an iterate in V0.

We claim that every point of type (a) belongs to H(Q, ft): given any (0, x, 0), x ∈ (0, 1), consider
the disk ∆n = {0} × [x − 1/n, x + 1/n] × [−1/n,+1/n] ⊂ W u(Q, ft) satisfying the hypothesis of
Proposition 3.1. Hence ∆n ⋔ W (Q, ft) 6= ∅ and thus ∆n ∩ H(Q, ft) 6= ∅. Since this holds for all
n ∈ N, (0, x, 0) ∈ H(Q, ft).

For points w ∈ Λt of type (b), after replacing w by some iterate of it, we can assume that
w ∈ V0. Consider the sequence (ni(w))i∈It(w) associated to w, where It(w) ⊂ Z is an interval in Z,
inductively defined as follows: let n0(w) = 0 and, assuming defined nj(w), j ≥ 0, we define nj+1(w)
as the first integer k > (nj(w) + 1) such that fk

t (w) ∈ V0. If the forward orbit of w does not return
to V0 for every k > (nj(w) + 1) then j is the right extreme of It(w). We argue analogously for
negative j: assuming defined nj(x), j ≤ 0, nj−1(w) is the first negative integer k < (nj(w) − 1)
with fk

t (w) ∈ V0. If the backward orbit of w does not return to V0 for every k < (nj(w) − 1), then
j is the left extreme of It(w).

Consider the subset I+
t (∞) (resp. I−

t (∞)) of Λt ∩ V0 of points w such that It(w) is not upper
(resp. lower) bounded. Let I+

t (b) be the subset of Λt ∩ V0 of points w such that It(w) is upper
bounded. The set I−

t (b) is defined similarly. Let I±
t (∞) = I+

t (∞) ∩ I−
t (∞) and I±

t (b) = I+
t (b) ∩

I−
t (b). We borrow from [DR2, Lemma 4.1] the following lemma, whose proof is straightforward:
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Lemma 3.6. For every t > 0, I+
t (b) ⊂ W s(P, ft)∪W s(Q, ft) and I−

t (b) ⊂ W u(P, ft)∪W u(Q, ft).

Next result immediately follows by observing that ft (resp. f−1
t ) exponentially expands the

vertical (resp. horizontal) segments:

Remark 3.7. Let w = (x, y, z) ∈ I+
t (∞) (resp. w ∈ I−

t (∞)). Then {(x, y)} × [z − ε, z + ε] ⋔

W s(P, ft) 6= ∅ (resp. [x − ε, x + ε] × {(y, z)} ⋔ W u(Q, ft) 6= ∅) for every ε > 0.

To prove the inclusion Λt ⊂ H(Q, ft) in Theorem 1.1 we consider the following four cases.

Case (i): w = (x, y, z) ∈ I−
t (b) \ I+

t (b) = I−
t (b) ∩ I+

t (∞).
By Remark 3.7, there is a sequence wn = (x, y, zn) ∈ W s(P, ft) with wn → w. We claim that

wn ∈ H(Q, ft) for all large n. Thus w ∈ H(Q, ft). To prove the claim, note that the distances
between the backward iterates of wn and w exponentially decrease, thus wn ∈ Λt. Moreover, since
w ∈ I−

t (b) we also have that wn ∈ I−
t (b). By Lemma 3.6, w,wn ∈ W u(P, ft) ∪ W u(Q, ft). If

wn ∈ W u(P, ft), then wn ∈ H(P, ft) ⊂ H(Q, ft) (recall the first part of Theorem 1.1 proved above)
and we are done. Otherwise, wn ∈ W u(Q, ft) and for each k large, there is a small vertical strip
∆k = ∆k(n) of diameter less than 1/k, whose interior is contained in W u(Q, ft) and contains wn.
Since wn ∈ W s(P, ft), ∆k ⋔ W s(P, ft). Thus, by Proposition 3.1, W s(Q, ft) intersects transversely
the interior of ∆k. Hence, since the interior of ∆k is contained in W u(Q, ft), ∆k contains a
homoclinic point yk of Q. From diam(∆k) → 0, we get yk → wn, which implies wn ∈ H(Q, ft).

Case (ii): w = (x, y, z) 6∈ I+
t (b) ∪ I−

t (b).
We claim that w is accumulated by points wn ∈ I+

t (∞)∩I−
t (b), and the result follows from Case

(i). To prove the claim observe that, by Remark 3.7, there is a sequence wn = (xn, y, z) ∈ W u(Q, ft)
with wn → w. Since the distances between the forward iterates of wn and w exponentially decrease,
it is immediate to check that wn ∈ Λt. This also implies that wn ∈ I+

t (∞). Finally, wn ∈ W u(Q, ft)
implies wn ∈ I−

t (b), ending the proof of the claim.

Case (iii): w = (x, y, z) ∈ I+
t (b) \ I−

t (b) = I+
t (b) ∩ I−

t (∞).
By Lemma 3.6, w ∈ W s(P, ft) ∪ W s(Q, ft) and, by replacing w by a forward iterate, we can

assume that w = (x, y, 0), y ≥ 0. Remark 3.7 gives a sequence wn = (xn, y, 0) ∈ W u(Q, ft) with
wn → w. For each n, there is a vertical disk ∆n ⊂ W u(Q, ft) centered at wn, of diameter less than
1/n. Clearly, ∆n intersects transversely W s(P, ft). Thus, by Proposition 3.1, ∆n ⋔ W s(Q, ft) 6= ∅.
As in the previous cases, this implies that ∆n ∩ H(Q, ft) 6= ∅ for all n large, thus w ∈ H(P, ft).

Case (iv): w ∈ I±
t (b).

By Lemma 3.6, there are four possibilities: (1) w ∈ W s(Q, ft)∩W u(Q, ft), (2) w ∈ W s(P, ft)∩
W u(P, ft), (3) w ∈ W s(P, ft) ∩ W u(Q, ft), and (4) w ∈ W u(P, ft) ∩ W s(Q, ft). Recall that the
intersections above are transverse or quasi-transverse, depending on the case. Hence, in case (1),
w ∈ H(Q, ft) and, in case (2), w ∈ H(P, ft) ⊂ H(Q, ft). In case (3), the same proof of {0} ×
[0, 1] × {0} ⊂ H(Q, ft) implies that w ∈ H(Q, ft): just observe that for every disk ∆ ⊂ W u(Q, ft)
containing w, W s(P, ft) ⋔ ∆ 6= ∅, thus ∆∩H(Q, ft) 6= ∅. It still remains the case w ∈ W s(Q, ft)∩
W u(P, ft). By replacing w by a forward iterate, we can assume that w = (x, 0, 0), x ∈ [−1, 1], and
the following lemma and Cases (i) and (ii) easily imply Case (4):

Lemma 3.8. Consider w ∈ Λt of the form w = (x, 0, 0) ∈ V0 ∩ (W s(Q, ft) ∩ W u(P, ft)). Then
there is a sequence wn → w with wn ∈ I+

t (∞).

Proof: For each n ∈ N, consider the rectangle Rn(x) = {x} × [0, 1/n] × [−1/n, 1/n].
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Claim 3.9. There exists κn ∈ Rn(x)∩Λ+
t whose forward orbit returns to V0 infinitely many times.

Assuming the claim, we now finish the proof of the lemma. As in Remark 3.7, but now consider-
ing points in Λ+

t , we have that the point κn = (xn, yn, zn) is accumulated by points κm
n ∈ W u(Q, ft)

of the form (xm
n , yn, zn). Since the distances between the forward iterates of κn and κm

n decrease,
the forward orbit of κm

n is contained in the neighbourhood W of the cycle and returns infinitely
many times to V0. On the other hand, since κm

n ∈ W u(Q, ft), its backward orbit also is in W .
Thus the whole orbit of κm

n is in W , so κm
n ∈ Λt and κm

n ∈ I+
t (∞). By Cases (i) and (ii) above,

κm
n ∈ H(Q, ft), thus κn ∈ H(Q, ft). Since κn → w, w ∈ H(Q, ft), ending the proof of Case (iv).

To prove Claim 3.9, we need the following fact:

Fact 3.10. Let R = Rn(x), 1/n < t. Then there is i = i(R) ∈ N such that, for every j ≥ i, f j
t (R)

contains a rectangle Γ(R, j) of the form {a} × [0, 1/n] × [−1/n, 1/n], a ∈ [−1, 0].

Proof: Let Nt be the smaller i ∈ N such that F i(1/n) ∈ (1 − t + 1/n, 1) and write

e = (1 − t + 1/n + g) = FNt(1/n), g ∈ (0, t − 1/n).

By the definition of the unfolding of the cycle, for each j ≥ 0, fNt+j
t (Rn(x)) contains the rectangle

{λNt+j
s (x) − 1/2} × [0, t + λj(g + 1/n − t)] × [−1, 1] ⊃ {λNt+j

s (x) − 1/2} × [0, 1/n] × [−1, 1],

since t + λj(g + 1/n − t) ≥ t + λj(1/n − t) ≥ 1/n. This finishes the proof of the fact. �

To prove Claim 3.9, consider Rn(x) = R(0) and, using Fact 3.10, let R(1) = Γ(R(0), i(R(0)).
Write i0 = i(R0) and R1 = f−i0

t (R(1)) ⊂ R(0). Assume inductively defined numbers i0, i1, . . . , ik−1

and rectangles R(0), R(1), . . . , R(k) and R1, . . . , Rk as follows:

• R(k) = Γ(R(k − 1), i(R(k − 1))) and ik−1 = i(R(k − 1)), in particular, R(k) satisfies the
hypotheses of Fact 3.10,

• Rk ⊂ Rk−1 ⊂ · · · ⊂ R1 ⊂ R(0) = Rn(x) and Rk = f
−i0−···−ik−1

t (R(k)).

We define ik = i(R(k)), R(k + 1) = Γ(R(k), ik) and Rk+1 = f−i0−···−ik
t (R(k + 1)), completing the

inductive process. Now it suffices to take any point in the non-empty intersection ∩k∈NRk. �

The proof of Theorem 1.1 is now complete.

4 Saddle-node heterodimensional cycles

In this section, we consider saddle-node heterodimensional cycles. For that, in the model het-
erodimensional cycle in Section 1, we replace the function F (defining the central dynamics) by a
one-parameter family of C2-maps Φs : [−1, 2] → R such that:

• For every s, the point 1 is an attracting hyperbolic point of Φs and Φs is affine in a neigh-
borhood of 1 (independent of s). We denote by 0 < λ < 1 the eigenvalue of Φs at 1.

• Locally in 0, the map Φs is of the form Φs(x) = x + x2 − s. Thus, for s > 0, Φs has two
hyperbolic fixed points ±√

s (an attractor and a repellor) collapsing at s = 0. Moreover, for
every s < 0, Φs has no fixed points close to 0.
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• Every Φs is strictly increasing and has no fixed points different from 1 and ±√
s.

In this way, as in Section 1, one has a two-parameter family of diffeomorphisms ft,s, the pa-
rameters t and s describing the motion of the unstable manifold of P and the unfolding of the
saddle-node, respectively. Note that P = (0, 1, 0) and S±

s = (0,±√
s, 0) (s ≥ 0) are fixed points of

ft,s.
We let ft = ft,0. For the saddle-node S = (0, 0, 0) of ft there are defined the stable and unstable

manifolds (denoted W s(S, ft) and W u(S, ft)) and the strong stable and unstable manifolds (denoted
by W ss(S, ft) and W uu(S, ft)). Observe that W s(S, ft) and W u(S, ft) are two-manifolds with
boundary and W ss(S, ft) and W uu(S, ft) have both dimension one. Note that, by construction,

{0} × [0, 1) × [−1, 1] ⊂ W u(S, ft), [−1, 1] × [−1, 0] × {0} ⊂ W s(S, ft),
[−1, 1] × {(0, 0)} ⊂ W ss(S, ft), {(0, 0)} × [−1, 1] ⊂ W uu(S, ft).

P
Q

W s(P )

W u(P )

W ss(Q)

W uu(Q)

W u(Q)

S

S+
sS−

s

s < 0

s = 0

s > 0

Figure 3: A saddle-node heterodimensional cycle

Keeping in mind these relations, we have that,

• for all t, W u(S, ft) meets transversely W s(P, ft) throughout the segment {0} × (0, 1) × {0},

• for t = 0, W u(P, f0) meets quasi-transversely W ss(S, f0) along the orbit of (−1/2, 0, 0),

• for t > 0, the point (−1/2, t, 0) is a transverse homoclinic point of P and (−1/2, 0, 0) is a
point of transverse intersection between W ss(S, ft) and W u(S, ft).

In this case, we say that the arc ft = ft,0 has a saddle-node heterodimensional cycle associated to
P and S at t = 0. This cycle can be thought as a limit case of the heterodimensional cycles in
Section 1, where the derivative of the point of index two Q is 1+.

The two-fold behavior of the saddle-node S, as a point of index two and one simultaneously,
leads us to consider, for small positive t, the lateral homoclinic classes of S defined by

H+(S, ft) = W u(S, ft) ⋔ W ss(S, ft) and H−(S, ft) = W s(S, ft) ⋔ W uu(S, ft).

As in the case of the usual homoclinic classes, we have that:

Proposition 4.1. For every small t > 0, H+(S, ft) (resp. H−(S, ft)) is transitive and the periodic
points of index two (resp. one) form a dense subset of it.

13



Consider a neighborhood W of the saddle-node heterodimensional cycle defined as in Section 3
and denote by Υt the maximal invariant set of ft in W .

Theorem 4.2. For every small t > 0, one has that H(P, ft) ⊂ H+(S, ft) and Υt ⊂ H(S+, ft).

The proof of Theorem 4.2 follows as the one of Theorem 1.1, the only difficulty being to redefine
appropriately the one-dimensional dynamics associated to the cycle (recall Section 2). This will be
briefly done in the next section. To get the inclusion H+(S, ft) ⊂ H(P, ft) we need the following
distortion property for the saddle-node map Φ = Φ0.

(SN) Let K = max{|Φ′′(x)|/|Φ′(x)|, x ∈ [0, 1]} > 0. Then
4 eK (1 − λ)

λ6
<

1

2
, where λ ∈ (2/3, 1).

Theorem 4.3. Under the assumption (SN), H+(S, ft) ⊂ H(P, ft) holds for all small positive t > 0.

To prove this theorem we need new ingredients that will be introduced in Section 4.3. Theo-
rems 4.2 and 4.3 imply H+(S, ft) = H(P, ft) for all small t > 0.

4.1 One-dimensional dynamics for the saddle-node cycle

We now adapt the definitions of scaled fundamental domains, transitions and returns for saddle-
node cycles. As in Section 2, for each t > 0, define the fundamental domains D−

t = [1 − t, 1 − λ t]
and D+

t = [at, bt], at = Φ−1(bt), where D+
t is the first backward iterate of D−

t by Φ contained in
[0, t]. We have Φkt(D+

t ) = D−
t , for some kt ∈ N. Observe that |D−

t | = t (1−λ) and, since bt ∈ (0, t],
|D+

t | ≤ t2. For small t > 0, define the transition Tt and the map Gt by

Tt : D+
t → D−

t , x 7→ Tt(x) = Φkt(x) and Gt : D+
t → [0, t(1 − λ)], x 7→ Gt(x) = Tt(x) + (t − 1).

Lemma 4.4. The maps Tt and Gt are uniformly expanding for all small t > 0.

Proof: It suffices to see that (Φkt)′(z) > 1 for all z ∈ D+
t . We use the following standard lemma

(whose proof is omitted here):

Bounded Distortion Lemma 4.5. Let K > 0 be as in condition (SN). Then, for every pair of
points z, y ∈ D+

t and every small t > 0,

e−K ≤ (Φkt)′(z)

(Φkt)′(y)
≤ eK .

The lemma now follows by the mean value theorem, taking y ∈ D+
t with

(Φkt)′(y) = |D−
t |/|D+

t | ≥ (1 − λ)/t.

Thus, if t is small, (Φkt)′(z) ≥ (e−K (1 − λ))/t > 1, for all z ∈ D+
t . �

As in Section 2, given x ∈ (at, bt] = D̃+
t , let i(x) ∈ Z be the first i with Φi(Gt(x)) ∈ D+

t . The
return map Rt is now defined by

Rt : D̃+
t → D+

t , Rt(x) = Φi(x)(Gt(x)) = Φi(x)(Tt(x) + (t − 1)).

Lemma 4.6. There exists i0 > 0 such that i(x) ≥ i0 for all x ∈ D̃+
t .
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Proof: To prove the lemma it is enough to see that Gt(D
+
t ) ⊂ (0, at). By definition, Gt(D

+
t ) =

[0, (1 − λ) t]. Observe that, if t is small enough,

Φ2((1 − λ) t) = Φ((1 − λ) t + (1 − λ)2 t2) = (1 − λ) t + 2 (1 − λ)2 t2 + h.o.t < t.

Thus, the right extreme Φ2((1− λ)t) of Φ2(Gt(D
+
t )) is less than t. In particular, the right extreme

of Gt(D
+
t ) is less than Φ−2(t), and the the lemma follows from D+

t ⊂ (Φ−2(t), t]. �

As in the case of the return map Rt in Section 2, for each i ≥ i0, there is δi ∈ D̃+
t with

Gt(δi) = Φ−i(at). The points δi are the discontinuities of Rt. In this way, we get a decreasing
sequence (δi)i≥i0 with δi → at, and intervals Ji = [δi+1, δi], i > i0, and Ji0 = [δi0 , bt] such that Rt

is continuous and increasing in the interior of each Ji. Extending Rt continuously to the whole Ji

we get a bi-valuated map with Rt(δi) = {at, bt} for all i > i0.

Lemma 4.7. The restriction of Rt to each interval Ji, i > i0, is onto. Moreover, there is ℓ > 1
such that R′

t(x) > ℓ > 1 for all x ∈ (at, bt] (if x = δi this means that the lateral derivatives of Rt

at x are greater than ℓ). Finally, 0 ∈ Gt(Rt(δi)) for all i ≥ i0.

Proof: The lemma follows as Lemma 2.4 observing that i0 > 0 (Lemma 4.6), Gt is expanding
(Lemma 4.4), and that the derivative of Φ in (0, t] is bigger than one. �

Arguing as in Section 2, one gets the following lemma (corresponding to Lemma 2.5):

Lemma 4.8. Given any subinterval I of D+
t there are x ∈ I and i ≥ 0 with Gt(R

i
t(x)) = 0.

4.2 Lateral Homoclinic classes. Proof of Theorem 4.2

To prove Theorem 4.2 we proceed as in Section 3. After redefining vertical strips and segments
and using Lemma 4.8, one gets that, for any small t > 0 and any disk χ with W s(P, ft) ⋔ χ 6= ∅,
W ss(S, ft) ⋔ χ 6= ∅ (recall Proposition 3.1). The inclusion (H(P, ft) ∪ Υt) ⊂ H+(S, ft) follows
exactly as (H(P, ft) ∪ Λt) ⊂ H(Q, ft) in the case of heterodimensional cycles. So we omit the
details of the proofs of these inclusions.

4.3 Proof of Theorem 4.3: the inclusion H+(S, ft) ⊂ H(P, ft)

Consider the homoclinic point xt = (−1/2, t, 0) of P for ft and the fundamental domains of Φ
∆+

t (i) = Φ−i(∆+
t (0)), i ≥ 0, where ∆+

t (0) = [Φ−1(t), t]. We now construct a family Ht of homoclinic
points of P for ft of the form (x, y, 0) such that the set {y : (x, y, 0) ∈ Ht} is dense in ∆+

t (0):

Proposition 4.9. For every small t > 0 there are sequences of homoclinic points of P of the form
(bi1,i2,...,im,k, xi1,i2,...,im,k, 0)k∈N∗ , bi1,i2,...,im,k ∈ [−1, 0], ij ∈ N

∗, such that

(H1) xi1,i2,...,im,k ∈ ⋃4
i=0 ∆+

t (i) = ∆t,

(H2) xi1,i2,...,im,k → xi1,i2,...,im as k → ∞,

(H3) xi1,i2,...,im,0 < xi1,i2,...,(im−1) for every im ≥ 1,

(H4) diam((xi1,i2,...,im,k)k) → 0 as m → ∞,

(H5) (xk) is increasing and xk → t− as k → ∞,
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(H6) x0 ∈ ∆+
t (1) and x0 6∈ ∆+

t (0).

This proposition will be proved in Section 4.3.2. From the proposition one gets the following:

Corollary 4.10. The set Ht =
⋃

n,k∈N∗(xi1,i2,...,ik,n) contains a dense subset of ∆+
t (0).

Proof: The proof of is identical to [D2, Lemma 4.1], but we repeat it here for completeness.
Take any point x in the interior of ∆+

t (0). If x ∈ Ht we are done. Otherwise, by (H5) and (H6),
there is i1 > 1 with x(i1−1) < x < xi1. Analogously, by (H2) and (H3), there is i2 > 1 with
xi1,(i2−1) < x < xi1,i2. Inductively, using (H2) and (H3) as above, we get a sequence {ik}, ik > 1,
such that, for all k, xi1,...,(ik−1) < x < xi1,...,ik . Finally, from (H4), limk→∞ xi1,...,ik = x. �

4.3.1 Proof of Theorem 4.3

The deduction of Theorem 4.3 from Corollary 4.10 follows as in [D2, Section 5]. For completeness,
we sketch here this proof. Consider any w ∈ W u(S, ft) ⋔ W ss(S, ft). By replacing w by some
iterate of it, we can assume that w = (x, 0, 0), |x| small. We prove that, for every ε > 0, the square
S(ε) = (x− ε, x + ε)× (0, ε)×{0} ⊂ W s(P, ft) intersects transversely W u(P, ft). This implies that
w ∈ H(P, ft). The configuration of the cycle and the λ-lemma imply that there is n(ε) > 0 such

that f
−n(ε)
t (S(ε)) contains a disk S′(ε) of the form

S′(ε) = [−1, 1] × (ȳ − ξ, ȳ + ξ) × {z̄}, ȳ ∈ (1 − t, 1), z̄ ∈ [−1, 1] and small ξ > 0.

Let m ∈ N be such that Φ−m(ȳ) ∈ ∆+
t (0). Thus f−m

t (S′(ε)) contains the horizontal strip

Ŝ(ε) = [−1, 1] × (Φ−m(ȳ − ξ),Φ−m(ȳ + ξ)) × {λ−m
u z̄} ⊂ W s(P, ft).

Since Φ−m(ȳ) belongs to ∆+
t (0), Corollary 4.10 implies that Ŝ(ε) meets W u(P, ft). Thus Ŝ(ε)

contains a homoclinic point of P and the same holds for S(ε). �

4.3.2 Proof of Proposition 4.9: Sequences of homoclinic points:

Let κt be the first k ∈ N such that Φk(∆+
t (0)) ⊂ [1 − t, 1], ∆+

t (0) = [Φ−1(t), t]. Since, for small
t > 0, |Φkt(∆+

t (0))| ≤ t (1−λ) and |∆+
t (0)| ≥ λ t2, the Bounded Distortion Lemma 4.5 implies that

(Φκt)′(x) <
1 − λ

λ t
eK , for all x ∈ ∆+

t (0). (2)

Denote by δi
t the length of ∆+

t (i). Since the derivative of Φ near 0 is close to 1 and strictly bigger
than 1 in (0, t], for small t, we have that

δ0
t ≥ δi

t ≥
9 δ0

t

10
, i = 1, . . . , 4. In particular,

4∑

i=0

δi
t ∈ [4δ0

t , 5δ0
t ]. (3)

Consider the interval [1 − ηt, 1], ηt = δ1
t + δ0

t , and let αt be the first natural number α with

Φκt+α(∆+
t (0)) ⊂ [1 − ηt, 1].

Observe that |∆+
t (0)| = δ0

t < t2 and δ1
t < δ0

t . Thus, for small t > 0, ηt < 2 δ0
t < 2 t2 < λ t. Since,

Φκt(Φ−1(t)) ∈ [1− t, 1−λ t] and (1−λ t) < (1−ηt), we get that αt ≥ 1 for all small t. Observe also
that t2 < ηt < 2 t2, where the first inequality follows from (3) and δ0

t > 3t2/4 if t is small enough.
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Lemma 4.11. For every small t > 0 it holds λαt ≤ (2 t)/λ.

Proof: By definitions of κt and αt, Φκt(∆+
t (0)) = [1 − e−t , 1 − e+

t ], where e−t ∈ [λ t, t], and
Φαt(1 − e−t ) ∈ [1 − ηt, 1 − λ ηt]. Thus, since Φ is affine near 1, λαt(e−t ) ∈ (0, ηt]. Hence, from
t2 < ηt < 2 t2 and λ t ≤ e−t ≤ t,

λαt ≤ ηt

e−t
≤ 2 t2

λ t
=

2 t

λ
,

ending the proof of the lemma. �

Next lemma is necessary for getting (H4) and along the inductive definition of (xi1,i2,...,im,k)k.

Lemma 4.12. L = max{(Φκt+αt+j)′(x); x ∈ ∪4
i=0∆

+
t (i) and j ≥ 0} < 1

2 .

Proof: Since Φ is a contraction near 1, it is enough to compute the estimate when j = 0. We
split the trajectory of a point x ∈ ∆+

t (i) going from ∆+
t (i) to [1 − ηt, 1) as follows: (i) i iterates,

i ≤ 4, for x going from ∆+
t (i) to ∆+

t (0); (ii) κt iterates for Φi(x) going from ∆+
t (0) to Φkt

t (∆+
t (0));

and (iii) αt iterates for Φκt+i(x) going from Φkt
t (∆+

t (0)) to [1 − ηt, 1]. This construction involves
(i + κt + αt) iterations of x by Φ, so we need to remove the last i iterations, corresponding to a
contraction by λi. We claim that

L ≤ ((2 t + 1)4)
︸ ︷︷ ︸

(a)

eK (1 − λ)

λ t
λαt

︸ ︷︷ ︸

(b)

1

λ4
︸︷︷︸

(c)

, (4)

corresponding (a) to the expansion of the first i iterates by Φ (just observe that in [0, t] the derivative
of Φ is upper bounded by (2 t + 1) and that i ≤ 4), (b) to an upper bound of the derivative of
Φκt+αt , recall (2), and (c) to the i (i ≤ 4) negative iterates of Φ close to 1. By (SN), Lemma 4.11,
and the fact that (2 t + 1)4 < 2 if t > 0 is small, we get

L ≤ ((2 t + 1)4)
eK (1 − λ)

λ t

2 t

λ

1

λ4
= (2 t + 1)4

2 (1 − λ) eK

λ6
≤ 4 eK (1 − λ)

λ6
<

1

2
,

which ends the proof of the lemma. �

Construction of the sequences (xi1,i2,...,im,k). To construct the sequences (xi1,i2,...,im,k), we
need the following algorithm about the creation of homoclinic points, which is a consequence of the
definition of the unfolding of the heterodimensional cycle.

Algorithm 4.13. Let (x, y, 0), x ∈ [−1, 1] and y ∈ [0, t], be a homoclinic point of P (for ft) such
that {(x, y)}× [−1, 1] ⊂ W u(P, ft). Then, for every m with Φm(y) ∈ (1− t, 1), there is a homoclinic
point of P of the form (x̄,Φm(y) + t − 1, 0) such that {(x̄,Φm(y) + t − 1)} × [−1, 1] ⊂ W u(P, ft).

Take the homoclinic point (−1/2, t, 0) of P and the sequences (yi)i∈N∗ and (xi)i∈N∗ defined by

yi = Φκt+αt+i(t) and xi = (t − 1) + yi, yi → 1 and xi → t.

Observe that, for each i ≥ 0, there is a homoclinic point (bi, xi, 0) of P verifying Algorithm 4.13.
Also, by the definitions of αt and κt, yi ∈ [1 − ηt, 1] for all i ≥ 0. Thus, since ηt = δ0

t + δ1
t , one has

xi ∈ [t − ηt, t] = [t − (δ1
t + δ0

t ), t] = ∆+
t (1) ∪ ∆+

t (0). (5)
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Figure 4: The sequences (xi1,i2,...,im,n)n

Lemma 4.14. The sequence (xi)i∈N∗ verifies (H5) and (H6).

Proof: Condition (H5) follows by definition. To get (H6), i.e.x0 ∈ (∆+
t (1)\∆+

t (0)), note that, by
construction, x0 ∈ [t − ηt, t − λ ηt] and ∆+

t (1) = [t − ηt, t − δ0
t ]. Thus, by (5), it is enough to check

that λ ηt = λ (δ0
t + δ1

t ) > δ0
t . This inequality follows from δ0

t > δ1
t , (3) and (SN), observing that

δ0
t

ηt

=
δ0
t

δ0
t + δ1

t

<
δ0
t

2 δ1
t

<
δ0
t

2 (9/10) δ0
t

=
10

18
<

2

3
< λ.

The proof of the lemma is now complete. �

We now proceed with the construction of the sequences in Proposition 4.9. For each j ∈ N
∗,

define the sequences (yj,i)i∈N∗ and (xj,i)i∈N∗ as follows,

yj,i = Φκt+αt+j(xi) and xj,i = (t − 1) + yj,i.

We claim that yj,i → yj and, consequently, xj,i → xj , as i → ∞. For that just observe that
limi→∞ xi = t, thus, by continuity, limi→∞ yj,i = limi→∞ Φκt+αt+j(xi) = Φκt+αt+j(t) = yj.

Lemma 4.15. The points (xj,i)i belong to ∪4
i=0∆

+
t (i) for all i, j ∈ N

∗.

Proof: Since, by construction, the sequences (xj,i)i are increasing, it is enough to see that
x0,0 ∈ ∪4

i=0∆
+
t (i). Consider the diameter d0 = (t − x0) of (xi)i∈N∗ . By (5), d0 < δ0

t + δ1
t . Let

d1 = |x0 − x0,0| be the diameter of (x0,i = Φκt+αt(xi) + (t − 1))i, which is equal to the diameter of
(Φκt+αt(xi))i. Thus, since (xi)i ⊂ ∆+

t (0) ∪ ∆+
t (1), by Lemma 4.12, the diameter d1 is bounded by

d1 ≤ Ld0 < d0/2 < (δ0
t + δ1

t )/2 < (2 δ0
t )/2 < δ0

t . (6)
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Since x0 ∈ ∆+
t (1) (Lemma 4.14), to prove that x0,0 ∈ ∪4

i=0∆
+
t (i), it is enough to see that

x0,0 = x0 − d1 > x0 − (δ2
t + δ3

t + δ4
t ) ⇐⇒ d1 < (δ2

t + δ3
t + δ4

t ),

which immediately follows from δ2
t + δ3

t + δ4
t > δ0

t > d1, the first inequality being consequence of
δi
t > (9 δ0

t )/(10), see (3), and the last from (6). This ends the proof of the lemma. �

Suppose now inductively defined sequences (yii,i2,...,im,i)i∈N∗ and (xii,i2,...,im,i)i∈N∗ by

yi1,i2,...,im,i = Φκt+αt+i1(xi2,...,im,i) and xi1,i2,...,im,i = (t − 1) + yi1,i2,...,im,i,

satisfying conditions (H1), (H2), (H3) and

(H4b) Let dm, m ≥ 0, be the diameter of the sequence (x0, . . . , 0, i
︸ ︷︷ ︸

m 0′s

)i. Then dm ≤ (dm−1)/2.

Observe that (H2) and (H3) and are equivalent to (H2b) and (H3b) below, respectively,

(H2b) (yi1,i2,...,im,i)i → yii,i2,...,im as i → ∞,

(H3b) yi1,i2,...,im,0 < yii,i2,...,(im−1) for all im ≥ 1.

Notice that, for m = 1, (H1) follows from Lemma 4.15, (H2) (or (H2b)) from definition, and
(H4b) from the estimates in (6). To check (H3b), yi,0 < yi−1, for every i ≥ 1, recall that, by
Lemma 4.14, x0 < Φ−1(t) < t, thus

yi−1 = Φκt+αt+i−1(t) = Φκt+αt+i(Φ−1(t)) > Φκt+αt+i(x0) = yi,0.

For simplicity, we say that the sequences (zii,i2,...,im,i)i∈N∗ , z = x, y, are of generation m.

Lemma 4.16. Property (H4b) implies (H4) in Proposition 4.9.

Proof: By construction, the diameter of any sequence (xi1,...,im,k) of generation m is bounded by
the diameter dm of (x0, . . . , 0, i

︸ ︷︷ ︸

m 0′s

))i∈N∗ . Thus, inductively, dm ≤ (1/2) dm−1 , so dm → 0. �

Keeping in mind Lemmas 4.14 and 4.16, to prove Proposition 4.9 it suffices to see that the
sequences verify (H1), (H2b), (H3b) and (H4b). We argue inductively on the generation of the
sequences and assume satisfied these conditions for sequences of generation less than or equal to
m. To verify (H2b) for the sequences of generation m + 1 note that, by induction, (yi1,i2,...,im,i)i →
yi1,i2,...,im. Thus, by continuity of Φ and by definition,

(yj,i1,i2,...,im,i)i = (Φκt+αt+j(xi1,i2,...,im,i))i → Φκt+αt+j(xi1,i2,...,im) = yj,i1,i2,...,im.

To prove (H3b) observe that, by induction, xi1,i2,...,im,0 < xi1,i2,...,im−1. Thus, since Φ is increasing,

yj,i1,i2,...,im,0 = Φκt+αt+j(xi1,i2,...,im,0) < Φκt+αt+j(xi1,i2,...,im−1) = yj,i1,i2,...,im−1.

To check (H4b) observe that, by the induction hypotheses (H1), x0,...,0,i ∈ ∪4
i=0∆

+
t (i), Lemma 4.12

and the fact that the sequences (y0,...,0,i) and (x0,...,0,i) have the same diameter imply that

dm+1 = diam((y0,...,0,i)i
︸ ︷︷ ︸

(m+1) 0′s

) = diam((Φκt+αt((x0,...,0,i)i)
︸ ︷︷ ︸

m 0′s

) = Ldiam((x0,...,0,i))i) = Ldm ≤ dm

2
.
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Finally, to get (H1) for the generation (m + 1) it is enough to see that, for every m,
∑m

i=0 dm <
4δ0

t <
∑4

i=0 δi
t, recall (3). By induction and Lemma 4.14, which implies that d0 ≤ δ0

t + δ1
t , we have

m∑

i=0

dm ≤
m−1∑

i=0

(1/2)i d0 ≤
m−1∑

i=0

(1/2)i (δ0
t + δ1

t ) ≤
1

1 − 2
(δ0

t + δ1
t ) < 2(δ0

t + δ1
t ) < 4δ0

t ,

finishing the proof of our claim, and the construction of the sequences in Proposition 4.9.

5 Homoclinic classes before collapsing the saddles S+
s and S−

s

We now return to the family ft,s in Section 4. Note that S+
s = (0,

√
s, 0), s > 0, is a fixed point of

index two of ft,s (any t > 0) and that f√s,s has a heterodimensional cycle associated to S+
s and P :

• W u(S+
s , f√s,s) meets transversely W s(P, f√s,s) throughout the segment {0} × (

√
s, 1) × {0},

• W u(P, f√s,s) meets quasi-transversely W s(S+
s , f√s,s) along the orbit of (−1/2,

√
s, 0) (just

observe that [−1, 1] × {(√s, 0)} ⊂ W s(S+
s , f√s,s) and that (−1/2,

√
s, 0) ∈ W u(P, f√s,s)).

In what follows we assume that the saddle-node arc Φs verifies condition (SN) in Section 4.

Theorem 5.1. There exist a small s0 > 0 and a strictly positive map τ defined on (0, s0) such
that, for every s ∈ (0, s0) and t ∈ (

√
s,
√

s + τ(s)),

• H(P, ft,s) = H(S+
s , ft,s), and

• there is a neighborhood Ws of the cycle of f√s,s (associated to P and S+
s ) such that the

maximal invariant set Λt,s of ft,s in Ws is contained to H(S+
s , ft,s).

The the inclusion H(P, ft,s) ⊂ H(Ss, ft,s) and the second part of the theorem follow as in
Theorem 1.1. So we just sketch these proofs. For a fixed s > 0 and t >

√
s, t close to

√
s,

t =
√

s + τ , consider the scaled fundamental domains D±
t,s of Φs,

D−
t,s = [1 − (t −√

s), 1 − λ (t −√
s)] = [1 − τ, 1 − λ τ ]

and D+
t,s defined as the first backward iterate of D−

t,s in [
√

s,
√

s + τ ]. Let Φ
kt,s
s (D+

t,s) = D−
t,s, where

kt,s ∈ N. These domains play the role of D±
t in Section 2. Observe that

ℓ(t, s) =
|D−

t,s|
|D+

t,s|
≥ τ (1 − λ)

(
√

s + τ)2 − s
=

τ (1 − λ)

τ (2
√

s + τ)
=

1 − λ

2
√

s + τ
.

By shrinking s, we can assume that |Φ′′
s(x)|/|Φ′

s(x)| < 2K for all x ∈ [−1, 2] (K as in condition
(SN)). Thus, there is s0 > 0 and a map τ : (0, s0) → R

+ such that

ℓ(t, s) e−2 K > 2, for all s ∈ (0, s0) and t ∈ (
√

s,
√

s + τ(s)). (7)

Exactly as in Section 2, for s ∈ (0, s0) and t ∈ (
√

s,
√

s + τ(s)), we define maps

Tt,s : D+
t,s → D−

t,s, Tt,s(x) = Φ
kt,s
s (x),

Gt,s : D−
t,s → [

√
s,
√

s + τ (1 − λ)], Gt,s(x) = Tt,s(x) + (t − 1),

Rt,s : D+
t,s → D+

t,s, Rt,s(x) = Φ
i(x)
s (Gt,s(x)),
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where, as in Section 2, i(x) is the first forward iterate of Gt,s(x) by Φs in D+
t,s. As in Lemma 4.4,

the Bounded Distortion Lemma 4.5 and equation (7) imply that Tt,s, Gt,s and Rt,s are uniformly
expanding. The inclusion (H(P, ft,s) ∪ Λt,s) ⊂ H(S+

s , ft,s) now follows as in Theorem 1.1.
To get H(S+

s , ft,s) ⊂ H(P, ft,s) recall first that Theorem 4.3 gives small t̄ > 0 with H+(S, ft,0) ⊂
H(P, ft,0) for all t ∈ (0, t̄). This inclusion follows by constructing the sequences of homoclinic points
of P in Proposition 4.9. The proof Proposition 4.9 only involves distortion control of the saddle-
node map in [0, 1] and the contracting itineraries in Lemma 4.12. Clearly, these properties hold
after replacing, for small positive s, the saddle-node S by the hyperbolic point S+

s and considering
the restriction of the saddle-node map to [

√
s, 1]. This ends the sketch of the proof of Theorem 5.1.

6 Collision, explosion and collapse of homoclinic classes

In this section we prove Theorems A and B. Consider a two parameter family of diffeomorphism
ft,s locally defined as follows:

Partially hyperbolic local dynamics:

• In the set C = [−1, 1]×[−2, 2]×[−1, 1], ft,s(x, y, z) = (λsx,Ψs(y), λuz), where 0 < λs < 1 < λu

and Ψs : [−2, 2] → (−3, 2) is a strictly increasing C2-map such that λs < dm < Ψ′
s(y) < dM <

λu for all y ∈ [−2, 2] and small |s|.

• Ψs(1) = 1 and Ψs(−1) = −1 for all s and Ψs is affine and independent of s in [−1− δ,−1+ δ]
and [1 − δ, 1 + δ], for some small δ > 0. Furthermore, Ψ′

s(−1) = β > 1 > Ψ′
s(1) = λ > 0.

• There is δ > 0 such that the restriction of Ψs to [−δ, δ] is of the form Ψs(x) = x + x2 − s.

• For s < 0, Ψs has (exactly) two fixed points (±1), for s = 0, Ψ0 has three fixed points (±1 and
0), and, for s > 0, Φs has four fixed points (±1 and ±√

s). Let P = (0, 1, 0), Q = (0,−1, 0),
S = (0, 0, 0) and, for positive s, S±

s = (0,±√
s, 0), the fixed points of ft,s in C.

Existence and unfolding of cycles:

• There are k0 ∈ N and small neighborhoods of (0,−1,−1/2), (0, 0,−1/2) and (0, 1,−1/2)
such that, for each small |s|, in such neighborhoods, each fk0

t,s is the translation fk0

t,s(x, y, z) =
(x − 1/2, y − 1 + t, z + 1/2), recall the definition of ft in Section 1.

As in previous sections, we have:

• for (t, s) = (0, 0), f0,0 has a pair of saddle-node heterodimensional cycles, associated to P and
S, W u(P, f0,0) meets quasi-transversely W ss(S, f0,0), and to Q and S, W s(Q, f0,0) intersects
W uu(S, f0,0), (note that [−1, 1]×{(0, 0)} ⊂ W ss(S, f0,0) and {(0, 0)}×[−1, 1] ⊂ W uu(S, f0,0)).

• For small |t| and s < 0, the homoclinic classes of P and Q are both nontrivial: notice that,
for negative s, [−1, 1]× (−1, 2)×{0} ⊂ W s(P, ft,s) and {0}× (−1, 2)× [−1, 1] ⊂ W u(Q, ft,s),
thus (−1/2, t, 0) and (−1/2,−1, 0) are homoclinic points of P and Q, respectively.

• f√s,s has a pair of heterodimensional cycles associated to P and S+
s and to Q and S−

s (this
is obtained exactly as in Section 5).
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Figure 5: The two parameter family ft,s

As in Section 4, we assume the following distortion property (similar to (SN)). Let K be an
upper bound for |Ψ′′

s(x)|/|Ψ′
s(x)|, for small |s| and x ∈ [−1, 1],

(DS) max

{
4 eK (1 − λ)

λ6
,
4 eK (1 − β−1)

β−6

}

<
1

2
, where 3/4 < λ < 1 < β < 4/3.

6.1 Dynamics before collapsing the saddles S+
s and S−

s

Theorems 4.2 and 4.3 give a small t̄0 such that H(P, ft̄,0) = H+(S, ft̄,0) and H(Q, ft̄,0) = H−(S, ft̄,0)

(for this inclusion consider f−1
t̄,0

) for all t̄ ∈ (0, t̄0]. These proofs only involve the following ingredients:

• The inclusions H(P, ft0,0) ⊂ H+(S, ft,0) and H(Q, ft,0) ⊂ H−(S, ft,0) are obtained considering
the ratio between the lengths of the scaled fundamental domains at the hyperbolic point and
at the saddle-node and using that such a ratio is arbitrarily large.

• The inclusion H+(S, ft,0) ⊂ H(P, ft0,0) (resp. H−(S, ft,0) ⊂ H(Q, ft0,0)) is obtained by
constructing sequences of homoclinic points of P (resp. Q) verifying Proposition 4.9. The
proof of such a proposition only involves distortion control of the saddle-node map in [0, 1]
(resp. [−1, 0]) and contracting itineraries (Lemma 4.12).

These properties hold after replacing, for small s > 0, the saddle-node S by the saddle S+
s (consid-

ering the restriction of Ψs to [
√

s, 1]) and S by the saddle S−
s (considering the restriction of Ψs to

[−1,−√
s]). In this way, we get:
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Theorem 6.1. If t > 0 is small, there is a small s(t) > 0 such that H(P, ft,s) = H(S+
s , ft,s) and

H(Q, ft,s) = H(S−
s , ft,s) for all s ∈ (0, s(t)).

6.2 Dynamics after collapsing the saddles S+
s and S−

s

Theorem 6.2. For every small t > 0 there is s(t) < 0 such that H(P, ft,s) = H(Q, ft,s) for all
s ∈ [s(t), 0).

This theorem follows adapting the constructions in Theorem 1.1. We prove the inclusion
H(P, ft,s) ⊂ H(Q, ft,s) (H(Q, ft,s) ⊂ H(P, ft,s) follows by taking f−1

t,s ). As in Sections 2 and 4.1, de-

fine transitions Tt,s and returns Rt,s as follows: take the fundamental domain D−
t = [1−4 t, 1−4λ t]

of Ψs and let kt,s be the first k ∈ N with −2 t ∈ Ψ−k
s (D−

t ). Let D+
t,s = Ψ

−kt,s
s (D−

t ) and define

Tt,s : D+
t,s → D−

t , Tt,s(x) = Ψ
kt,s
s (x), Gt,s : D+

t,s → [−3 t,−2 t], Gt,s(x) = Tt,s(x) + (t − 1).

0

−t

1

1−1

−1

1 − 4t

−3t

x − 1 + t

D+
t,s

D+
t,s

D−
t

D−
t

Ψi
s

Ψ
−kt,s
s

Ii1

Ii1+1

Ii1+4

Rt,s

Gt,s

Tt,s

Figure 6: The expanding maps Tt, Gt and Rt

By definition, Gt,s(D
+
t,s) ⊂ [−3 t, t (1 − 4λ)] ⊂ [−3 t,−2 t] (recall that λ > 3/4). Since, |D+

t,s| ≤
9 t2 + s, the Bounded Distortion Lemma 4.5 and |D−

t | = 4λ (1 − t) immediately give

T ′
t,s(x) ≥ (e−2 K)

|D−
t |

|D+
t,s|

≥ (e−2 K)
4λ(1 − t)

9 t2 + s
.

This inequality immediately implies the following:

Lemma 6.3. For every small t > 0 there is s(t) < 0 such that Tt,s and Gt,s are 63-expanding for
all s ∈ [s(t), 0).

Since, by definition, the right extreme of Gt,s(D
+
t,s) is less than the right extreme of D+

t,s, for

each x ∈ D+
t,s there is a first i(x) ≥ 0 with Ψ

i(x)
s (Gt,s(x)) ∈ D+

t,s. The return map Rt,s is defined by

Rt,s : D+
t,s → D+

t,s, Rt,s(x) = Ψi(x)
s Gt,s(x).

Lemma 6.4. The map Rt,s is 3-expanding for all small t > 0 and s ∈ [s(t), 0).
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Proof: Note that the expansion for Rt,s does not follow immediately from the expansion of Tt,s:
the i(x) iterates by Ψs at the left of 0 introduce a contraction. By Lemma 6.3, it is enough to
see that this contraction is at most 1/21. Recall that Gt,s(D

+
t,s) ⊂ [−3 t,−2 t] and observe that

0 ≤ i(x) ≤ i0, where Ψi0(−3 t) ∈ D+
t,s. Write D+

t,s(j) = Ψ−j
s (D+

t,s) and note that, for every x ∈ D+
t,s,

|D+
t,s(i(x))| ≤ |D+

t,s(i0)| < 10 t2 + s. For each i = i(x) there is zi ∈ D+
t,s(i) such that

(Ψi
s)

′(zi) =
|D+

t,s|
|D+

t,s(i)|
≥

|D+
t,s|

|D+
t,s(i0)|

≥
|D+

t,s|
10 t2 + s

.

Using the arguments in the Bounded Distortion Lemma 4.5, we have that, for every x ∈ D+
t,s(i),

(Ψi
s)

′(x) ≥
e−K Lt |D+

t,s|
10 t2 + s

,

where Lt = 2 t is the length of the interval [−3 t,−t] where the iterations by Ψs are considered.
Finally, since |D+

t,s| > (t2)/2,

(Ψi(x)
s )′(x) ≥

e−K 2 t |D+
t,s|

10 t2 + s
>

e−K 2 t t2

20 t2 + 2s
>

1

21
,

for every small t and s ∈ [s(t), 0), ending the proof of the lemma. �

Let D+
t,s = [e−t,s, e

+
t,s]. Note that there are i1, i2 ∈ N such that i(x) ∈ [i1, i2] for all x ∈ D+

t,s and,

for each i ∈ [i1, i2 − 1], there is di ∈ D+
t,s with Ψs(Gt,s(di)) = e−t,s. As in Section 2, di2−1 < di2−2 <

· · · < di1 and the di are the discontinuities of Rt,s. Moreover, Gt,s((di+1, di)) = int(D+
t,s) and Gt,s is

increasing in (di+1, di). Write Ii1 = [di1 , e
+
t,s], Ii = [di, di−1], i1 < i ≤ i2 − 2, and Ii2 = [e−t,s, di2−1].

We now continuously extend Rt,s to the closed intervals Ii (so Rt,s is bivaluated at any di).

Lemma 6.5. Given any subinterval J of D+
t,s, there is m ≥ 0 such that Rm

t,s(J) = D+
t,s.

Proof: The proof follows as in Lemma 2.5. It is enough to see Rm
t,s(J) contains an interval Ii,

i1 < i < i2, for some m ∈ N
∗. Write J = J0. If Rt,s(J0) contains two discontinuities we are done.

Otherwise, Rt,s(J0) ⊂ Ii ∪ Ii−1 for some i. Write J−
1 = Rt,s(J0) ∩ Ii−1 and J+

1 = Rt,s(J0) ∩ Ii,
and let J1 be the biggest J±

1 . By Lemma 6.4, |J1| > (3/2) |J0|. Inductively, one gets intervals Ji

contained in the orbit of J0 such that either Ji+1 contains two discontinuities or |Ji+1| ≥ (3/2)i|J0|.
Since the size of D+

t,s is finite, this ends the proof of the lemma. �

Lemma 6.5 is the main step to prove Theorem 6.2, whose proof follows arguing as in the proof
of Theorem 1.1 after proving the following:

Proposition 6.6. Let χ = {x} × A ⊂ [−1, 1] × [−1, 2] × [−1, 1], where x ∈ [−1, 1] and A is a disk
of R

2 whose interior contains a point (y, 0) with y ∈ (−1, 2). Then χ ⋔ W s(Q, ft,s) 6= ∅.

This result corresponds to Proposition 3.4. After proving it, Theorem 6.2 is deduced as follows.
As in Section 3, Proposition 6.6 implies that W s(Q, ft,s) meets transversely every two-disk χ with
W s(P, ft,s) ⋔ χ 6= ∅. Now, arguing as in Section 3.1, we get H(P, ft,s) ⊂ H(Q, ft,s). We now prove
Proposition 6.6. The first step is the next lemma, corresponding to Lemma 3.3 in the proof of
Propositions 3.1 and 3.4 (its proof follows exactly as Lemma 3.3, so it will be omitted).

24



Lemma 6.7. There are x ∈ [−1, 1] and y ∈ int(D+
t,s) such that {(x, y)} × [−1, 1] ⊂ W u(P, ft,s).

Lemma 6.8. For every x ∈ [−1, 1], W s(Q, ft,s) meets transversely {x} × D+
t,s × [−1, 1].

Proof: Observe that, by construction, the point (0,−t,−1/2) belongs to W s(Q, ft,s)∩W u(Q, ft,s).

Define j > 0 by Ψ−j
s (−t) ∈ D+

t,s. It is now immediate that

H = [−1, 1] × {(Ψ−j
s (0),−λ−j

u (1/2))} ⊂ W s(Q, ft,s) and H ⋔ ({x} × D+
t,s × [−1, 1]) 6= ∅,

ending the proof of the lemma. �

We are now ready to prove Proposition 6.6. By the λ-lemma and Lemma 6.7, the forward
orbit of the disk χ contains a strip ∆ of the form {x} × [a, b] × [−1, 1], where x ∈ [−1, 1], and
α0 = [a, b] ⊂ D+

t,s. Using the map Rt,s and arguing as in Section 3.1, we inductively define

strips ∆k = {xk} × αk × [−1, 1], xk ∈ [−1, 1] and αk ⊂ D+
t,s, such that ∆k+1 ⊂ fnk

t,s (∆k) and

αk+1 = Rt,s(αk). By Lemma 6.5, there is a first k ∈ N such that αk+1 = Rt,s(αk) contains D+
t,s. By

Lemma 6.8, W s(Q, ft,s) ⋔ ∆k+1 6= ∅, thus W s(Q, ft,s) ⋔ ∆ 6= ∅, ending the proof of the proposition.

6.3 End of the proof of Theorem A

We now construct a one-parameter family of diffeomorphisms (gs) satisfying Theorem A. For that
consider the arc ft,s defined as in the beginning of Section 6. We fix small t̄ > 0 and consider the
arc gs = ft̄,−s. The results in the previous section imply that

• for every s < 0, H(P, gs) and H(Q, gs) are non-hyperbolic and disjoint (Theorem 6.1),

• s = 0, H(P, g0) = H+(S, g0) and H(Q, f0) = H−(S, g0), (Theorems 4.2 and 4.3),

• for every s > 0, H(P, gs) = H(Q, gs), (Theorem 6.2).

To finish the proof of Theorem A we need to see that {S} ∈ H(P, gs)∩H(Q, gs) and to describe
the maximal invariant set of gs in the neighborhood W of the cycle. We assume that W is a level
of a fitration of f0,0 (thus, by continuity and compacity, it is also a level of a filtration for ft,s for
every small |s| and |t|): there are compact sets M2 and M1, M1 ⊂ int(M2), such that M2 \M1 = W
and f0,0(Mi) ⊂ int(Mi), i = 1, 2. Hence, if x ∈ W and f i

t,s(x) 6∈ W for some i, then x is wandering:

suppose, for instance, that f i0
t,s(x) ∈ int(M1), where i0 > 0. Then, there is a neighborhood Ux ⊂ W

of x with f i0
t,s(Ux) ⊂ M1. By the definition of the filtration, f i0+j

t,s (Ux) ⊂ M1 for all j ≥ 0. Thus

f i0+j
t,s (Ux)∩Ux = ∅ for all j ≥ 0. By shrinking Ux, we have that f j

t,s(Ux)∩Ux = ∅ for all j > 0, and
x is wandering.

Using the definition of the arc ft,s, it is immediate to check the following:

Remark 6.9. Let Λt,s be the maximal invariant set of ft,s in W . Then, for s > 0 small,

• Every point (x, y, s) ∈ C = [−1, 1] × [−2, 2] × [−1, 1] with y ∈ (−√
s,
√

s) (resp, y ∈ [−2,−1)
or y ∈ (1, 2)) is wandering.

• Consider w = (x, y, z) ∈ C ∩ Λt,s and, for i ∈ Z, let wi = gi
s(w) = f i

t̄,−s
(w). If wi ∈ C we let

wi = (xi, yi, zi). Suppose that yi ∈ [
√

s, 1] and yj ∈ [−2,
√

s) for some j > 0. Then, for every
n ≥ j with wn ∈ C, yn ∈ [−2,

√
s).
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Consider now s = 0.

• Every point (x, y, s) ∈ C with y ∈ [−2,−1) or y ∈ (1, 2) is wandering.

• Consider w = (x, y, z) ∈ C ∩ Λt,0 and, for i ∈ Z, let wi = gi
0(w) = f i

t̄,0(w). If wi ∈ C we let

wi = (xi, yi, zi). Suppose that yi ∈ (0, 1] and yj ∈ [−2, 0) for some j > 0. Then, for every
n ≥ j with wn ∈ C, yn ∈ [−2, 0).

For s ≥ 0 let Λ+
t̄,s

(resp. Λ−
t̄,s

) be the set of points w ∈ Λt̄,s ∩Ω(ft̄,s) such that yi ∈ [
√

s, 1] (resp.

yi ∈ [−1,
√

s]) for all i ∈ Z with wi = (xi, yi, zi) ∈ C. Remark 6.9 implies that, for every small
s ≥ 0,

Λt̄,s ∩ Ω(ft̄,s) = Λ+
t̄,s

∪ Λ−
t̄,s

.

Arguing as in Section 3, one gets H(P, ft̄,s) = Λ+
t̄,s

and H(Q, ft̄,s) = Λ−
t̄,s

. Observe that, for positive

s, one needs to exclude the segment {0} × (−√
s,
√

s) × {0} ⊂ Λt̄,s consisting of wandering points.
Finally, for the saddle-node parameter s = 0, it is immediate that Λ+

t̄,0 ∩ Λ−
t̄,0 = {S}.

For parameters s < 0 the result follows similarly (but now the situation is much more simple).

6.4 Proof of Theorem B

Clearly, the homoclinic classes H(P, ft̄,0) and H(Q, ft̄,0) are not saturated. We claim that there is
not any transitive saturated set Σ containing H(P, ft̄,0). Otherwise, the set Σ must also contain
H(Q, ft̄,0). Thus Σ contains the whole Λt̄,0. Using the filtration, one has Σ = Λt̄,0. But this set is
not transitive: Remark 6.9 implies that there is no orbit going from a small neighborhood UQ of
Q to a small neighborhood UP of P and thereafter returning to UQ. This contradiction ends the
proof of the theorem.
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