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ABSTRACT. We consider three-dimensional diffeomorphisms having simulta-
neously heterodimensional cycles and heterodimensional tangencies associated
to saddle-foci. These cycles lead to a completely nondominated bifurcation set-
ting. For every r>2, we exhibit a class of such diffeomorphisms whose het-
erodimensional cycles can be Cr stabilised and (simultaneously) approximated
by diffeomorphisms with Cr robust homoclinic tangencies. The complexity of
our nondominated setting with plenty of homoclinic and heteroclinic intersec-
tions is used to overcome the difficulty of performing Cr perturbations, r > 2,
which are remarkably more difficult than C1 ones. Our proof is reminiscent
of the Palis-Takens’ approach to get surface diffeomorphisms with infinitely
many sinks (Newhouse phenomenon) in the unfolding of homoclinic tangencies
of surface diffeomorphisms. This proof involves a scheme of renormalisation
along nontransverse heteroclinic orbits converging to a center-unstable Hénon-
like family displaying blender-horseshoes. A crucial step is the analysis of the
embeddings of these blender-horseshoes in a nondominated context.

To Jacob Palis, in the occasion of his 80th birthday

1. INTRODUCTION

Palis’ density conjecture [22] claims that bifurcations through cycles (either ho-
moclinic tangencies or heterodimensional cycles) associated to saddles (hyperbolic
periodic points) are the main mechanisms for destroying hyperbolic dynamics: any
nonhyperbolic system can be approximated by diffeomorphisms displaying one of
those bifurcations. A homoclinic tangency associated to a saddle occurs when the
invariant (stable and unstable) sets of a saddle have a nontransverse intersection.
A heterodimensional cycle associated with a pair of saddles of different indices
(dimension of the unstable bundle) occurs when the invariant sets of these saddles
intersects cyclically. Note that heterodimensional cycles can only occur in dimen-
sion at least three and that there are settings (as the one in this paper) where both
types of bifurcations occur simultaneously with overlapping effects.
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2 L. J. DÍAZ AND S. A. PÉREZ

As a consequence of the Kupka-Smale genericity theorem1, a cycle associated
to saddles is a fragile configuration that can be destroyed by small perturbations.
However, these configurations can become robust (indestructible by small pertur-
bations) when these saddles are embedded in some special type of horseshoes.
Hence, it is natural to consider also heterodimensional cycles and tangencies asso-
ciated to (basic) hyperbolic sets (for the precise definition see Section 1.2). One
aims to understand when a bifurcation through a fragile cycle associated to saddles
can lead to such robust cycles.

Bonatti2 stated a stronger version of Palis’ conjecture using robust cycles: the
union of the Cr open sets of hyperbolic diffeomorphisms (satisfying the Axiom
A and the no-cycles properties) and of diffeomorphisms with Cr robust cycles is
dense in the space of Cr diffeomorphisms, see [8, Conjecture 1.10]. For results
and recent progress in the previous conjectures, see [26, 11, 12] for the Palis’ one
and [21, 19, 1, 8] for Bonatti’s one. Some of these results will be discussed below.

The latter conjecture has several motivations, one of them comes from the study
of global dynamics of diffeomorphisms when considering the decomposition of the
chain recurrence set into its chain of recurrence classes. Note first that two saddles
involved in a cycle are always in the same class of recurrence. One aims to put
these saddles robustly into the same class. If such saddles are contained in a pair
of transitive hyperbolic sets involved in a robust cycle then the continuations of
the hyperbolic sets (and hence the ones of the initial saddles) are also in the same
class of recurrence. This gives a way to put saddles with different indices into pre-
scribed recurrence classes. This process is known as stabilisation of a cycle. More
precisely, a heterodimensional cycle of a Cr diffeomorphism f associated to sad-
dles P andQ can beCr stabilised if there are diffeomorphisms arbitrarilyCr close
to f with a Cr robust cycle associated to transitive hyperbolic sets containing the
continuations of P and Q. The stabilisation of a homoclinic tangency associated
to a saddle is defined analogously.

The stabilisation of cycles depends on the type of cycle, differentiability, and
dimension. To avoid technicalities, we will restrict our discussion to dimensions
two and three3. We first consider homoclinic tangencies. For surface diffeomor-
phisms this question is completely solved: there are no C1 robust tangencies and
hence no homoclinic tangency can be C1 stabilised, [19]. On the other hand, if
r > 2 then every such a tangency can be Cr stabilised, [20]. In dimension three,
a combination of [20, 27, 25] and the theory of normal hyperbolicity implies that,
every Cr homoclinic tangency can be Cr stabilised for r > 2. In the C1 case,
the stabilisation of homoclinic tangencies involves geometrical constraints and, in

1Periodic points of generic diffeomorphisms are hyperbolic and their invariant manifolds are in
general position (i.e., either they intersect transversely or they are disjoint).

2Formulated in Bonatti’s talk The global dynamics of C1 generic diffeomorphisms or flows, in the
Second Latin American Congress of Mathematicians, Cancún, México (2004). See also [6].

3This allows us to skip the technical discussion of the so-called coindex of a heterodimensional
cycle, since in dimension three the coindex is always one. For phenomena that may occur in higher
dimensions, as for instance robust tangencies of large codimension, we refer to [2, 4].
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general, it is not known which tangencies can be stabilised (see also [10]). For in-
stance, combining normally hyperbolic surfaces and [19], one can get homoclinic
tangencies that cannot be C1 stabilised, see also [6, Sections 4.3–6].

Consider now heterodimensional cycles. First, every three-dimensional het-
erodimensional cycle leads to C1 robust cycles [7], although these cycles may
be not related to the saddles in the initial cycle. In [8] there is given a class of
heterodimensional cycles that cannot be C1 stabilised (twisted cycles). Finally, in
[9] it is proved that every nontwisted cycle can be C1 stabilised. The techniques
used in these works are genuinely C1. Due to the absence of suitable tools, the
stabilisation problem in higher differentiability is widely open.

To explain our results, we recall that, in dimension three, two saddles with dif-
ferent indices have a heterodimensional tangency if their two dimensional invariant
manifolds have some nontransverse intersection. These tangencies were introduced
in [15] as a source of robustly nondominated/wild dynamics, see also [18, 3]. In
this paper, we consider a class of three-dimensional Cr diffeomorphisms whose
heterodimensional cycles involve heterodimensional tangencies (see Figure 1). For
every r > 2, we state the Cr stabilisation of such cycles and show that they also
provide Cr robust homoclinic tangencies, see the Stabilisation and Robust tangen-
cies theorems below. Let us now provide further details of our statements.

Q

P

Q

P

FIGURE 1. Heterodimensional cycles with heterodimensional tangencies.

LetM be a three-dimensional compact manifold. We consider a setHrBH(M) of
Cr diffeomorphisms of M having a heterodimensional cycle with a heterodimen-
sional tangency associated to saddle-foci P andQ of indices two and one satisfying
the following conditions:

• Linearising assumptions at P andQ and spectral conditions implying some
sort of locally dissipative behaviour (Section 2.1.1).

• The one-dimensional invariant manifolds W s(P, f) and W u(Q, f) have a
quasi-transverse intersection along the orbit of some point X and the two
dimensional invariant manifolds W u(P, f) and W s(Q, f) have a heterodi-
mensional tangency along the orbit of some point Y . This tangency may
be of hyperbolic or elliptic type (Section 2.2). The type of tangency plays
an important role in the resulting dynamics.
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• Conditions on the “transitions” from P to Q and from Q to P along the
orbits of the heteroclinic points X and Y (Section 2.1.2).

The precise description of the setHrBH(M) is given in Section 2. Our main results
are the following, see Theorem 1.1 for further details.

Stabilisation of cycles. Let r > 2. Any cycle inHrBH(M) can be Cr stabilised.

The next result deals with diffeomorphisms in HrBH(M) whose heterodimen-
sional tangency is of elliptic type (see the lefthand side of Figure 1). This leads
to the definition of the subset HrBH,e+(M) of HrBH(M), see Section 2.2 for the
precise definition and a discussion.

Robust tangencies. Let r > 2. Every diffeomorphism in HrBH,e+(M) can be Cr

approximated by diffeomorphisms with a Cr robust homoclinic tangency associ-
ated to a basic set containing the continuation of the saddle-focus of index two.

1.1. Our approach: a renormalisation scheme leading to blender-horseshoes.
To explain the strategy of the proof of our results let us first recall the approach in
[23, Chapter 6]4 to stabilise homoclinic tangencies of C2 diffeomorphisms. The
construction in [23] has the following main ingredients: (a) a renormalisation
scheme at a homoclinic tangency, (b) convergence of the scheme to a quadratic
one-parameter family, (c) existence of parameters of the family corresponding to
thick horseshoes (horseshoes with large “fractal-like dimension”), and (d) control
of the localisation of the thick horseshoe guaranteeing that it is homoclinically re-
lated5 to the continuation of the initial saddle. A key property in this approach is
that thick horseshoes are C2 robust, thus their existence for the limit map extends
to nearby systems.

Our strategy to get theCr stabilisation of cycles inHrBH(M) translates the ideas
of [23] to a heterodimensional setting following the approach started in [14]. In
our construction, the ingredients (a)–(d) above are replaced by: (a’) a renormal-
isation scheme at a heterodimensional tangency, (b’) convergence of the scheme
to a center-unstable Hénon-like family, (c’) existence of parameters corresponding
to blender-horseshoes, (d’) prove that the blender-horseshoes are homoclinically
related to the initial saddle of index two and have a robust cycle with the initial
saddle of index one. Let us observe that, in very rough terms, blender-horseshoes
are local hyperbolic plugs used to get robust heterodimensional cycles, where they
play a role similar to the one of the thick horseshoes for homoclinic tangencies, see
Section 5 for details. As above, a key step is to analise how the blender-horseshoes
are embedded in the global dynamics.

4In [23] it is proved the generic coexistence of infinitely many sinks, in this proof the occur-
rence of robust tangencies is a key step. In this homoclinic case, these robust tangencies imply the
stabilisation of the tangency, defined similarly as in the case of a cycle.

5Two hyperbolic sets with the same index are homoclinically related if their invariant manifolds
intersect cyclically and transversally.
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Here we rely on preliminary results in [16, 17] towards the development of the
strategy (a’)–(d’). In our context, the “limit” family is the center-unstable Hénon-
like family given by

G$(x, y, z)
def
= (y, µ+ y2 + η1 y z + η2 z

2, ξ z + y), $ = (ξ, µ, η1, η2).

For diffeomorphisms inHrBH(M), the renormalisation scheme and its convergence
to the family G$ (steps (a’) and (b’)). were obtained in [16]. A crucial property
(step (c’)) is that there is an open setOBH of parameters$ for which the familyG$
exhibits blender-horseshoes, see [17]. In the final step (d’), we analyse how these
blender-horseshoes are embedded in the global dynamics (the blender-horseshoe
is homoclinically related to P and has a robust cycle with Q). This is a major
difficulty in our nondominated setting. It turns out that the lack of domination is
simultaneously a difficulty and, in some sense, an advantage. First, the existence
of nonreal multipliers makes the renormalisation scheme and the “existence and
localisation” of blenders a difficult task. On the other hand, the dynamics at the
bifurcation is very rich and, in particular, enables us to find new homoclinic and
heteroclinic orbits close to the initial cycle. As a heuristic principle, this richness
allows us to overcome the difficulty of performing Cr perturbations, r > 2, which
are notably more problematic than C1 ones.

The lack of domination also means that there are plenty of possibilities for un-
folding the cycles involving many parameters. For instance, comparing with the
setting of homoclinic tangencies where any transverse direction of unfolding be-
haves in the same way, the lack of domination implies that any direction of unfold-
ing is different. Thus we have eight natural parameters: six parameters correspond-
ing to the unfolding of the nontransverse intersections (three for the heterodimen-
sional tangency and three for the quasi-transverse heteroclinic intersection), and
two parameters associated to the arguments of the saddle-foci, see Section 6.1.
We see that “unfoldings following appropriate directions” lead to robust cycles.
However, the complexity of these cycles is huge and a complete description of the
bifurcations is beyond reach.

We now recall some definitions and state precisely our results.

1.2. Stabilisation of cycles and robust tangencies: precise statements. Let M
be a compact boundaryless manifold. Let Diffr(M) be the space of Cr diffeomor-
phisms ofM endowed with the Cr uniform topology. Consider f ∈ Diffr(M) and
Λf a hyperbolic transitive set (i.e. with a dense orbit) of f . Recall that there is a
Cr neighbourhood Uf of f such that every g ∈ Uf has a hyperbolic set Λg that is
topologically conjugate to Λf called the continuation of Λf . The index of Λf is the
dimension of its unstable bundle (by transitivity, this number is well defined).

Consider f ∈ Diffr(M) having a pair of transitive hyperbolic sets Λf and Υf

with different indices. These sets form a heterodimensional cycle if their invari-
ant stable and unstable sets intersect cyclically, i.e., W s(Λf ) ∩W u(Υf ) 6= ∅ and
W u(Λf ) ∩W s(Υf ) 6= ∅. This cycle is Cr robust if there is a Cr neighbourhood
Uf of f consisting of diffeomorphisms g such that the sets Λg and Υg have a het-
erodimensional cycle. The notion of a Cr robust homoclinic tangency associated
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to Λf is stated similarly: there is a Cr neighbourhood Uf of f such that for every
g ∈ Uf the invariant stable and unstable sets of Λg have some nontransverse in-
tersection. Recall that robust cycles cannot be associated to trivial hyperbolic sets
(i.e., periodic orbits).

A heterodimensional cycle of a Cr diffeomorphism f associated to saddles Pf
andQf can be Cr stabilised if there are diffeomorphisms g ∈ Diffr(M) arbitrarily
Cr close f with a Cr robust cycle associated to transitive hyperbolic sets Λg and
Υg containing the continuations Pg and Qg, respectively.

Our main result is the following theorem.

Theorem 1.1. Let r > 2 and M be a compact boundaryless three-dimensional
manifold. Given f ∈ HrBH(M), with a cycle associated to saddle-foci Pf and Qf
of indices two and one, there are diffeomorphisms g arbitrarily Cr close to f with
a blender-horseshoe Λg of index two such that:

(i) Λg and Qg has a Cr robust heterodimensional cycle and
(ii) Λg and Pg are homoclinically related.

Moreover, if f ∈ HrBH,e+(M) then the blender-horseshoe Λg has a Cr robust
homoclinic tangency.

1.3. Steps of the proofs. We now explain the steps of the proof of Theorem 1.1.
Consider f ∈ HrBH(M) with a cycle associated to saddle-foci Pf and Qf as in the
theorem. A preliminary step is to perturb the original cycle to obtain a new diffeo-
morphism inHrBH(M) (that continue denoting by f ) having transverse homoclinic
points and new additional quasi-transverse heteroclinic points associated to Pf and
Qf (see Proposition 4.1). We can now apply the renormalisation scheme to this
new cycle, getting diffeomorphisms g arbitrarily Cr close to f whose dynamics in
a neighbourhood of the cycle is close to a Hénon-like map G$ with $ ∈ OBH. By
Proposition 7.2, each diffeomorphism g has a blender-horseshoe Λg of index two.
We will see that the following holds:

(ia) The two-dimensional manifolds W u(Λg, g) and W s(Qg, g) intersect trans-
versely, see Proposition 9.1. The difficulty of this step is to control the size of
the unstable manifold of Λg, assuring that it is sufficiently “large” so that it is con-
nected to the stable manifold of Qg. We overcome this difficulty with an analysis
motivated by the constructions in [23, Section 6.4] for homoclinic tangencies of
surface diffeomorphisms.

(ib) The one-dimensional manifolds W s(Λg, g) and W u(Qg, g) have nonempty in-
tersection, see Proposition 10.1. This step is inspired by [14, Theorem 1.4] (see
Remark 1.1 for a discussion) and involves quantitative aspects of the renormalisa-
tion scheme in [16]. In this step the new quasi-transverse heteroclinic points above
play an important role.

(ii) The saddle Pg and the blender-horseshoe Λg are homoclinically related, see
Proposition 11.1. This step is a relatively simple consequence of (ia) and (ib)
where the existence of transverse homoclinic points of Qf is used.
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Conditions (ia) and (ii) are Cr open, r > 1, while (ib) is not (due to deficiency
of the sum of the dimensions). The blender-horseshoe allows us to make this non-
transverse intersection Cr robust, r > 1. Thus conditions (ia) and (ib) give a Cr

robust cycle betweenQg and Λg. As Λg and Pg are homoclinically related, they are
contained in a larger hyperbolic set, implying the stabilisation of the initial cycle.

In the second part of the theorem, about robust tangencies, we consider diffeo-
morphisms with elliptic tangencies in HrBH,e+(M) (lefthand side of Figure 1) and
study the intersections between the two-dimensional manifolds of the saddle-foci
in the cycle. We see that these intersections generate “tubes crossing the reference
domain of the blender-horseshoe”, see Section 5.2. These tubes will provide robust
tangencies. This step involves the constructions in [8] using folding manifolds.

Remark 1.1. In [14] it is obtained a renormalisation scheme for Cr diffeomor-
phisms f , r > 2, with a configuration somewhat similar to the one here, where
the saddle-foci are replaced by a pair of saddles with real multipliers. In [14] the
intersection between the one-dimensional manifolds in (ib) is obtained for C1+α

perturbations of f . Let us observe a perhaps counterintuitive fact: the intersections
between the “big” two dimensional manifolds in (ia) are more difficult to obtain
than the intersections between the “small” one dimensional manifolds in (ib). In-
deed, in [14] the intersections (ia) and (ii) were not achieved.

Organisation of the paper. The bifurcation setting is described in Section 2. In
Section 3, we introduce the perturbations used in our constructions. In Section 4,
we prove that the set of diffeomorphisms having additional “special” homoclinic
and quasi-transverse heteroclinic intersections is dense in HrBH(M). These “spe-
cial” homoclinic and heteroclinic points will play an important role in our proof.
Blender-horseshoes and their occurrence in center-unstable Hénon-like families are
discussed in Section 5. In Section 6, we review some relevant ingredients renor-
malisation scheme in [16] used in our constructions. In Section 7, we study the
interplay between the blender-horseshoes given by the renormalisation scheme and
the additional heteroclinic points. Section 8 deals with orbits and itineraries asso-
ciated to the renormalisation scheme. The proof of Theorem 1.1 is completed in
Sections 9–12. Section 9 deals with the intersections between the two-dimensional
invariant manifolds of Q and of the blender-horseshoe. In Section 10, we state
the occurrence of robust intersections between the one-dimensional invariant man-
ifolds of Q and of the blender-horseshoe. In Section 11, we see that the saddle
P and the blender-horseshoe are homoclinically related. Finally, in Section 12 we
prove the part of the theorem corresponding to robust tangencies. Section 13 is
an appendix collecting some explicit calculations of the renormalisation scheme
borrowed from [16].

2. THE BIFURCATION SETTING

In this section, we describe precisely the set HrBH(M), see Definition 2.3. We
close this section with some comments on the geometry of the cycle. Throughout
this section we consider diffeomorphisms f having a pair of saddle-foci of different
indices P = Pf and Q = Qf .
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2.1. The setHrBH(M). We now explain the conditions in the definition ofHrBH(M):
linearising dynamics and nontransverse intersections and transition maps.

2.1.1. Linearisable local dynamics.

(A) Saddle-foci periodic points: Let π(P ) and π(Q) be the periods of P and Q.
We assume that fπ(P ) and fπ(Q) are Cr linearisable in small neighbourhoods UP
of P and UQ of Q. Denote the eigenvalues of Dfπ(P )(P ) and Dfπ(Q)(Q) by(

λP , σP e
−2πiϕP , σP e

2πiϕP
)

where 0 < |λP | < 1 < σP , ϕP ∈ [0, 1],(
λQ e

−2πiϕQ , λQ e
2πiϕQ , σQ

)
where 0 < λQ < 1 < |σQ|, ϕQ ∈ [0, 1].

(2.1)

We assume that

(2.2) 0 <
∣∣∣∣∣|λP | 12 σP ∣∣ησQ∣∣∣ < 1, where η =

log |λ−1
Q |

log |σP |
.

In what follows, we assume that in the linearising local coordinates the sets UP
and UQ are the “cubes” [−aP , aP ]3 and [−aQ, aQ]3, for some aP , aQ > 0. For
simplicity, we also assume that the periods π(P ) and π(Q) are equal to one.

2.1.2. Nontransverse intersections and transition maps.

(B) Quasi-transverse intersection and its transition map: The one-dimensional in-
variant manifolds of P andQ intersect quasi-transversely along the orbit of a point
X = Xf , that is X ∈W s(P, f) ∩W u(Q, f) and

TXW
s(P, f) + TXW

u(Q, f) = TXW
s(P, f)⊕ TXW u(Q, f).

After replacing X by some iterate, we can assume that X ∈ UQ. Associated to
X there is a transition map corresponding to some iterate of f going from UQ to
UP defined as follows. There are N1 ∈ N such that

fN1(X)
def
= X̃ ∈ UP and f i(X) 6∈ UP for every 0 6 i < N1

and a small neighbourhood UX of X contained in UQ such that

fN1(UX)
def
= U

X̃
⊂ UP .

In the local coordinates at P and Q, the restriction T1 of fN1 to UX is of the form:

(2.3) T1(X +W ) = fN1(X +W ) = X̃ +A(W ) + H̃(W ),

where

(2.4) A =

α1 α2 α3

0 β2 0
0 0 γ3

 , α1β2γ3 6= 0,

and H̃ : R3 → R3 is such that H̃(0) = 0 and DH̃(0) is the null matrix. Note that
α1β2γ3 6= 0 is not an additional assumption since fN1 is a diffeomorphism.
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(C) Heterodimensional tangency and its transition map: The two-dimensional in-
variant manifolds of P and Q intersect along the orbit of a point Y = Yf that is a
heterodimensional tangency, that is, the orbit of Y is contained in the set(

W u(P, f) ∩W s(Q, f)
)
\
(
W u(P, f) tW s(Q, f)

)
.

As above, after replacing Y by some iterate, we can assume that Y ∈ UP .
Associated to Y there is a transition map corresponding to some iterate of f going
from UP to UQ defined as follows. There are N2 ∈ N such that

fN2(Y )
def
= Ỹ ∈ UQ and f i(Y ) 6∈ UQ for every 0 6 i < N2

and a small neighbourhood UY of Y contained in UP such that

fN2(UY )
def
= U

Ỹ
⊂ UQ.

In the local coordinates at Q and P , the restriction T2 of fN2 to UY is of the form:

(2.5) T2(Y +W ) = fN2(Y +W ) = Ỹ +B(W ) +H(W ),

where B is a quadratic map of the form

(2.6) B

xy
z

 =

 a1x+ a2y + a3z
b1x+ b2y

2 + b3z
2 + b4yz

c1x+ c2y + c3z

 , b1(a2c3 − a3c2) 6= 0.

where H : R3 → R3 is a map such that H(0) = 0, DH(0) is the null matrix, and

∂2

∂y2
H2(0) =

∂2

∂z2
H2(0) =

∂2

∂y∂z
H2(0) = 0,

here Hi is the i-th component of H̃ . Note that b1(a2c3 − a3c2) 6= 0 is not an
additional assumption since fN2 is a diffeomorphism.

The constants a1, ..., c3 in the definition of B satisfy the following conditions

(2.7) c2 = c3, γ3(a3 − a2) > 0

that will guarantee the convergence of the renormalisation scheme.

Notation 2.1. Given f ∈ HrBH(M) we say that P,Q,X , and Y are the elements
of the cycle of f and that N1 and N2 are the transition times of the cycle.

Notation 2.2 (Coordinates of the heteroclinic points). In what follows, we will
assume that, in our local coordinates, the heteroclinic points above are of the form:

X̃ = (1, 0, 0), Y = (0, 1, 1) (in the neighbourhood UP ),

X = (0, 1, 0), Ỹ = (1, 0, 1) (in the neighbourhood UQ).
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2.1.3. Parameters of the transition maps. To each diffeomorphism f satisfying
(A)-(C) and ξ > 1 we associate the following parameters

(2.8) ς̄ = ς̄(ξ, f)
def
= (ς1, ς2, ς3, ς4, ς5) ∈ R5,

where

ς1
def
=
β2(a2 + a3)√

2
, ς2

def
=
β2

2(b2 + b3 + b4)

2
, ς3

def
= ξ2

(
b2 + b3 − b4
(a3 − a2)2

)
,

ς4
def
= ξ
√

2

(
β2(b3 − b2)

a3 − a2

)
, ς5

def
=
β2(c2 + c3)√

2
,

(2.9)

here β2 is as in (2.4) and a1, . . . , c3 are as in (2.6).

Definition 2.3 (The set HrBH(M)). The set HrBH(M) consists of the Cr diffeo-
morphisms f satisfying (A)-(C) such that

(2.10) (a2 + a3)(b2 + b3 + b4) 6= 0

and whose vector ς̄(ξ, f) satisfies

(ξ, ς2
1 ς3ς

−1
2 , ς1ς4ς

−1
2 ) ∈ (1.18, 1.19)× (−εBH, εBH)2,

where εBH is a number fixed in Theorem 5.6.

Remark 2.4. Equations (2.4) and (2.10) implies that ς1 ς2 ς5 6= 0. These conditions
are used to get blender-horseshoes in the renormalisation scheme.

2.2. Geometry of the cycle: the sets HrBH,h(M), HrBH,e(M), and HrBH,e+(M).
For R = P,Q consider

W ∗loc(R, f)
def
= C

(
R,W ∗loc(R, f) ∩ UR

)
, ∗ = s,u,

here C(x,A) is the connected component of the set A containing the point x.
The next definition classifies the two types of heterodimensional tangencies that

we will consider. Note that given any f ∈ HrBH(M) the set UP \W u
loc(P, f) has

two connected components.

Definition 2.5 (Elliptic and hyperbolic tangencies). The heterodimensional tan-
gency at Y is elliptic if there is a neighbourhood Ps

Y of Y in W s(Q, f) ∩ UP such
that the set Ps

Y \{Y } is contained in a connected component of UP \W u
loc(P, f).

The tangency is hyperbolic if every neighbourhood of Y in W s(Q, f) contains
points in both components of UP \W u

loc(P, f).

In Figure 1, the heterodimensional tangency in the left-hand side is elliptic while
the one in the right-hand side is hyperbolic.

We observe that if f ∈ HrBH(M) then the heterodimensional tangency at the
point Y is either hyperbolic or elliptic. We split the set HrBH(M) in two parts,
HrBH,h(M) andHrBH,e(M) consisting of hyperbolic and elliptic heterodimensional
tangencies, respectively.

For diffeomorphisms in f ∈ HrBH,e(M) we need to take in consideration the
relative position of the tangency and the quasi-transverse heteroclinic points. We
consider the subset HrBH,e+(M) of HrBH,e(M) such that (with the notation above)
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the set Ps
Y \{Y } and X̃ are in the same connected component of UP \W u

loc(P, f),
see Figure 1. These geometrical considerations have the same flavour of those in
[24, Section 2].

3. TRANSLATION AND ROTATION-LIKE PERTURBATIONS

In this section, we describe the two types of Cr perturbations used in our con-
structions. We start by introducing a class of auxiliary bump functions.

Caveat. For simplicity, throughout this paper, we will use the term perturbation to
refer to arbitrarily small ones.

3.1. Auxiliary bump functions. Consider a family of Cr bump functions bθ, θ >
1, such that

(3.1) bθ(x) =


0 , |x| > θ,
0 6 bθ(x) 6 1 , 1 6 |x| 6 θ,
1 , |x| 6 1.

Associated to bθ we consider the family of bump functions

bθρ(x)
def
= bθ

(
x

ρ

)
, ρ > 0

and the three-dimensional bump functions

(3.2) Πθ
ρ : R3 → [0, 1], Πθ

ρ(x, y, z) = bθρ(x) bθρ(y) bθρ(z).

Denote by B(x, τ) the open ball in R3 with center x and radius τ and by ‖ · ‖r the
Cr norm. Note that the support of Πθ

ρ is the closure of B(0, θρ) and that

(3.3) ‖Πθ
ρ‖r 6 (‖bθ‖r)3 ρ−r.

In what follows, for simplicity, when θ = 2 we write b2ρ = bρ and Π2
ρ = Πρ.

3.2. Translation-like perturbations. Given a point Z0 ∈ R3, a vector w̃ ∈ R3,
and small ρ > 0, we consider the Cr map TZ0,w̃,ρ : R3 → R3 defined by

(3.4) TZ0,w̃,ρ(Z) =

{
Z + Πρ(Z − Z0)w̃, if Z ∈ B(Z0, 2ρ),

Z, if Z 6∈ B(Z0, 2ρ).

By construction and by (3.3), it holds∥∥TZ0,w̃,ρ − id
∥∥
r
6
∥∥Πρ

∥∥
r
||w̃|| 6 (‖b‖r)3 ρ−r ||w̃||.

Therefore, for small ||w̃||, the map TZ0,w̃,ρ is a Cr perturbation of the identity
supported in B(Z0, 2ρ). Finally observe that

TZ0,w̃,ρ

(
B(Z0, 2ρ)

)
= B(Z0, 2ρ).
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3.3. Rotation-like perturbations. We now consider maps Ixω, I
y
ω : R3 → R3,

ω ∈ [−π, π], defined by

Ixω
def
=

 1 0 0
0 cos 2πω − sin 2πω
0 sin 2πω cos 2πω

 , Iyω
def
=

 cos 2πω 0 − sin 2πω
0 1 0

sin 2πω 0 cos 2πω

 ,

and for θ > 1 and κ > 0 their associated C∞ diffeomorphisms

(3.5) R∗ω,θ,κ : R3 → R3, R∗ω,θ,κ(W ) = I∗bθ(κ||W ||)ω(W T ), ∗ = x, y,

where W T denotes the transpose of the vector W ∈ R3.
Note that the restriction of R∗ω,θ,κ to the set [−κ−1, κ−1]3 coincides with I∗ω and

R∗ω,θ,κ is the identity map in the complement of [−θκ−1, θκ−1]3. Note also

R∗ω,θ,κ
(
[−θκ−1, θκ−1]3

)
= [−θκ−1, θκ−1]3, ∗ = x, y,

and that there is a constant C(θ, κ) > 0 such that∥∥R∗ω,θ,κ − id
∥∥
Cr

< C(θ, κ)|ω|, ∗ = x, y.

Thus, for every ω small enough, the map R∗ω,θ,κ is a Cr perturbations of identity
supported in [−θκ−1, θκ−1]3.

4. NEW HETEROCLINIC AND HOMOCLINIC INTERSECTIONS

Recall the definitions of the sets HrBH(M), HrBH,h(M), and HrBH,e+(M) in
Section 2.2. The main result of this section is Proposition 4.1 claiming that for
every f in HrBH,h(M) (resp. HrBH,e+(M)) there are local Cr perturbations fε in
HrBH,h(M) (resp. HrBH,e+(M)) of f with pairs of additional quasi-transverse het-
eroclinic points in W s(P, fε) ∩W u(Q, fε) and additional transverse homoclinic
points in W s(Q, fε) t W u(Q, fε). The proof of this proposition is done in Sec-
tion 4.2. To prove it, in Section 4.1, we state some preliminary results about the
invariant manifolds of the saddle-foci in the cycle. In Section 4.3, we study the
transitions associated to the new heteroclinic points. Finally, in Section 4.4, we
consider parameterisations of special unstable discs throughout the new hetero-
clinic points contained the unstable manifold of Q. The unfolding the cycle asso-
ciated to these heteroclinic points will provide unstable discs intersecting robustly
the stable manifold of the blender-horseshoes. We now go to the details.

Given f ∈ HrBH(M) with elements P,Q,X, Y (recall Notation 2.1) define the
closed invariant set

(4.1) ΓP,Q,X,Y (f)
def
= Orb(X, f) ∪Orb(Y, f) ∪ {P,Q},

where Orb(W, f) denotes the f -orbit of the point W .
Recall also the neighbourhoods UX and UY of X and Y in Section 2.1.2.
In what follows, we use the notation dr(f, g) for the Cr distance between two

maps f, g ∈ Diffr(M).
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Proposition 4.1. Let f ∈ HrBH,∗(M), ∗ = h, e+, with elements P,Q,X, Y and
transition times N1 and N2. For every ε, δ > 0 there is fε ∈ HrBH,∗(M) with
dr(f, fε) < ε such that:

(1) fε coincides with f on the sets ΓP,Q,X,Y (f) and

N1−1⋃
i=0

f i(UX) ∪
N2−1⋃
i=0

f i(UY,ε)

where UY,ε is a neighbourhood of Y contained in UY depending on ε.
(2) fε has two quasi-transverse heteroclinic points

X1,ε, X2,ε ∈ f−N1
ε

(
W s

loc(P, fε)
)
∩W u(Q, fε) ∩B(X, δ)

such that Orb(X1,ε, fε), Orb(X2,ε, fε), and Orb(X, fε) are pairwise dis-
joint and X1,ε, X2,ε → X as ε→ 0.

(3) fε has two transverse intersection points

Z±ε ∈W s(Q, fε) tW
u
loc(Q, fε)

such that in the local coordinates

Z±ε = (0, 1± ζ±ε , 0), 0 < ζ±ε < δ.

A preliminary step of the proof of this proposition is Lemma 4.1 in Section 4.1
claiming that the closure of the one dimensional invariant manifold of P (resp. Q)
contains the two dimensional invariant manifold of Q (resp. P ).

4.1. Density properties of W s(P, f) and W u(Q, f). Consider f ∈ Diffr(M)
with a saddle focus R with f(R) = R such that the eigenvalues of Df(R) are
λ ∈ R and σ e±2πiϕ ∈ C, where 0 < |λ| < 1 < σ and ϕ ∈ [0, 1), and that is
Cr linearisable in a neighbourhood UR of R. We identify UR with the Cartesian
product of the local invariant manifolds of R (where the x- and yz-spaces are the
stable and unstable eigenspaces of Df(R), respectively.) We assume that there are
(see Figure 2):

• A one-dimensional Cr disc L ⊂ UR such that L is quasi-transverse to
W s

loc(R, f) at some point W in interior of L. We let L+ and L− the two
connected components of L \ {W}.
• A two-dimensional Cr disc S ⊂ UR intersecting transverselly W u

loc(R, f)
in a curve γ which is not contained in any radial direction of W u

loc(R, f)
(i.e., a straight-line containing the origin). In this case, we say that the
curve γ has a nontrivial radial projection.

We need the following simple auxiliary lemma.

Lemma 4.1 (Accelerating angles). Consider a diffeomorphism f , a saddle R, a
disc L, a local surface S, and a curve γ ⊂ S ∩W u

loc(R, f) as above. Then there is
g arbitrarily Cr close to f such that W ∗loc(R, g) = W ∗loc(R, f), ∗ = s, u, and

(a) W u
loc(R, g) is simultaneously contained in the closure of the sequences of

discs
(
gj(L+)

)
and

(
gj(L−)

)
, j > 1, and
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L+L−

f j(L)

S

R γ

FIGURE 2. The discs L,L± and S and the curve γ

(b) there are infinitely many j± > 1 such that gj±(L±) meets transversely S
at points arbitrarily close to γ.

Proof. The result is obvious if the argument ϕ of Df(R) is irrational, in that case
we can take g = f . Otherwise, it is enough to consider a sequence (αj)→ 0 such
that ϕ + αj is irrational, rotations Ixαj (defined on UR) with argument αj (recall
the definition in Section 3.3), and local perturbations g = fj of f of the form
fj = Ixαj ◦ f in the set UR. These perturbations can be chosen supported on an
small neighbourhood of the closure of UR. �

Remark 4.2. There are the corresponding version of Lemma 4.1 for saddle foci
with index one.

Remark 4.3. Changing the surface “S” by a one-dimensional disc and “transver-
sality” by “quasi-transversality”, the part (b) of Lemma 4.1 can be stated as fol-
lows: there is arbitrarily large j± such that gj±(L±) meets quasi-transversely S at
some point arbitrarily close to γ.

Remark 4.4. Assume that f ∈ HrBH(M) and that g is obtained perturbing f using
Lemma 4.1. Then g can be taken such that g ∈ HrBH(M) and ΓP,Q,X,Y (g) =
ΓP,Q,X,Y (f), recall (4.1).

4.2. Proof of Proposition 4.1. We first consider hyperbolic tangencies, that is, we
assume that f ∈ HrBH,h(M). Consider the points Y and Ỹ = fN2(Y ) correspond-
ing to the heterodimensional tangency in condition (C) in Section 2.1.2 and their
neighbourhoods UY and U

Ỹ
in the definition of the transition map T2 in (2.5).

Using the notation in Definition 2.5, we can select small two-discs

Ps
Y ⊂W s(Q, f) ∩ UY and Pu

Ỹ
⊂W u(P, f) ∩ U

Ỹ
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containing Y and Ỹ (respectively) in their interiors and assume that Ps
Y contains a

pair of disjoint surfaces S+ and S− intersecting transverselyW u
loc(P, f) throughout

curves γ+ and γ− with nontrivial radial projection, see Figure 3.
Consider now the quasi-transverse heteroclinic points X and X̃ = fN1(X) in

condition (B) in Section 2.1.2. Fix small δ > 0 such that B(X, δ) is contained in
UX . Consider small curves

Lu ⊂ UP ∩ fN1
(
W u

loc(Q, f) ∩B(X, δ)
)
, Ls ⊂W s(P, f) ∩ UQ

containing X̃ and X in their interiors, respectively. See Figure 3. As above, we let
Lu
± the connected components of Lu \ {X̃}.
Fix small ε > 0. Applying item (b) of Lemma 4.1 to P , the surfaces S±, and

the disc Lu, we get a diffeomorphism f̃ε with dr(f, f̃ε) < ε
2 and arbitrarily large

numbers i+, i− > 0 such that f̃ i±ε (Lu
±) transversely intersects S± at some point

Zi± . The points Zi± can be chosen converging to some point of γ±. Item (3) of the
proposition follows takingZ±ε = f̃

−(N1+i±)
ε (Zi`). Note that, arguing as before, we

can assume that the argument of the complex eigenvalue of Df̃ε(Q) is irrational.
Note that by Remark 4.4, the transitions of f̃ε and f are the same, therefore

f̃ε ∈ HrBH,h(M) and ΓP,Q,X,Y (f̃ε) = ΓP,Q,X,Y (f). Moreover, we observe that all
perturbations that we will perform in what follows will keep this property.

To prove item (2), consider small disjoint closed subdiscs L̃u
± = L̃u

±(ε) ⊂ Lu
±

as follows (see Figure 3): Let ` ∈ {+,−}, there are numbers i` = i`(ε) with

• f̃ jε (L̃u
` ) ⊂ UP for all j ∈ {0, . . . , i`},

• f̃ jε (L̃u
` ) ∩ UY = ∅ for all j ∈ {0, . . . , i` − 1} and f̃ i`ε (L̃u

` ) ⊂ UY ,
• f̃ i`ε (L̃u

` ) t S` at the point Zi` ,
• the family

Lu def
=
{
f̃ jε (L̃u

` ) : j ∈ {0, . . . , i` +N2}, ` ∈ {+,−}
}

consists of pairwise disjoint sets,
• f̃ i`+N2

ε (L̃u
` ) ⊂ U

Ỹ
, ` = +,−.

By the definition of the transition T2 and the choice of the neighbourhoods
UQ, UY , UỸ , the subfamily of Lu given by

Lu
0

def
= Lu \ {f̃ i`+N2

ε (L̃u
` )}

is disjoint from UP .
To prove item (2) of the proposition, consider the homoclinic points of Q

Ẑ`
def
= f̃N2

ε (Zi`) ∈W
s
loc(Q, f̃ε) tW

u(Q, f̃ε), ` = +,−

and take arbitrarily small

(4.2) 0 < ρ <
ε

2(‖f‖r + ε)
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P

X̃

L̃u
+

L̃u
−

Lu

γ+

γ−
Zi+

Zi−

S+ S−

Q

LsLs
+

Ls
−

X

Ẑ+

FIGURE 3. The discs Lu
± in W u(Q, f) and Ls

± in W s(P, f).

such that

B( Ỹ , 2ρ ) ∪B( Ẑ+, 2ρ ) ∪B( Ẑ−, 2ρ ) ⊂ U
Ỹ

B( Ẑ+, 2ρ ), B( Ẑ−, 2ρ ), B( Ỹ , 2ρ ) are pairwise disjoint.

Arguing as above, considering f̃−1
ε and applying item (a) of Lemma 4.1 to Q, the

disc Ls, and the points Ẑ± we get disjoint closed subdiscs Ls
± = Ls

±(ρ) of Ls

satisfying the following conditions (see Figure 3): Let K be the Cr norm of the
map bρ in (3.1), there are numbers k±(ρ) = k± such that:

• the family of sets

{f̃−iε (Ls
+) : i = 0, . . . , k+} ∪ {f̃−jε (Ls

−) : j = 0, . . . , k−}
is pairwise disjoint,
• f̃−iε (Ls

±) ⊂
(
UQ \B

(
Ẑ±,

ρr+1

K3

))
for every i ∈ {0, . . . , k± − 1},

• f̃−k±ε (Ls
±) ⊂ B

(
Ẑ±,

ρr+1

K3

)
.

Let X± be the closest point of Ẑ± in f̃−k±ε (Ls
±) and define the vector

(4.3) w±
def
= X± − Ẑ±, ‖w±‖ 6

ρr+1

K3
.

Using the function Πρ in (3.2), consider the perturbation of the identity given by

ϑ±,ρ(Ẑ± +W )
def
= Ẑ± +W + Πρ(W )w±, if Ẑ± +W ∈ B(Ẑ±, 2ρ)

and the identity otherwise. Since ‖w±‖ 6 ρr+1

K3 and ‖Πθ
ρ‖r 6 K3 ρ−r (recall

(3.3)), it holds
‖ϑ±,ρ − id‖r 6 ‖Πρ‖r · ‖w±‖ < ρ.

Finally, consider the perturbation of f̃ε defined by

fε = fε,ρ
def
= ϑ±,ρ ◦ f̃ε.
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Recalling the choice of ρ in (4.2), we get

d(f, fε)r 6 d(f, f̃ε)r + d(f̃ε, fε)r 6
ε

2
+ ρ‖f̃ε‖r <

ε

2
+ ρ(‖f‖r + ε) < ε.

By construction, fε,ρ coincides with f̃ε outside f̃−1
ε

(
B(Ẑ+, 2ρ)∪B(Ẑ−, 2ρ)

)
and

by (4.3) we have that the points X , X1,ε, and X2,ε with

X1,ε
def
= fk+

ε (X+), X2,ε
def
= fk−ε (X−) ∈ f−N1

ε,ρ

(
W s

loc(P, fε,ρ)
)
∩W u(Q, fε,ρ)

are quasi-transverse heteroclinic points of fε,ρ with different orbits.
Thus, fε,ρ ∈ HrBH,h(M) and satisfies items (1)-(3) in the proposition.
We now study the elliptic case when f ∈ HrBH,e+(M). We apply the variation

of Lemma 4.1 in Remark 4.3 and observe that an arbitrarily small modification of
the angle provides two transverse intersections (for the same iterate). The rest of
the proof is identical to the hyperbolic case.

Finally, note that in our construction the transitions are preserved, thus if f ∈
HrBH,∗(M) then fε,ρ ∈ HrBH,∗(M), ∗ = h, e+. The proof of the proposition is now
complete. �

4.3. Transitions for the new heteroclinic points. Given f ∈ HrBH,∗(M), ∗ =

h, e+, and small ε > 0, consider its perturbation fε ∈ HrBH,∗(M) and the hetero-
clinic pointsX1,ε andX2,ε given by Proposition 4.1. Take disjoint neighbourhoods
U1,ε andU2,ε ofX1,ε andX2,ε contained inUX where the transition map T1 in (2.3)
is defined. By shrinking these neighbourhoods, we can take a small neighbourhood
U0,ε ⊂ UX of X0,ε = X disjoint from U1,ε and U2,ε. We write

(4.4) Xi,ε
def
= X + Zi,ε, Zi,ε

def
= (xi,ε, yi,ε, zi,ε), i = 0, 1, 2.

Note that Z1,ε, Z2,ε → 0 as ε→ 0.
Denote by T1,i,ε the restriction of T1 to Ui,ε,

(4.5) T1,i,ε : Ui,ε → U
X̃
, T1,i,ε(Z) = fN1

ε (Z) = fN1(Z), i = 0, 1, 2.

Hence, recalling (2.3),

X̃i,ε
def
= T1,i,ε(Xi,ε) = X̃ +A(Zi,ε) + H̃(Zi,ε),

Using equation (4.4) and that Xi,ε ∈ f−N1
ε

(
W s

loc(P, fε)
)
∩ UX we get

(4.6) X̃i,ε
def
= X̃ + Z̃i,ε ∈W s

loc(P, fε), where Z̃i,ε = A(Zi,ε) + H̃(Zi,ε).

Note that X̃, X̃i,ε ∈ W s
loc(P, fε) and that (in local coordinates) W s

loc(P, fε) is
contained in {(x, 0, 0)} ⊂ UP . Hence

(4.7) Z̃i,ε = (x̃i,ε, 0, 0).

Then the map T1,i,ε can be written as follows: for Xi,ε +W ∈ Ui,ε we have

(4.8) T1,i,ε(Xi,ε +W ) = X̃i,ε +A(W ) + H̃ i
ε(W ),

where H̃ i
ε : R3 → R3 is defined by

(4.9) H̃ i
ε(W )

def
= H̃(Zi,ε +W )− H̃(Zi,ε).
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Remark 4.5. Let H̃ i
ε = (H̃ i

ε,1, H̃
i
ε,2, H̃

i
ε,3). Then

H̃ i
ε,1(0) = H̃ i

ε,2(0) = H̃ i
ε,3(0) = 0.

Although the maps H̃ i
ε,j do not satisfy the same “flat conditions” at 0 satisfied by

the terms H̃i of T1, see (2.3), the following convergence property holds:

∂

∂x
H̃ i
ε,k(0)→ 0,

∂

∂y
H̃ i
ε,k(0)→ 0,

∂

∂z
H̃ i
ε,k(0)→ 0, ε→ 0, k = 1, 2, 3.

4.4. Parameterisations of unstable discs throughout the points Xi,ε. Take an
unitary vector vi,ε ∈ TXi,εW u(Q, fε). For small δ > 0, consider the parameterised
segment of the local unstable manifold of Q containing Xi,ε in Ui,ε obtained con-
sidering its Taylor expansion,

(4.10) Lu
i,ε(δ)

def
=
{
Xi,ε + tvi,ε + ρ̃i,ε(t) : |t| < δ

}
⊂W u(Q, fε),

here ρ̃i,ε is an Cr map satisfying

(4.11) ρ̃i,ε(0) =
d

dt
ρ̃i,ε(0) = 0.

Remark 4.6. By the λ-lemma we have that vi,ε → e2 = (0, 1, 0) and ‖ρ̃i,ε‖r → 0
as ε → 0. By a Cr perturbation of fε, we can assume that vi,ε = e2. To see this,
let πi,ε be the plane generated by vi,ε and e2 in TXi,εM and αi,ε the smallest angle
(modulus 2π) of the rotation map taking vi,ε into e2. Note that αi,ε → 0 as ε→ 0.
Performing a rotation-like Cr perturbation as in Section 3.3 at Xi,ε around of the
orthogonal direction to Πi,ε, we get a diffeomorphism O(αi,ε) C

r close to fε (that
we continue to call fε) such that

(4.12) Lu
i,ε(δ) =

{
Xi,ε + t e2 + ρ̃i,ε(t) : |t| < δ

}
⊂W u(Q, fε), i = 1, 2.

With a slight abuse of notation, the higher order terms ρ̃i,ε in (4.12) are denoted as
the ones in (4.10). As the latter are obtained as “small rotations” of the terms in
(4.10), they satisfy the flat conditions in (4.11).

5. BLENDER-HORSESHOES AND CENTER-UNSTABLE HÉNON-LIKE FAMILIES

In this section, we introduce blender-horseshoes and their main properties (Sec-
tion 5.1) and explain how they may lead to robust tangencies (Section 5.2). We also
state their occurrence in center-unstable Hénon-like families (Section 5.3). Finally,
we study the geometry of the unstable manifolds of these blenders (Lemma 5.5).
All blenders considered in this paper are blender-horseshoes, thus if there is no
misunderstanding in some cases we will refer to them simply as blenders.

5.1. Blender-horseshoes. We refrain to give a precise definition of a blender-
horseshoe (for details see [8, 13]), instead we will focus on their relevant prop-
erties. We also restrict our discussion to our three dimensional context. A blender-
horseshoe is a locally maximal hyperbolic set Γf of a diffeomorphism f : M →M
that is conjugate to the complete full shift on two symbols and satisfies a geomet-
rical condition stated in Lemmas 5.1 and 5.2. We now go to the details.
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There is an open neighbourhood ∆ of Γ such that

Γf =
⋂
i∈Z

f i( ∆ ) ⊂ ∆

The set Γf is also partially hyperbolic: there is a dominated splitting with one-
dimensional bundles Es ⊕ Ecu ⊕ Euu of TΓfM such that Eu def

= Ecu ⊕ Euu

and Es are the unstable and stable bundles of Γ, respectively. The bundle Euu

is the strong unstable direction. We consider a Df -invariant cone fields Cuu and
Cu around Euu and Eu, a Df−1-invariant cone field Css around Ess, and a center
unstable cone field Ccu around Ecu. The latter is not Df invariant, but the norm
of the vectors in Ccu are uniformly expanded by Df .

As a hyperbolic set, the blender-horseshoe Γf has a continuation Γg for every
g sufficiently close. The important fact is that for diffeomorphisms nearby these
continuations are also blender-horseshoes. Blender-horseshoes can be also defined
for endomorphisms, see [17, Definition 2.7], with the following reformulation of
the continuation property: every map (diffeomorphism or endomorphism) close to
an endomorphism with a blender-horseshoe also has a blender-horseshoe with the
same reference domain.

A key ingredient of a blender-horseshoe is its superposition region. To describe
it define the local stable manifold of Γf by

(5.1) W s
loc(Γf , f)

def
=
{
x ∈M : f i(x) ∈ ∆ for every i > 0

}
and observe that the set Γf has two fixed points P+ and P−, called the reference
fixed points of the blender. One defines “large” one-dimensional uu-discs (con-
tained in U ) tangent to Cuu at the right and at the left of W s

loc(P
±, f). The set

of such discs at the right of W s
loc(P

−, f) and at the left of W s
loc(P

+, f) form the
superposition region denoted by Df . We say that these uu-discs are in-between.

The next two lemmas (see for instance [5, Lemma 3.13] and [17, Lemma 2.5])
state an intersection property for discs in the superposition region of the blender
that will play a key role to get robust heterodimensional cycles.

Lemma 5.1 (The superposition region). Let Γf be a blender-horseshoe of f and
D compact disc whose interior contains a disc in the superposition region of Γf .
Then for every C1-neighbourhood U of D there is a C1-neighbourhood6 V of f
such that every compact disc in U contains a disc in the superposition region of Γg
for every g ∈ V .

For further explanation of this lemma see Remark 5.4. See also Lemma 5.4 for
a “quantitative version” of this result.

Lemma 5.2. Let Γf be a blender-horseshoe of f and D a compact disc contain-
ing a disc the superposition region of Γf . Then W s

loc(Γf , f) ∩ D 6= ∅ and this
intersection is quasi-transverse.

6Let r > 1 and f ∈ Diffr(M). Any C1-neighbourhood of f contains a Cr neighbourhood of f .
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This lemma follows from the fact that the image of any disc D in the super-
position region contains a disc in the superposition region. Arguing inductively,
it follows that any disc in the superposition region contains a point whose for-
ward orbit is contained in ∆. The lemma now follows from the characterisation of
W s

loc(Γf , f) in (5.1). This construction also guarantees that the obtained intersec-
tion between D and W s

loc(Γf , f) is quasi-transverse: the disks in the superposition
region are tangent to a strong unstable cone field, W s

loc(Γf , f) is tangent to a stable
cone field, and these cone fields have no common directions.

5.2. Blender-horseshoes: tubes and folding manifolds. We now analise when
the local stable manifoldW s

loc(Γf , f) of a blender-horseshoe Γf has a (robust) tan-
gency with a surface S “passing throughout its domain ∆”. In [8] it is proved that
occurrence when S is a folding manifold. Motivated by this fact, we introduce the
notion of u-tubes and prove that they generate folding manifolds after iterations. In
this way, Proposition 5.2 provides a mechanism guaranteeing the robust tangencies
in Theorem 1.1. We now go into the details of this construction that follows the
ideas in [8, Section 4].

5.2.1. Folding manifolds and tubes. Throughout this section, we consider a dif-
feomorphism f with a blender-horseshoe Γf with domain ∆ and reference fixed
points P− and P+. Next definition is an extension of [8, Definition 4.2].

Definition 5.1 (Strips, tubes, and folding manifolds). Consider a surface with
boundary S of the form

S =
⋃

t∈[0,1]

Dt ⊂ ∆,

where (Dt)t∈[0,1] is a family of uu-discs depending continuously on t. We say that
S is a

• u-strip if the family of discs (Dt)t∈[0,1] is pairwise disjoint and S is tangent
to the unstable cone field Cu,
• uu-tube if the family of discs (Dt)t∈[0,1) is pairwise disjoint andD0 = D1.
• a folding surface if the family of discs (Dt)t∈[0,1] is pairwise disjoint, D0

and D1 both intersect W s
loc(P

−, f) (or both intersect W s
loc(P

+, f)), and
Dt is in-between P− and P+ for every t ∈ (0, 1).

A strip or a tube S is in-between if every Dt is in-between P+ and P−. Note that
a folding surface cannot be in-between.

In what follows, we will use the letters S, T , and F to denote strips, tubes, and
folding manifolds, respectively. The main result of this section is the following:

Proposition 5.2. Let Γf be a blender-horseshoe of a diffeomorphism f and T a
uu-tube in-between. Then W s

loc(Γf , f) and T have a tangency point.

An immediate consequence of this proposition is the following version of [8,
Corollary 4.11] where folding manifolds are replaced by uu-tubes:
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Corollary 5.1. Let Γf be a blender-horseshoe of f and T a uu-tube in-between
contained in the unstable manifold of a saddle Rf of index two. Then there is a
Cr neighbourhood Vf of f such that W s

loc(Γg, g) and W u(Rg, g) have a tangency
point for every g ∈ Vf .

Proposition 5.2 will follow from [8, Proposition 4.4]: any folding manifold has
a tangency with W s

loc(Γf , f). The main ingredient of the proof in [8] is the fact
that the image of any folding manifold contains a folding manifold, see [8, Lemma
4.5]. We reformulate that lemma in our context. For that we need to analise the
central width of iterations of u-tubes and u-strips. We refer to see [13, Section 2]
for a detailed analysis of iterations of strips. We now go into the details.

First, a central curve is a curve tangent to the center unstable cone field Ccu. The
central width of a u-strip S = ∪t∈[0,1]Dt is defined by

w(S) = inf{length(`) : ` ⊂ S is a central curve joining D0 and D1}.
Note that there is κ = κ(Γf ) > 0 such that w(S)6κ for every u-strip in-between.

To define the central width of a uu-tube T in-between (denoted with a slight
abuse of notation also by w(T )), we note that (∆ \ T ) has two connected compo-
nents, one of them is disjoint from P− and P+. We denote this component by ∆T

and let
w(T ) = sup{w(S) : S is a u-strip contained in ∆T }.

Note that the width of any uu-tube in-between is bounded by the constant κ above.

Lemma 5.3. Let Γf be a blender-horseshoe. Then there is λ > 1 such that for
every uu-tube T in-between one of the following possibilities holds true:

(a) f(T ) has tangency with either W s
loc(P

−, f) or with W s
loc(P

+, f),
(b) f(T ) contains a folding manifold,
(c) f(T ) contains a uu-tube T ′ in-between with w(T ′)>λw(T ).

Proposition 5.2 easily follows from this lemma. Observe that, by the comments
above, in cases (a) and (b) we get a tangency between T and W s

loc(Γf , f) and we
are done. Otherwise, we let T0 = T and get a new tube T1 in-between such that
T1 ⊂ f(T0) and w(T1)>λw(T0). We can now apply Lemma 5.3 to T1 and argue
recurrently. But case (c) cannot occur infinitely many consecutive times: in such a
case we get a sequence of tubes (Tn) in-between with

Tn ⊂ f(Tn−1) and w(Tn)>λw(Tn−1)>λn w(T0).

Since the widths of the tubes Tn are bounded by κ there is a first step of the recur-
rent construction when we fall in cases (a) or (b). We now prove the lemma.

5.2.2. Proof of Lemma 5.3. We have the following version of Lemma 5.3 for u-
strips imported from [8, Lemma 4.5] (see also the proof of [13, Proposition 2.3]).

Lemma 5.4. Consider a blender-horseshoe Γf of f . Then there is λ > 1 such that
for every u-strip S in-between then one of the two possibilities holds:

(i) f(S) intersects transversely either W s
loc(P

−, f) or W s
loc(P

+, f),
(ii) f(S) contains a u-strip S′ in-between with w(S′)>λw(S).
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The main ingredient of the proof of this lemma is in Remark 5.4.

Remark 5.3 (Iterations of u-strips in-between). Lemma 5.4 implies that the orbit
of any u-strip in-between transversely meets either W s

loc(P
−, f) or W s

loc(P
+, f).

More precisely, let S0 = S and assume that f(S0) intersects transversely neither
W s

loc(P
−, f) nor W s

loc(P
+, f). In that case, we get a new strip S1 in-between

such that S1 ⊂ f(S0) and w(S1)>λw(S0). We can now apply Lemma 5.4 to
S1 and argue recurrently. As above, this possibility cannot occurs infinitely many
consecutive times.

We are now ready to prove the lemma. Given any ε > 0, associated to the uu-
tube T0 = T there is an internal strip S0 ⊂ ∆T0 , with w(S0)>w(T0) − ε. Note
that this strip is in-between. Consider now f(T0) and assume that cases (a) and (b)
in Lemma 5.3 do not hold. This implies that the image of f(S0) satisfies (ii) in
Lemma 5.4. We now see that and in that case there is u-tube T1 ⊂ f(T0) such that
S1 ⊂ ∆T1 . Since this holds for every ε > 0 item (c) in the lemma follows.

We now explain how the tube T1 is obtained. We will refer to [13, Section 2]
for details. A blender-horseshoe has a Markov partition associated to two disjoint
“subrectangles” ∆A,∆B ⊂ ∆ such that

Γf =
⋂
i∈Z

f i(∆A ∪∆B).

Moreover, the map that associates to each x ∈ Γf the sequence (ξi(x))∈Z ∈
{A,B}Z defined by f i(x) ∈ ∆ξi(x) is a conjugation between Γf and the com-
plete shift on the symbols A, B. In particular, the reference fixed points of the
blender satisfy P− ∈ ∆A and P+ ∈ ∆B. In what follows, we denote by fE the
restriction of f to E, E ∈ {A,B}. Given a set X we let XE

def
= X ∩∆E.

Next remark explains the mechanism guaranteeing Lemma 5.1 and is a conse-
quence of the definition of a blender-horseshoe.

Remark 5.4 (Iterations of uu-discs ans u-strip). There is λ > 1 with the following
property: Consider a uu-disc D and a u-strip S in-between.

• Then either f(DA) or f(DB) contains a uu-disc in-between.
• Suppose that f(SE) is a u-strip in-between, then wf(SE)>λw(SE).

By Remark 5.4, for a given t ∈ [0, 1] either f(Dt,A) or f(Dt,B) is a uu-disc
in-between. We have the following three cases:

(A) f(Dt,A) is a uu-disc in-between for every t ∈ [0, 1],
(B) f(Dt,B) is a uu-disv in-between for every t ∈ [0, 1],
(C) Cases (A) and (B) do not hold.

In case (A), by Remark 5.4 we have that T1 = f(Tt,A) is a uu-tube such that
w(T1)>λw(T ). Analogously, in case (B) T1 = f(Tt,B) is a uu-tube satisfying
w(T1)>λw(T ). In both cases, item (3) in the lemma holds. Thus it remains to
consider case (iii).

In case (C), there is c ∈ [0, 1) such that f(Dc,A) is a uu-disc in-between
but f(Dc,B) is not a uu-disc in-between (this possibility includes the case where
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f(Dc,B) is not a uu-disc). After changing the parameterisation of the tube we can
take c = 0. Recall that D0 = D1. Let

t1
def
= sup{t ∈ [0, 1] : f(Ds,A) is in-between for all s ∈ [0, t]},

t2
def
= inf{t ∈ [0, 1] : f(Ds,A) is in-between for all s ∈ [t, 1]}.

Note that t1 = 1 if and only if t2 = 0. Moreover, if this does not hold then
t16t2. Thus, a priory, there are the following cases, (i) t1 = 1 and t2 = 0, (ii)
t1 = t2 ∈ (0, 1), and (iii) 0 < t1 < t2 < 1. Case (i) implies that we are in case (A)
above, a contradiction. Thus it can be discarded.

Note that, by continuity, if t1 < 1 then f(Dt1,A)∩W s
loc(P

−, f) 6= ∅. Similarly,
if t2 > 0 then f(Dt2,A)∩W s

loc(P
−, f) 6= ∅. Note that the local stable manifolds are

tangent to the stable cone field and the uu-discs are tangent to the strong unstable
cone field, hence the previous intersections are quasi-transverse.

In case (iii), consider the interval [t2 − 1, t1] and let D̂t = Dt if t ∈ [0, t1] and
D̂t = Dt+1 if t ∈ [t2 − 1, 1]. By construction,

S
def
=

⋃
t∈[t2−1,t1]

f(D̂t,A)

is a folding manifold, thus item (b) in the lemma holds.
Finally, in case (ii) we have that T1 =

⋃
t∈[0,1] f(Dt,A) is tangent toW s

loc(P
−, f)

and we are in case (a) in the lemma. This completes the proof of the lemma. �

5.3. Blender-horseshoes in the center-unstable Hénon-like family. Let us start
by defining the Hénon-like families of endomorphisms that we will consider.

5.3.1. Center-unstable Hénon-like families of endomorphisms. We consider the
parameterised families of Hénon-like endomorphisms Eξ,µ,ς̄ , Gξ,µ,η̄ : R3 → R3,
defined by

Eξ,µ,ς̄(x, y, z)
def
= (ξ x+ ς1 y, µ+ ς2 y

2 + ς3 x
2 + ς4 x y, ς5 y),

Gξ,µ,η̄(x, y, z)
def
= (y, µ+ y2 + η1 y z + η2 z

2, ξ z + y),
(5.2)

where ξ > 1, µ ∈ R, ς̄ def
= (ς1, ς2, ς3, ς4, ς5) ∈ R5, and η̄ = (η1, η2) ∈ R2. These

families are called center-unstable Hénon-like.
These families are conjugate, this allows us to translate properties from one

family to the other. More precisely:

Remark 5.5. Consider the families of endomorphisms

Êξ,ς̄ , Ĝξ,η̄ : R4 → R4

defined by

(µ, x, y, z) 7→ Êξ,ς̄(µ, x, y, x)
def
=
(
µ,Eξ,µ,ς̄(x, y, z)

)
,

(µ, x, y, z) 7→ Ĝξ,η̄(µ, x, y, z)
def
=
(
µ,Gξ,µ,η̄(x, y, z)

)
.

(5.3)

Consider the map

(5.4) η̄(ς̄) = (η1(ς̄), η2(ς̄)) = (ς2
1 ς3ς

−1
2 , ς1ς4ς

−1
2 ).
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Suppose that ς̄ is such that
ς1ς2ς5 6= 0,

then Êξ,ς̄ and Ĝξ,η̄(ς̄) are conjugate:

Θ̂−1
ς̄ ◦ Êξ,ς̄ ◦ Θ̂ς̄ = Ĝξ,η̄(ς̄).

where

Θ̂ς̄ : R4 → R4, Θ̂ς̄(µ, x, y, z) =
(
ς−1
2 µ,Θς̄(x, y, x)

)
,

Θς̄ : R3 → R3, Θς̄(x, y, z) = (ς−1
2 ς1z, ς

−1
2 y, ς−1

2 ς5x).
(5.5)

5.3.2. Occurrence of blender-horseshoes. Consider the set

(5.6) ∆
def
= [−4, 4]2 × [−40, 22].

Theorem 5.6 (Theorem 1 in [17]). There is εBH > 0 such that for every

(ξ, µ, η̄) ∈ OBH
def
= (1.18, 1.19)× (−10,−9)× (−εBH, εBH)2

the endomorphism Gξ,µ,η̄ has a blender-horseshoe Λξ,µ,η̄ with domain of reference
∆ such that

Λξ,µ,η̄ =
⋂
i∈Z

Giξ,µ,η̄(∆) ⊂ interior(∆).

As a consequence, every diffeomorphism or endomorphism sufficiently C1 close to
Gξ,µ,η̄ has a blender-horseshoe in ∆.

Remark 5.7. By Remark 5.5, the map Eξ,µ,ς̄ , with ς̄ = (ς1, . . . , ς5), has blender-
horseshoes if ς1ς2ς5 6= 0 and

(ξ, µ, ς2
1 ς3ς

−1
2 , ς1ς4ς

−1
2 ) ∈ (1.18, 1.19)× (−10,−9)× (−εBH, εBH)2.

Let us say a few words about the blenders in Theorem 5.6. Let P±ξ,µ,η̄ be the
reference fixed points of the blender Λξ,µ,η̄ of Gξ,µ,η̄ in in ∆. The fixed points of
Gξ,µ

def
= Gξ,µ,0̄

7 in ∆, satisfy

(5.7) P−ξ,µ = (p−ξ,µ, p
−
ξ,µ, p̃

−
ξ,µ), P+

ξ,µ = (p+
ξ,µ, p

+
ξ,µ, p̃

+
ξ,µ)

with

−2.7 < p−ξ,µ < −2.5, 13 < p̃−ξ,µ < 15,

3.5 < p+
ξ,µ < 3.71, −20.6 < p̃+

ξ,µ < −18.4.

For the map Gξ,µ, the strong unstable cone field is given by

(5.8) Cuu(Z)
def
=
{

(u, v, w) ∈ R3 :
√
u2 + w2 < 1

2 |v|
}
,

see [17, Lemma 3.10]. We also have that

W s
loc(P

±
ξ,µ, Gξ,µ) =

{
(p±ξ,µ + t, p±ξ,µ, p̃

±
ξ,µ) : − 4− p±ξ,µ 6 t 6 4− p±ξ,µ

}
.

7With the notation in [17], say P−
ξ,µ = Pξ,µ and P+

ξ,µ = Qξ,µ
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The superposition region of the blender Λξ,µ
def
= Λξ,µ,0̄ consists of (large) discs

tangent to the cone field Cuu which are at the right of W s
loc(P

−
ξ,µ, Gξ,µ) and at the

left of W s
loc(P

+
ξ,µ, Gξ,µ). These observations imply the following:

Remark 5.8 (A disc in the superposition region). Consider the disc

(5.9) L
def
=
{

(0, y, 0) : |y| < 4
}
⊂ ∆

in the superposition region the blender Λξ,µ,η̄ of Gξ,µ,η̄ for every (ξ, µ, η̄) ∈ OBH.
Then, by Lemma 5.1, for every diffeomorphism F close enough to Gξ,µ,η̄ every
disc sufficiently close to L is in the superposition region of the blender ΛF .

Lemma 5.5. The unstable manifold W u
(
P+
ξ,µ,η̄, Gξ,µ,η̄

)
is unbounded in the y-

and z-directions.

Proof. We will show that W u
(
P+
ξ,µ, Gξ,µ

)
contains the set

Gξ,µ(Π+
ξ,µ), where Π+

ξ,µ
def
=
{

(x, y, z) : y > p+
ξ,µ

}
⊂ R3.

The general case follows studying 2-dimensional projections ofW u
(
P+
ξ,µ,η̄, Gξ,µ,η̄

)
.

Consider the plane Πξ,µ
def
= { y = p+

ξ,µ } ⊂ R3 and note that

Gξ,µ(Πξ,µ) = Lξ,µ
def
=
{

(p+
ξ,µ, p

+
ξ,µ, p̃

+
ξ,µ + t) : t ∈ R

}
⊂ Πξ,µ.

It is easy to see that Lξ,µ is Gξ.µ-invariant and that the restriction of Gξ.µ to Lξ,µ
is an expanding linear map (with expansion factor ξ > 1). Consider the cone field

Cu(Z)
def
=
{

(u, v, w) ∈ R3 : |u| < 1
2

√
v2 + w2

}
.

By [17, Claims 3.12 and 3.14], this cone field is DGξ,µ-invariant and uniformly
expanding for every Z = (x, y, z) with |y| >

√
5. A simple calculation implies

that for every Z ∈ Gξ,µ(Π+
ξ,µ) the following holds

Gξ,µ(Π+
ξ,µ) ⊂ Π+

ξ,µ and TZ
(
Gξ,µ(Π+

ξ,µ)
)
⊂ Cu(Z).

These properties and the expanding property of Cu imply the lemma. �

Notation. We will consider blenders in R3 and in the ambient manifold M . We
will denote the first ones by Λ and the second ones by Υ.

6. THE RENORMALISATION SCHEME

In this section, we outline the renormalisation scheme in [16], see Proposi-
tion 6.5. For that we embed any f ∈ HrBH(M) in a bifurcating eight-parameter
family

R8 3 ῡ → fῡ ∈ Diffr(M) with f0 = f

and construct a renormalisation scheme for f consisting of:
• a sequence of local charts Ψk from R3 to UQ,
• a sequence of reparameterisations R 3 µ 7→ ῡξk(µ) ∈ R8 with ξ > 1 and
ῡξk(µ)→ 0 on compact sets,
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• sequences nk, mk ∈ N such that the “return maps” fN2+mk+N1+nk
ῡξk(µ)

, de-

fined on a neighbourhood of the heterodimensional tangency Ỹ , satisfies

Ψ−1
k ◦ f

N2+mk+N1+nk
ῡξk(µ)

◦Ψk → Eξ,µ,ς̄

where the convergence is Cr, Eξ,µ,ς̄ is defined (5.2), and ς̄ = ς̄(ξ, f) satis-
fies (2.9).

This section is organised as follows. We define the unfolding family (fῡ)ῡ∈R8 in
Section 6.1 and review the renormalisation scheme in Section 6.2. The convergence
of the scheme is stated in Section 6.3.

6.1. The unfolding family. Given f ∈ HrBH(M) and

ῡ = (µ̄, ν̄, α, β) ∈ R3 × R3 × R× R = R8,

we consider a (smooth) family (fῡ)ῡ∈R8 in Diffr(M) with f0 = f , fῡ(Q) = Q,
and fῡ(P ) = P such that

• the parameter µ̄ unfolds the heterodimensional tangency Ỹ ,
• the parameter ν̄ unfolds the quasi-transverse intersection X̃ , and
• the parameters α and β modify the arguments of Df(P ) and Df(Q).

Recall the translation-like perturbations TW,ω̄,% and rotation-like perturbations
R∗α,θ,κ in (3.4) and (3.5), respectively. For ῡ = (µ̄, ν̄, α, β) and small ρ > 0
consider the perturbation of the identity defined by

Ωῡ,ρ(Z) = Ω(µ̄,ν̄,α,β),ρ(Z) =



Rxα,θ1,κ1
(Z), if Z ∈ UP ,

T
X̃,ν̄,ρ

(Z), if Z ∈ V
X̃
,

Ryβ,θ2,κ2
(Z), if Z ∈ UQ,

T
Ỹ ,µ̄,ρ

(Z), if Z ∈ V
Ỹ
,

id(Z), if Z 6∈ VP ∪ VQ ∪ VX̃ ∪ VỸ ,

where VP , VQ, VX̃ , and V
Ỹ

are small neighbourhoods of P,Q, X̃, and Ỹ contained
in UP , UQ, UX̃ , and U

Ỹ
, respectively, recall Section 2. The numbers θ1, θ2 > 1,

κ1, κ2 > 0 are chosen such that

X̃, Y ∈ [−κ−1
1 , κ−1

1 ]3, Ỹ , X ∈ [−κ−1
2 , κ−1

2 ]3,

[−θ1κ
−1
1 , θ1κ

−1
1 ]3 ⊂ UP , [−θ2κ

−1
2 , θ2κ

−1
2 ]3 ⊂ UQ.

Finally, we let

(6.1) fῡ,ρ = Ωῡ,ρ ◦ f.

Remark 6.1 (The parameter ρ). Above we emphasise the role of the parameter ρ
related to the size of the translation-like perturbation of f .
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Remark 6.2 (Support of the rotation-like part of Ωῡ,ρ). Consider the linear maps

fλ,σ,ϕ =

λ 0
0 σ sin 2πϕ σ cos 2πϕ
0 −σ cos 2πϕ σ sin 2πϕ

 ,

f̃λ,σ,ϕ =

 σ sin 2πϕ 0 σ cos 2πϕ
0 λ 0

−σ cos 2πϕ 0 σ sin 2πϕ

 .

With this notation, the restriction of f to UP is the map fλP ,σP ,ϕP , recall Sec-
tion 2.1.1. Note that if Z ∈ f−1

(
[−κ1, κ1]3

)
∩ [−κ1, κ1]3 then

Ωῡ,ρ ◦ f(Z) = Rxα,θ1,κ1
◦ f(Z) = Rxα,θ1,κ1

◦ fλP ,σP ,ϕP = fλP ,σP ,ϕP+α(Z).

If Z ∈ f−1
(
[−θ1κ

−1
1 , θ1κ

−1
1 ]3

)c ∩ UP then

Ωῡ,ρ ◦ f(Z) = Rxα,θ1,κ1
◦ f(Z) = f(Z).

Similarly, the restriction of f to UQ is f̃λQ,σQ,ϕQ and analogous conditions hold.

Remark 6.3 (Support of the translation-like part of Ωῡ,ρ). Note that

• Ωῡ,ρ ◦f(Z) = T
X̃,ν̄,ρ

◦f(Z) = f(Z) for every Z ∈M \f−1
(
B(X̃, 2ρ)

)
,

• Ωῡ,ρ ◦ f(Z) = T
X̃,ν̄,ρ

◦ f(f−1(X̃)) = X̃ + ν̄.
Analogously, we have that

• Ωῡ,ρ ◦ f(Z) = Tỹ,µ̄,ρ ◦ f(Z) = f(Z) for every Z ∈M \ f−1
(
B(Ỹ , 2ρ)

)
,

• Ωῡ,ρ ◦ f(Z) = T
Ỹ ,µ̄,ρ

◦ f(f−1(Ỹ )) = Ỹ + µ̄.

6.2. The renormalisation scheme. We now summarise the ingredients of the
renormalisation scheme: Sojourn times and adjusting arguments (Section 6.2.1),
reparameterisations (Section 6.2.2), and changes of coordinates (Section 6.2.3).

6.2.1. Sojourn times and adjusting arguments. Fix ξ > 1 and consider

τ
def
=
γ3(a3 − a2)√

2
, where γ3 is as in (2.4) and a2, a3 are as in (2.6).

Note that τ > 0, see (2.7). By [16, Lemma 6.1], associated to τ−1ξ, there is a
residual subset R = Rτ−1ξ of (0, 1) × (1,∞) consisting of pairs (σ, λ) having a
sequence of sojourn times sk = (mk, nk) in N2, adapted to τ−1ξ satisfying

(6.2) lim
k→∞

σmkλnk = τ−1ξ

where mk and nk are related by the inequality

mk < η nk + η̃ + 1, η
def
=

log(λ−1)

log(σ)
and η̃

def
=

log(τ ξ−1)

log(σ)
.

Our hypotheses allow us to consider (σP , λQ) ∈ R having a sequence of sojourn
times sk = (mk, nk) adapted to τ−1 ξ, see [14, Lemma 5.1] and [16, Lemma 6.1].
The spectral condition in (2.2) provides a constant C > 0 such that

(6.3) λP
mk
2 σmkP σQ

nk < C
(
(λP

1
2σP )ησQ

)nk → 0
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Associated to the sequence (sk) there is a sequence Θk = (ζmk , ϑnk) ∈ R2,
with Θk → (0, 0), of adjusting arguments leading to the following argument maps

αk(θ)
def
=

1

2πmk

(π
4
− 2πmkθ + 2π[mkθ] + ζmk

)
;

βk(ω)
def
=

1

2πnk

(π
2
− 2πnkω + 2π[nkω] + ϑnk

)
,

(6.4)

where [x] denotes the integer part of x ∈ R. The sequence (ϑnk) is chosen such
that ϕQ + βk is irrational (here ϕQ is the argument in item (A) in Section 2.1.1).
There are no further restrictions on the definition of (ζmk).

6.2.2. Reparameterisations. Associated to the sequences (sk) and (Θk) we define
the sequence of reparameterisations ῡ = ῡξk of the family fῡ,ρ in (6.1) by:

ῡξk : R→ R8, ῡξk(µ)
def
=
(
µ̄ξk(µ), ν̄ξk, α

ξ
k(ϕP ), βξk(ϕQ)

)
∈ R3 × R3 × R× R,

where (for simplicity, in what follows we eliminate the dependence8 of the coordi-
nate maps of ῡξk on ξ):
• µ̄k : R→ R3 is defined by

(6.5) µ̄k(µ)
def
= (−λmkP a1, σ

−nk
Q + σ−2nk

Q σ−2mk
P µ− λmkP b1,−λmkP c1),

where a1, b1, c1 are as in (2.6). Note that µ̄k(µ)→ (0, 0, 0) as k →∞.
• To define ν̄k ∈ R3 consider first

ϕP,k
def
= ϕP + αk(ϕP ) and ϕQ,k

def
= ϕQ + βk(ϕQ)

and the sequences

c̃k
def
= cos

(
2πmk(ϕP,k)

)
, s̃k

def
= sin

(
2πmk(ϕP,k)

)
,

ck
def
= cos

(
2πnk(ϕQ,k)

)
, sk

def
= sin

(
2πnk(ϕQ,k)

)
.

(6.6)

Remark 6.4. By the definition of αk(ϕP ) and βk(ϕQ) in (6.4), it follows that
ck → 0, sk → 1, and c̃k, s̃k → 1/

√
2.

Recalling the coordinated maps H̃2 and H̃3 of H̃ in (2.3), we let

ρ̃2,k
def
=

1

2

∂2

∂x2
H̃2(0)(ck − sk)

2 +
1

2

∂2

∂z2
H̃2(0)(sk + ck)

2,

ρ̃3,k
def
=

1

2

∂2

∂x2
H̃3(0)(sk − ck)

2 +
1

2

∂2

∂z2
H̃3(0)(sk + ck)

2.

(6.7)

Finally, we let

ν̄k
def
=
(
− λnkQ

(
α1 (ck − sk) + α3 (sk + ck)

)
,

σ−mkP (c̃k + s̃k)− λQ2nk ρ̃2,k,

σ−mkP (c̃k − s̃k)− λnkQ γ3 (ck + sk)− λ2nk
Q ρ̃3,k

)
,

(6.8)

where α1, α3, γ3 are as in (2.4). Note that ν̄k → 0 as k →∞.

8This dependence is given by the choice in (6.2).
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6.2.3. Change of coordinates. Using the local coordinates in UQ, we consider the
sequence of maps Ψk : Uk → UQ = [−aQ, aQ]3 defined by

Ψk(x, y, z)
def
= (1 + σ−mkP σ−nkQ x,

σ−nkQ + σ−2mk
P σQ

−2nk y, 1 + σ−mkP σQ
−nk z),

(6.9)

where Uk is the “cube” of R3 such that Ψk(Uk) = UQ. Recall that Ỹ = (1, 0, 1)

and note that for any compact set K ⊂ R3 it holds Ψk(K)→ {Ỹ } as k →∞.

6.3. Convergence of the renormalisation scheme. Fixed ξ > 1, small ρ > 0,
and f ∈ HrBH(M), consider the renormalisation scheme above and the sequence
of one-parameter family of maps

R 3 µ → R
ῡξk(µ),ρ

(f) ∈ Diffr(M)

R
ῡξk(µ),ρ

(f)
def
= fN2

ῡξk(µ),ρ
◦ fmk

ῡξk(µ),ρ
◦ fN1

ῡξk(µ),ρ
◦ fnk

ῡξk(µ),ρ
,

(6.10)

called renormalised sequence of f . Here we are emphasising the roles of ξ and ρ.

Proposition 6.5 (Theorem 1,[16]). Fix ξ > 1, small ρ > 0, and µ ∈ R. Given any
f ∈ HrBH(M) the sequence of maps

Ψ−1
k ◦ Rῡξk(µ),ρ

(f) ◦Ψk : Uk → R3, k ∈ N,

converges, on compact sets of R3 and in the Cr topology, to the endomorphism
Eξ,µ,ς̄ in (5.2), where ς̄ = ς̄(ξ, f) is as in (2.8).

Notation 6.6 (The parameters ρ and ξ). When the role of ρ is not relevant it will
omitted, writing fῡ andR

ῡξk(µ)
instead of fῡ,ρ andR

ῡξk(µ),ρ
. Similarly with ξ > 1.

Remark 6.7. Recall the perturbation fε of f in Proposition 4.1. The renormalisa-
tion scheme of f associated to X and Y can be applied to fε and it is preserved. In
this way, we get the one-parameter family of diffeomorphisms fε,ῡk(µ),ρ.

7. INTERPLAY BETWEEN BLENDERS AND HETEROCLINIC POINTS

In Section 7.1, see Proposition 7.2, we state the occurrence of blender-horseshoes
in the renormalisation scheme for diffeomorphisms f ∈ HrBH(M) and their per-
turbations fε ∈ HrBH(M) given by Proposition 4.1.

Note that fε has additional heteroclinic points X1,ε, X2,ε. In Section 7.2, we see
how these intersections are unfolded without modifying the blenders given by the
renormalisation scheme.

Before going into the details, recall the definitions of the transitions T1,i,ε asso-
ciated to Xi,ε and their domains Ui,ε in (4.5) and consider the neighbourhoods

Ũi,ε
def
= T1,i,ε(Ui,ε) of X̃i,ε = T1,i,ε(Xi,ε), i = 0, 1, 2.

Take sufficiently small ρ = ρ(ε) > 0 such that

(7.1) B(X̃, 2 ρ) ⊂ Ũ0,ε, B(X̃1,ε, 2 ρ) ⊂ Ũ1,ε, B(X̃2,ε, 2 ρ) ⊂ Ũ2,ε.
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In particular, these three balls are disjoint. We can now consider the renormalisa-
tion scheme R

ῡξk(µ),ρ
(fε) and observe that by the choice of ρ the renormalisation

preserves the heteroclinic points X1,ε and X2,ε. Note that as the transitions of f
are not modified, recalling (2.8), we have

ς̄ = ς̄(ξ, f) = ς̄(ξ, fε).

7.1. Blenders in the renormalisation scheme. Recall the definitions of Ψk and
of Uk in (6.9) and ofR

ῡξk(µ),ρ
(fε) in (6.10). Define the maps

Ψ̂k : R× Uk → R× UQ, R
ῡξk(µ),ρ

(fε) : R×M → R×M

by

Ψ̂k(µ,X)
def
=
(
µ,Ψk(X)

)
,

R̂k,ρ(fε)(µ,X)
def
=
(
µ,R

ῡξk(µ),ρ
(fε)(X)

)
and consider (with slight abuse of notation on the domain of definitions) the maps
Φk and Φ̂k defined by

X ∈ R3 7→ Φk(X)
def
= Ψk ◦Θς̄(X) ∈ UQ,

(µ,X) ∈ R× R3 7→ Φ̂k(µ,X)
def
= Ψ̂k ◦ Θ̂ς̄(µ,X)

=
(
ς−1
2 µ,Φk(X)

)
∈ R× UQ,

(7.2)

where Θς̄ and Θ̂ς̄ are the conjugations in (5.5).
The following explicit form of the maps Φ−1

k will be used in Section 9.1.

Remark 7.1. Note that for (1 + x, y, 1 + z) ∈ UQ close to Ỹ = (1, 0, 1) we have
that

(x̃, ỹ, z̃)
def
= Φ−1

k (1 + x, y, 1 + z),


x̃ = σnkQ σmkP ς2 ς

−1
5 z,

ỹ = ς2 σ
2nk
Q σ2mk

P (y − σ−nkQ ),

z̃ = σnkQ σmkP ς2 ς
−1
1 x.

Finally, consider the sequence of maps Rk,ρ(fε) : R× R3 → R× R3

(µ,X) 7→ Rk,ρ(fε)(µ,X)
def
= Φ̂−1

k ◦ R̂k,ρ(fε) ◦ Φ̂k(µ,X).

Finally, note that for each fixed µ the projection of Rk,ρ(fε)(µ, ·) in the “second
coordinate” R3 is exactly the mapR

ῡξk(µ),ρ
(fε).

Recalling the definition of η̄(ς̄) in (5.4) and of ς̄(ξ, f) = ς̄(ξ, fε) in (2.8) we
define (with slight abuse of notation) the map

η̄(ξ, fε)
def
= η̄(ς̄(ξ, fε)) = η̄(ξ, f).

Recalling Proposition 6.5, Theorem 5.6 (and the definition of the setOBH there),
Remark 5.5, and the definition of Ĝξ,η̄ in (5.3) we get the following:
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Proposition 7.2. Consider f ∈ HrBH(M), ξ > 1, small ε > 0, and fε as in Propo-
sition 4.1. There is ρ(ε) such that the sequence of maps (Rk,ρ(ε)(fε)) converges in
the Cr topology and on compact sets of R4 to Ĝξ,η̄(ξ,f).

As a consequence, for every k large enough the map R
ῡξk(µ),ρ(ε)

(fε) has a

blender-horseshoe Λ
ῡξk(µ),ρ(ε)

in ∆ = [−4, 4]2 × [−40, 22].

We now describe more precisely the blenders Λ
ῡξk(µ),ρ(ε)

. For µ ∈ (−10,−9),
large k, and small ε, consider the diffeomorphism

fε,ῡk(µ),ρ(ε)
def
= Ωῡk(µ),ρ(ε) ◦ fε,

where Ωῡk(µ),ρ(ε) is defined as in (6.1). Proposition 7.2 implies that fε,ῡk(µ),ρ(ε)

has a blender-horseshoe defined as follows. Let

∆(µ)
def
= {µ} ×∆,

∆k(µ)
def
= ∆k = Φk(∆),

∆̂k(µ)
def
= Φ̂k

(
∆(µ)

)
=
(
ς−1
2 µ,Φk

(
∆
))

=
(
ς−1
2 µ,∆k

)
.

(7.3)

Recalling thatR
ῡξk(µ),ρ(ε)

(fε) = fN2+mk+N1+nk
ε,ῡk(µ),ρ(ε) , see (6.10), we have that

Υfε,ῡk(µ),ρ(ε)

def
=
⋂
`∈Z

(
R
ῡξk(µ),ρ(ε)

(fε)
)`

(∆k(µ))

=
⋂
`∈Z

f
(N2+mk+N1+nk) `
ε,ῡk(µ),ρ(ε) (∆k).

(7.4)

is a blender-horseshoe of fN2+mk+N1+nk
ε,ῡk(µ),ρ(ε) . Note that, by construction,

(7.5) Λ
ῡξk(µ),ρ(ε)

= Φ−1
k

(
Υfε,ῡk(µ),ρ(ε)

)
.

Notation 7.3. The reference saddles P±
ῡξk(µ),ρ(ε)

of Λ
ῡξk(µ),ρ(ε)

are the continuations

of the saddles P±ξ,µ,η̄ of the blender of Gξ,µ,η̄ in (5.7).

Remark 7.4. Consider
(
ξ, µ, η̄(ξ, f)

)
∈ OBH and write η̄ = η̄(ξ, f). Recall the

definition of the disc L ⊂ R3 in the superposition region of the blender of Gξ,µ,η̄,
see Remark 5.8. The second part of that remark and the Cr convergence

Φ−1
k ◦ Rῡξk(µ),ρ(ε)

(fε) ◦ Φk → Gξ,µ,η̄

on compact subsets of R3 imply that for every large k the set

Φ−1
k ◦ Rῡξk(µ),ρ(ε)

(fε) ◦ Φk(L)

contains a disc in the superposition region of the blender Λ
ῡξk(µ),ρ(ε)

.
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7.2. Unfolding the heteroclinic points Xi,ε. By construction, we have that X1,ε

and X2,ε are quasi-transverse heteroclinic points of fε,ῡk(µ),ρ(ε) and (recalling the
definitions in (4.6))

X̃i,ε ∈W s
loc(P, fε,ῡk(µ),ρ(ε)) ∩W u(Q, fε,ῡk(µ),ρ(ε)).

Remark 7.5. The choices of ε and ρ(ε) imply that the closure of the orbits of X̃i,ε

and the orbit of the blender Υfε,ῡk(µ),ρ(ε)
are disjoint. Moreover, the orbit of the

blender is also disjoint from the neighbourhoods Ui,ε of Xi,ε (and thus from the
neighbourhoods Ũi,ε of X̃i,ε).

We now consider a “local unfolding of the heteroclinic point X̃1,ε independent
of the renormalisation process”: this unfolding is given by a perturbation whose
support is disjoint from B

(
X̃, ρ(ε)

)
and B

(
Ỹ , ρ(ε)

)
. For that, consider a family

of local perturbations of fε given by

(7.6) gε,ῡk(µ),ρ(ε) = θε,k ◦ fε,ῡk(µ),ρ(ε),

where θε,k is a Cr perturbation of identity supported on B
(
X̃1,ε, 2ρ(ε)

)
⊂ Ũ1,ε

satisfying limk→∞ dr(θε,k, id) = 0. To define θε,k, recall the definitions of the
bump function Πδ in (3.2) and the sequences mk, nk in Section 6.2.1, c̃k and s̃k in
(6.6), and ν̄k in (6.8), and consider the sequence of vectors

(7.7) τ̄k
def
=
(
0, σ−mkP (c̃k + s̃k), σ

−mk
P (c̃k − s̃k)

)
∈ R3, τ̄k → 0.

The map θε,k : M →M is defined by:

θε,k
(
Z
) def

= Z + Πρ(ε)(W ) τ̄k, if Z = X̃1,ε +W ∈ B
(
X̃1,ε, 2ρ(ε)

)
,

θε,k(Z)
def
= Z, if Z /∈ B

(
X̃1,ε, 2ρ(ε)

)
.

(7.8)

Recalling that ‖Πρ(ε)‖r 6 (‖b‖r)3 ρ(ε)−r, see (3.3), and that |̃ck ± s̃k| 6 2, see
(6.6), we get

dr(θε,k, id) 6 2 (‖b‖r)3 ρ(ε)−1 σ−mkP → 0, k →∞.

Remark 7.6. By definition of θε,k, for every W 6∈ f−1
ε

(
B(X̃1,ε, 2ρ(ε)

)
it holds

that

gε,ῡk(µ),ρ(ε)(W ) = θε,k ◦ fε,ῡk(µ),ρ(ε)(W ) = fε,ῡk(µ),ρ(ε)(W ).

As a consequence, if W 6∈ f−1
ε

(
B(X̃1,ε, 2δ)

)
then

R
ῡξk(µ),ρ(ε)

(fε)(W ) = R
ῡξk(µ),ρ(ε)

(gε,ῡk(µ),ρ(ε))(W ).

Hence, by Remark 7.5, the maps gε,ῡk(µ),ρ(ε) and fε,ῡk(µ),ρ(ε) have the common
blender Υfε,ῡk(µ),ρ(ε)

defined in (7.4).
Moreover, by construction, the curve Lu

2,ε(ρ(ε)) in (4.12) containing X2,ε is
contained in W u(Q, gε,ῡk(µ),ρ(ε)).
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8. ORBITS AND ITINERARIES ASSOCIATED TO THE RENORMALISATION

This is a preparatory section to the proof of Theorem 1.1. We study admissible
points and returns: we select a set of points whose itineraries for the diffeomor-
phisms gε,ῡk(µ),ρ(ε) in (7.6) are associated to the renormalisation scheme, see (8.1).

Recall the charts Φk = Φk,ς̄ = Ψk ◦ Θς̄ : Uk ⊂ R3 → UQ in (7.2) and that for
every compact set K ⊂ R3 it holds Φk(K)→ Ỹ as k →∞.

Recall the definitions of the neighbourhoods UX , U
X̃

, UY , and U
Ỹ

of the het-
eroclinic points of the cycle in Section 2.1.2, and of the balls B(X̃, 2ρ(ε)) ⊂ U

X̃

and B(Ỹ , 2ρ(ε)) ⊂ U
Ỹ

in (7.1).
Consider the subset Uε,ῡk(µ),ρ(ε) of B(Ỹ , 2ρ(ε)) ⊂ Φk(Uk) = UQ of points

having the following itinerary for fε,ῡk(µ),ρ(ε): a point w ∈ Uε,ῡk(µ),ρ(ε) if

w ∈ f−(N2+mk+N1+nk)
ε,ῡk(µ),ρ(ε)

(
B(Ỹ , 2ρ(ε))

)
∩B(Ỹ , 2ρ(ε))

and it satisfies (see Figure 4):

f iε,ῡk(µ),ρ(ε)(w) ∈ UQ, for every 0 6 i 6 nk,

fnkε,ῡk(µ),ρ(ε)(w) ∈ UX ,

fN1+nk
ε,ῡk(µ),ρ(ε)(w) ∈ B(X̃, 2ρ(ε)),

f j+N1+nk
ε,ῡk(µ),ρ(ε)(w) ∈ UP , for every 0 6 j 6 mk,

fmk+N1+nk
ε,ῡk(µ),ρ(ε) (w) ∈ UY , and

fN2+mk+N1+nk
ε,ῡk(µ),ρ(ε) (w) ∈ B(Ỹ , 2ρ(ε)).

(8.1)

We say that the points in Uε,ῡk(µ),ρ(ε) are (ε, ῡk(µ), ρ(ε))-admissible and that nk+
N1 +mk +N2 is the (ε, ῡk(µ), ρ(ε))-admissible return. We now define the maps

Fε,ῡk(µ),ρ(ε) : Φ−1
k (Uε,ῡk(µ),ρ(ε))→ R3,

Fε,ῡk(µ),ρ(ε)
def
= Φ−1

k ◦ f
N2+mk+N1+nk
ε,ῡk(µ),ρ(ε) ◦ Φk.

Recall that gε,ῡk(µ),ρ(ε) = θε,k◦fε,ῡk(µ),ρ(ε) and that for the points inUε,ῡk(µ),ρ(ε)

the map θε,k is the identity, so gε,ῡk(µ),ρ(ε) = fε,ῡk(µ),ρ(ε) for points in Uε,ῡk(µ),ρ(ε).

Remark 8.1. Every point of the blender is (ε, ῡk(µ), ρ(ε))-admissible:

Υε,ῡk(µ),ρ(ε) ⊂
⋂
j∈Z

f
j (N2+mk+N1+nk)
ε,ῡk(µ),ρ(ε) (Uε,ῡk(µ),ρ(ε))

=
⋂
j∈Z

g
j (N2+mk+N1+nk)
ε,ῡk(µ),ρ(ε) (Uε,ῡk(µ),ρ(ε)).

Notation 8.2. In what follows, if there is no possibility of misunderstanding, we
will simply write:

• fε,k,µ and gε,k,µ in the places of fε,ῡk(µ),ρ(ε) and gε,ῡk(µ),ρ(ε),
• Λε,k,µ and Υε,k,µ in the place of Λῡk(µ),ρ(ε) and Υfε,ῡk(µ),ρ(ε)

,
• Rε,k,µ in the place ofRῡk(µ),ρ(ε).



34 L. J. DÍAZ AND S. A. PÉREZ

Q

nk

N1 mk

N2

P

FIGURE 4. The points in the blender are admissible points

9. PROOF OF THEOREM 1.1: INTERSECTIONS BETWEEN THE
TWO-DIMENSIONAL MANIFOLDS

Throughout this and the next section, we will assume that f ∈ HrBH(M), r > 2,
and consider the perturbations gε,k,µ of f . By Proposition 7.2 the set Υε,k,µ in
Remark 8.1 is a blender of gε,k,µ.

We prove that the unstable manifolds of the blenders Υε,k,µ of gε,k,µ transversely
intersects the stable manifold of the saddle Q.

Proposition 9.1. For every small ε > 0, large k, and µ ∈ (−10,−9) it holds

W u
(
Υgε,k,µ , gε,k,µ

)
tW s

(
Qgε,k,µ , gε,k,µ

)
6= ∅.

The proof of this proposition is inspired by [23, Proposition 1, Chapter 6.4].
Here there are additional difficulties due to the heterodimensional nature of the
bifurcation. A comparison between the two settings is done in Section 9.1.1.

Notation 9.2. Recall definitions of f∗, F∗, Υ∗, and U∗, with ∗ = (ε, ῡk(µ), ρ(ε)),
in Section 8. If there is no possible misunderstanding, in what follows ε and ρ(ε)
will be omitted, simply writing fῡk(µ), Fῡk(µ), Υῡk(µ), and Uῡk(µ).

By Proposition 7.2, the sequence of maps Fῡk(µ) = Fε,ῡk(µ),ρ(ε) converges (on
compacta) to the family of endomorphisms Gξ,µ,η̄ for some fixed ξ and η̄. Hence
we write Gµ in the place of Gξ,µ,η̄.

This section is organised as follows. In Section 9.1, we introduce an auxiliary
one-dimensional foliation D in UP which subfoliates the reference domain of the
blenders. The main property of this foliation is that the strong unstable foliation
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of the blender approaches to D. We translate the foliation D to U
Ỹ

by fN2

ῡk(µ) and

thereafter by Φ−1
k to R3, obtaining in this way a foliation D̃ῡk(µ). In Lemma 9.1,

we see that the leaves of D̃ῡk(µ) converge to parabolas when k → ∞. In Sec-
tion 9.2, using the foliation D, for the admissible points and returns in Section 8,
we study the expansion of vectors and how the angles change, see Lemma 9.2.
In Section 9.4, we translate these estimates for the map Fῡk(µ). In Section 9.3,
we study the separatrices of the saddles of the blenders nearby heterodimensional
tangencies. Finally, in Section 9.5 we conclude the proof of Proposition 9.1.

9.1. The auxiliary one dimensional foliation. We start with some preliminary
constructions. We consider first auxiliary foliations Fu

R,ῡk(µ), R = P,Q, defined
on the neighbourhoods UP and UQ as the natural extensions of the invariant local
manifolds of the saddles in the cycle. The leaf Fu

P,ῡk(µ)(A) of the point A ∈ UP
of the foliation Fu

P,ῡk(µ) is the intersection of the set UP and the plane parallel to
the coordinate plane yz containing A. Similarly, the leaf F s

P,ῡk(µ)(A) of F s
P,ῡk(µ)

is the intersection of UP and the straight line parallel to the axis x containing A.
Thus these leaves are “parallel” to W u

loc(P ) and W s
loc(P ), respectively. The leaves

of the foliations Fu
Q,ῡk(µ) and F s

Q,ῡk(µ) are defined similarly and are “parallel” to
W u

loc(Q) andW s
loc(Q). Note that the foliations F∗P,Q,ῡk(µ), ∗ = s, u, do not depend

on ῡk(µ).
For ∗ = s, u, we “transport” the foliationsF∗Q,ῡk(µ) fromUX ⊂ UQ toU

X̃
⊂ UP

by the transition fN1

ῡk(µ) and continue denoting the resulting foliations by F∗Q,ῡk(µ).
Similarly, we “transport” the foliations F∗P,ῡk(µ) from UY ⊂ UP to U

Ỹ
⊂ UQ by

fN2

ῡk(µ) and continue denoting these foliations by F∗P,ῡk(µ). Note that these exten-
sions do depend on ῡk(µ).

We now consider an auxiliary one-dimensional foliation D in UP . For that con-
sider the family of curves

`(s,a)
def
=
{

(s, a,−a) + (0, t, t) : t ∈ R
}
∩ UP , s, a ∈ R.

and define the diagonal foliation of UP = [−aP , aP ]3 by

(9.1) D def
=
{
`(s,a) : a, s ∈ [−aP , aP ]

}
.

Note that D “subfoliates” the leaves of Fu
P,ῡk(µ) in UP , see Figure 5.

Consider the domain ∆k(µ) of the blender Υῡk(µ) in (7.3). By [16, Lemma
3], for every large k, the coordinates (x, 1 + y, 1 + z) ∈ UP of the points in
fmk+N1+nk
ῡk(µ)

(
∆k(µ)

)
are close to Y = (0, 1, 1). Moreover, they have Landau

symbols

x = O(λP
mk), y = O(σ−mkP σQ

−nk), z = O(σ−mkP σQ
−nk).

These conditions and equation (6.3) imply that

(9.2) fmk+N1+nk
ῡk(µ) (∆k(µ)) ⊂

⋃
s∈Jk

{
`(s,a) : a ∈ [−aP , aP ]

}
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where

(9.3) Jk
def
= [−σ−2nk

Q σ−2mk
P aP , σ

−2nk
Q σ−2mk

P aP ].

As above, we consider the intersection of the leaves of D with UY and “trans-
port” them by fN2

ῡk(µ), obtaining the following foliation of U
Ỹ

(see Figure 5):

(9.4) Dῡk(µ)
def
=
{
`(s,a,ῡk(µ))

def
= fN2

ῡk(µ)(`(s,a) ∩ UY ) : a, s ∈ [−aP , aP ]
}
.

Similarly, we let

(9.5) D̃ῡk(µ)
def
=
{ ˜̀

(s,a,ῡk(µ))
def
= Φ−1

k (`(s,a,ῡk(µ))) : a, s ∈ [−aP , aP ]
}
.

9.1.1. Comparison of the homoclinic and heteroclinic settings. Our heterodimen-
sional analysis is inspired by the one in [23, Chapter 6.4] for homoclinic tangen-
cies. Let us highlight some key differences and similarities. For that recall that
[23] considers a surface diffeomorphism with saddle R having a homoclinic tan-
gency Z. There are associated auxiliary local stable and unstable foliations W∗µ,
∗ = s, u, defined on a neighbourhood of Z, here µ refers to a “renormalisation”
parameter unfolding the tangency. In [23] the renormalisation scheme converges
to the quadratic family ϕµ(x, y) = (y, y2 + µ).

The construction in [23] implicitly uses the fact that (for suitable parameters) the
family ϕµ has a fixed point whose unstable manifold has an “infinite” separatrix.
Here we have a property with the same flavour stated in Lemma 5.5.

The foliationsWs
µ andWu

µ converge (in the charts of the corresponding renor-
malisation scheme) to foliations whose leaves are horizontal lines and parabolas of
the form (x, x2 + µ), respectively. Here, the foliation Dῡk(µ) plays the role of the
unstable foliation Wu

µ . Lemma 9.1 states a convergence property of the foliation
Dῡk(µ) (involving some projections). The stable foliation F s

Q,ῡk(µ) defined above
is similar toWs

µ.
Both foliationsWs

µ andWu
µ foliate a neighbourhood of the tangency Z. Here,

we have that the foliationDῡk(µ) covers a neighbourhood of the heterodimensional
tangency Ỹ and therefore of the reference domain ∆k(µ) of the blender Υῡk(µ),
see (9.2). There is a similar assertion for F s

Q,ῡk(µ).
In [23], the unstable leaves of the limit thick horseshoes approach to parabola of

the limit unstable foliation and its projection along stable leaves “covers” several
fundamental domains of the local unstable manifold of the saddleR. Here, we have
a similar property: the leaves of the strong unstable foliation of the blenders Υῡk(µ)

are close to the leaves of Dῡk(µ). Due to the lack of domination of our setting, it is
not possible to get a similar covering property. Instead, we prove that “projections”
of the leaves of Dῡk(µ) covers a fixed proportion of a fixed fundamental domain of
W u

loc(Q). This will be enough to see that the blenders are involved in the robust
cycles with the saddle Q and are homoclinically related to the saddle P .

9.1.2. Convergence to parabolas. We now go to the details of our construction.
Consider:

• the projection π1,2 : R3 → R2 given by π1,2(x, y, z) = (x, y);
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Q
•

P
•

fN2

ῡk(µ)

{`(0,a) : a ∈ R}

FIGURE 5. The diagonal foliation on the leaf Fu(P ).

• the maps α, β : R→ R defined by

α(a)
def
=
√

2β2 (b2 − b3) a,

β(µ, s, a)
def
= µ+ b1 ς2 s+ (b2 + b3 − b4) ς2 a

2,
(9.6)

where b1, b2, b3, b4 are parameters associated to the heterodimensional tan-
gency in (2.6) and ς2 is as in the definition of the Hénon-like maps in (5.2);
• the family of curves

(9.7) `(s,a,ῡk(µ))(t)
def
= π1,2

(˜̀
(s,a,ῡk(µ))(t)

)
= π1,2

(
Φ−1
k

(
`(s,a,ῡk(µ))(t)

))
;

• the re-scaling maps ŝk, âk, t̂k : [−aP , aP ]→ R, given by

ŝk(s)
def
= σ−2nk

Q σ−2mk
P s,

âk(a)
def
= σ−nkQ σ−mkP a,

t̂k(t)
def
=

√
2

β2(b2 + b3 + b4)
σ−2nk
Q σ−2mk

P t.

(9.8)

Noting that ŝk(s) ∈ Jk for every s ∈ [−aP , aP ], we can define the curveŝ̀
(s,a,ῡk(µ))(t)

def
= `( ŝk(s) , âk(a) , ῡk(µ) )( t̂k(t) ), (s, a) ∈ [−aP , aP ]

and the sets

L̂(s,a,ῡk(µ))
def
=
{ ̂̀

(s,a,ῡk(µ))(t) : t ∈ [−aP , aP ]
}
.

Lemma 9.1. The sequence of sets L̂(s,a,ῡk(µ)) converges to the parabola

(9.9) y = x2 + α(a)x+ β(a, s, µ),
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(x, x2)

π1,2

(
Gµ(x, y, z0)

)

(y, µ+ y2)

µ

2 arctan(K)

y(K)·

·

4

FIGURE 6. The limit family of parabolas of the sets L̂(s,0,µ̄k(µ))

(left). Angles between parabolas and horizontal lines (right)

when k →∞. The convergence is Cr uniform on compact sets of R2.

Next remark will be used in Section 9.3. It relates the parabolas in Lemma 9.1,
hence the foliation D̃ῡk(µ), and the Hénon-like maps. It will play a key role in the
arguments for controlling the size of unstable sets of blenders.

Remark 9.3. Recall the reference domain ∆ = [−4, 4]2× [−40, 22] in (5.6) of the
blender of Gµ and that

π1,2(Gµ(x, y, z)) = (y, µ+ y2 + κ y z + η z2).

Hence for each fixed z0 we have that π1,2(Gµ(x, y, z0)) is a curve of the family
in (9.9). Therefore given any K > 0 there is y(K) such that for every z0 ∈
[−40, 22] and every y > y(K) the angle between the curve π1,2(Gµ(x, y, z0)) and
the parallel to the x-axis at the point (0, y) are strictly bigger than 2 arctan(K),
see Figure 6.

Proof of Lemma 9.1. We first give an explicit calculation of the coordinates of the
curves `(s,a,ῡk(µ)) in (9.4). Consider the parameterisation of `(s,a,ῡk(µ)) ⊂ U

Ỹ
given by

`(s,a,ῡk(µ))(t)
def
= fN2

ῡk(µ)

(
s, 1 + t+ a, 1 + t− a

)
def
=
(
`1(s,a,ῡk(µ))(t), `

2
(s,a,ῡk(µ))(t), `

3
(s,a,ῡk(µ))(t)

)
.
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Recalling the expression fN2

ῡk(µ) in (2.5), Remark 6.3, and (6.5), we get

`1(s,a,ῡk(µ))(t) = 1 + a1s+ (a2 − a3)a+ (a2 + a3)t

+H1(s, t+ a, t− a)− λmkP a1,

`2(s,a,ῡk(µ))(t) = b1s+ (b2 + b3 − b4) a2 + (b2 + b3 + b4) t2 + 2(b2 − b3) a t

+H2(s, t+ a, t− a) + σ−nkQ + σ−2nk
Q σ−2mk

P µ− λmkP b1,

`3(s,a,ῡk(µ))(t) = 1 + c1s+ (c2 + c3)t+H3(s, t+ a, t− a)− λmkP c1.

Write
`(s,a,ῡk(µ))(t)

def
=
(
`
1
(s,a,ῡk(µ))(t), `

2
(s,a,ῡk(µ))(t)

)
.

From the definitions of `(s,a,ῡk(µ))(t) in (9.7) and of Φ−1
k in Remark 7.1, we get

`
1
(s,a,ῡk(µ))(t) = c1 ς2 ς

−1
5 σnkQ σmkP s+

β2(b2 + b3 + b4)√
2

σnkQ σmkP t

+ ς2 ς
−1
5 σnkQ σmkP H3(s, t+ a, t− a)− λmkP σnkQ σmkP ς2 ς

−1
5 c1,

`
2
(s,a,ῡk(µ))(t) = b1 ς2 σ

2nk
Q σ2mk

P s+ ς2 (b2 + b3 − b4)σ2nk
Q σ2mk

P a2

+
β2

2(b2 + b3 + b4)2

2
σ2nk
Q σ2mk

P t2 + 2(b2 − b3) ς2 σ
2nk
Q σ2mk

P a t

+ ς2 σ
2nk
Q σ2mk

P H2(s, t+ a, t− a) + µ− λmkP σ2nk
Q σ2mk

P ς2 b1.

Recalling the re-scaling maps ŝk, âk, t̂k, in (9.8) and performing the correspond-
ing substitutions, a straightforward calculation implies that̂̀

(s,a,ῡk(µ))(t) → (t, t2 + α(a) t+ β(µ, s, a)),

where α and β are as in (9.6). This ends the proof of the lemma. �

9.2. Estimates of angles and expansion for admissible iterations. We prove the
lemma below, which is version of [23, Claim 1 in Chapter 6.4] in our context. To
state this lemma consider the projection π2,3 : R3 → R2 defined by π2,3(x, y, z) =
(y, z) and recall the definitions of the foliation Dῡk(µ) of U

Ỹ
in (9.4) and of the set

Uῡk(µ) of points with an admissible itinerary as in (8.1).

Lemma 9.2. There is a constant C > 0 such that for every µ ∈ (−10,−9) and
every sufficiently large k the following holds:

Consider K > 0, a ῡk(µ)-admissible point w ∈ Uῡk(µ), and a vector v ∈ TwM
such that

(9.10) angle
(
v,F s

Q,ῡk(µ)

)
> K σ−nkQ σ−mkP .

Then
(1) ‖π2,3

(
Dw(fN2+mk+N1+nk

ῡk(µ) )(v)
)
‖ > C K ‖v‖,

(2) angle
(
Dw(fN2+mk+N1+nk

ῡk(µ) )(v),Fu
P,ῡk(µ)

)
= O(λmkP σnkQ ) → 0 as k →

∞, and
(3) angle

(
Dw(fN2+mk+N1+nk

ῡk(µ) )(v),Dῡk(µ)

)
→ 0, as k →∞.
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We begin with some preliminary estimates. For R = P,Q, consider the coor-
dinate vector fields

{
∂

∂ xR
, ∂

∂ yR
, ∂

∂ zR

}
, defined on the neighbourhood UR and

tangent to the corresponding foliations F∗R,ῡk(µ), ∗ = u, s. The derivatives of the
transition maps T1 = fN1 in (2.4) and T2 = fN2 in (2.6) satisfy

DT1

( ∂

∂ xQ

)
= α1

∂

∂ xP
,

DT1

( ∂

∂ yQ

)
= α2

∂

∂ xP
+ β2

∂

∂ yP
,

DT1

( ∂

∂ zQ

)
= α3

∂

∂ xP
+ γ3

∂

∂ zP
,

DT2

( ∂

∂ xP

)
= a1

∂

∂ xQ
+ b1

∂

∂ yQ
+ c1

∂

∂ zQ
,

DT2

( ∂

∂ yP

)
= a2

∂

∂ xQ
+ c2

∂

∂ zQ
,

DT2

( ∂

∂ zP

)
= a3

∂

∂ xQ
+ c3

∂

∂ zQ
.

(9.11)

Given a point w ∈ Uῡk(µ) and a vector

(9.12) v = vx
∂

∂ xQ
+ vy

∂

∂ yQ
+ vz

∂

∂ zQ
,

we give the explicit expression of Dw(fN2+mk+N1+nk
ῡk(µ) )(v). It follows the sketch

of the step by step calculations of this derivative, for details see [16, Section 7].
Recalling the linearising coordinates of f at Q in (2.1) and the definitions of

ck, sk in (6.6), we have

Dw(fnkῡk(µ))(v) = λnkQ (ck − sk) vx
∂

∂xQ
+ σnkQ vy

∂

∂yQ
+ λnkQ (ck + sk) vz

∂

∂zQ
.

Write

Dw(fN1+nk
ῡk(µ) )(v) = vx,ῡk(µ)

∂

∂xP
+ vx,ῡk(µ)

∂

∂yP
+ vz,ῡk(µ)

∂

∂zP
.

Using (9.11) we have that

vx,ῡk(µ) = λnkQ (ck − sk) vx α1 + σnkQ vy α2 + λnkQ (ck − sk) vz α3,

vy,ῡk(µ) = σnkQ vy β2,

vz,ῡk(µ) = λnkQ (ck + sk) vz γ3.

(9.13)

Write

Dw(fmk+N1+nk
ῡk(µ) )(v) = ṽx,ῡk(µ)

∂

∂xP
+ ṽy,ῡk(µ)

∂

∂yP
+ ṽz,ῡk(µ)

∂

∂zP
.
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Using (9.13), the linearising coordinates of f at P in (2.1), and the definitions of
c̃k, s̃k in (6.6), we have that

ṽx,ῡk(µ) = λmkP
(
λnkQ (ck − sk) vx α1 + σnkQ vy α2 + λnkQ (ck − sk) vz α3

)
,

ṽy,ῡk(µ) = σmkP σnkQ c̃k vy β2 − σmkP λnkQ s̃k (ck + sk) vz γ3,

ṽz,ῡk(µ) = σmkP σnkQ s̃k vy β2 + σmkP λnkQ c̃k (ck + sk) vz γ3.

(9.14)

Finally, we write

Dw(fN2+mk+N1+nk
ῡk(µ) )(v) = v̂x,ῡk(µ)

∂

∂xQ
+ v̂x,ῡk(µ)

∂

∂yQ
+ v̂z,ῡk(µ)

∂

∂zQ
.

Using (9.11) and (9.14) we get

v̂x,ῡk(µ) = a1 ṽx,ῡk(µ) + a2 ṽy,ῡk(µ) + a3 ṽz,ῡk(µ),

v̂y,ῡk(µ) = b1 ṽx,ῡk(µ),

v̂z,ῡk(µ) = c1 ṽx,ῡk(µ) + c2 ṽy,ῡk(µ) + c3 ṽz,ῡk(µ).

(9.15)

Proof of Lemma 9.2. Take an unitary vector v, write it as in (9.12), and let αk,µ
def
=

angle
(
v,F s

Q,ῡk(µ)

)
. Note that by hypothesis (9.10)

(9.16) |vy| = sin(αk,µ) > sin(K σ−nkQ σ−mkP ) ≈ K σ−nkQ σ−mkP .

To prove item (1), recall the definitions of v̂z,ῡk(µ) in (9.15) and of ṽx,ῡk(µ),
ṽy,ῡk(µ), and ṽz,ῡk(µ) in (9.14) and note that

v̂z,ῡk(µ)

σmkP σnkQ
=
c1 ṽx,ῡk(µ)

σmkP σnkQ
+
c2 ṽy,ῡk(µ)

σmkP σnkQ
+
c3 ṽz,ῡk(µ)

σmkP σnkQ
.

Recalling that σP , σQ > 1, σmkP λnkQ → τ−1ξ (see (6.2)) and c̃k, s̃k → 1/
√

2,
ck → 0, sk → 1 (see Remark 6.4), we get

ṽx,ῡk(µ)

σmkP σnkQ
→ 0,

ṽy,ῡk(µ)

σmkP σnkQ
→ β2 vy√

2
,

ṽz,ῡk(µ)

σmkP σnkQ
→ β2 vy√

2
.

Thus, for every large enough k, we get

(9.17) |v̂z,ῡk(µ)| ≈
√

2σmkP σnkQ |c2 + c3| |β2| |vy|.

Note that c2+c3 6= 0, see (2.7) and (2.6), and β2 6= 0, see (2.4). Finally, from (9.16)
and (9.17) it follows

‖π2,3(Dw(fN2+mk+N1+nk
ῡk(µ) )(v))‖ > |v̂z,ῡk(µ)|

≈
√

2σmkP σnkQ |c2 + c3| |β2| |vy|
> C K,

(9.18)

where C =
√

2 |β2| |c2 + c3|. This proves the first item in the lemma.
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To prove item (2), let βk,µ be the angle between the vector Dw(fmk+N1+nk
ῡk(µ) )(v)

and the unstable foliation FuP,ῡk(µ) (tangent to ∂
∂yP

and ∂
∂zP

). Then

sin(βk,µ) =
|ṽx,ῡk(µ)|

‖Dw(fmk+N1+nk
ῡk(µ) )(v)‖

6
|ṽx,ῡk(µ)|

‖π2,3(Dw(fmk+N1+nk
ῡk(µ) )(v))‖

.
λmkP σnkQ
C K

,

where in the last inequality we use (9.18) and that ṽx,ῡk(µ) = O(λmkP σnkQ ), see
(9.14). Note that by (6.3)

λmkP σnkQ 6 λ
mk
P σ2nk

Q σ2mk
P → 0.

Therefore,
βk,µ ≈ sin(βk,µ) = O(λmkP σnkQ )→ 0,

proving the second item in the lemma.
To prove the last item in the lemma, recall again the definitions of ṽy,ῡk(µ) and

ṽz,ῡk(µ) in (9.14) and note that

|ṽy,ῡk(µ)|
|ṽz,ῡk(µ)|

=
|σmkP σnkQ c̃k vy β2 − σmkP λnkQ s̃k (ck + sk) vz γ3|
|σmkP σnkQ s̃k vy β2 + σmkP λnkQ c̃k (ck + sk) vz γ3|

=

∣∣∣̃ck vy β2 −
σ
mk
P λ

nk
Q s̃k (ck+sk) vz γ3

σ
mk
P σ

nk
Q

∣∣∣∣∣∣s̃k vy β2 +
σ
mk
P λ

nk
Q c̃k (ck+sk) vz γ3

σ
mk
P σ

nk
Q

∣∣∣ → 1,

(9.19)

where for the limit we use again that c̃k, s̃k → 1/
√

2 and ck → 0, sk → 1.
This implies that the angle between Dw(fmk+N1+nk

ῡk(µ) )(v) and the diagonal foli-
ation D in (9.1) tends to 0 as k goes to infinity. Hence, by the definition of Dῡk(µ),
the angle between Dw(fN2+mk+N1+nk

ῡk(µ) )(v) and Dῡk(µ) also tends to 0 as k goes to
infinity. This ends the proof of the lemma. �

9.3. Separatrices of the saddles of blenders nearby heterodimensional tan-
gencies. We now study the stable and strong unstable separatrices of the reference
saddle P+

ῡk(µ) of the blenders Λῡk(µ) of Fῡk(µ) in R3, recall Notation 7.3. Our goal
are the angular estimates in Lemma 9.3.

Let us go to the details. Consider first blenders for the endomorphismsGµ. Take
µ ∈ (−10,−9) and the blender Λµ = Λξ,µ,η̄ of Gµ and its reference fixed point
P+
µ = (p+

µ , p
+
µ , p̃

+
µ ) in (5.7).

Denote by σuu
µ the separatrix9 of W uu(P+

µ ) contained in {y > p+
µ } and by σs

µ

the separatrix of W s(P+
µ ) contained in {x > p+

µ , y = p+
µ , z = p̃+

µ }. We consider

the curve σ̃s
µ

def
= {P+

µ } ∪ σs
µ. We now introduce the ingredients of our construction

which are depicted in Figure 7.

9That is, one of the connected components of W uu(P+
µ ) \ {P+

µ }
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P+
µ

σss
µ•

x

y

z

• y(K) •
y?µ(K)

σuu
µ

FIGURE 7. Separatrices of the reference saddles of the blender

• Strong unstable separatrices. Given K > 0 define y(K) as in Remark 9.3 and
consider the point

y?µ(K)
def
= σuu

µ ∩ {y = y(K)}.

Let σuu
K,µ be the segment of σuu

µ bounded by y?µ(K) and P+
µ and consider its fun-

damental domain

σ̃uu
K,µ

def
= σuu

K,µ \G−1
µ (σuu

K,µ).

After increasing K, if necessary, we can assume that the angles between the curve
π1,2(σ̃uu

K,µ) and the lines parallel to the x-axis are strictly bigger than arctan(K).
For µ ∈ (−10,−9) and large k, we consider the continuations of the objects

defined above for Gµ:

• the separatrices σuu
ῡk(µ) of W uu(P+

ῡk(µ)),

• the points y?ῡk(µ)(K)
def
= σuu

ῡk(µ) ∩ {y = y(K)},
• the curves σuu

K,ῡk(µ) of σuu
ῡk(µ) bounded by y?ῡk(µ)(K) and P+

ῡk(µ), and
• the fundamental domain

σ̃uu
K,ῡk(µ) = σuu

K,ῡk(µ) \ F
−1
ῡk(µ)(σ

uu
K,ῡk(µ)).

By Remark 9.3 and continuity, for every µ ∈ (−10,−9) and large k, the angles
between the curve π1,2(σ̃uu

K,ῡk(µ)) and the lines parallel to the x-axis are strictly
bigger than arctan(K).
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• Stable separatrices. For large k, define the continuations σ̃s
ῡk(µ) of σ̃s

µ for Fῡk(µ)

contained in a separatrix of W s(P+
ῡk(µ)) and whose boundary contains P+

ῡk(µ).

• Angles between the separatrices. Note that, by equation (5.8), the tangent space
of W uu(P+

µ ) at P+
µ is contained in a cone field transverse to the horizontal line

(parallel to the x-axis). In particular, equation (5.8) implies that for every µ ∈
(−10,−9) the angle between σuu

µ and σ̃s
µ at P+

µ is bounded from below by π/7.
Thus, for every k large enough, the angle between σuu

ῡk(µ) and σ̃s
ῡk(µ) at P+

ῡk(µ) is
bigger than π/8.

For the next lemma recall the definition of the curves ˜̀(s,a,ῡk(µ)) in (9.5) and of
the parameter interval Jk in (9.3).

Lemma 9.3. For every K > 0 there is k0 = k0(K) > 1 such that for every
µ ∈ (−10,−9) and every k > k0 the angles between

• the lines parallel to the x-axis in R2 and the curves π1,2(σ̃uu
K,ῡk(µ)) are at

least arctan(K),
• the curves

(˜̀
(s,a,ῡk(µ))

)
a∈[−aP ,aP ], s∈Jk

and π1,2(σ̃s
ῡk(µ)) are at least π8 ,

• the lines parallel to the x-axis in R2 and π1,2(σ̃s
ῡk(µ)) are at most K−1,

• the curves
(˜̀

(s,a,ῡk(µ))

)
a∈[−aP ,aP ], s∈Jk

and the curves π1,2(σ̃uu
K,ῡk(µ)) are

at most K−1.

Proof. The first three items of the lemma follow from the discussion before the
lemma. The last item follows from Lemma 9.1 and Remark 9.3. �

9.4. Estimates of angles and expansion for iterations of Fῡk(µ). By the formula
of Φk in Remark 7.1, we have thatDwΦk is a diagonal matrix that does not depend
on the point w. Hence we will omit this dependence. Thus, after identifying the
tangent spaces in U

Ỹ
with R3, we have that

||DwFῡk(µ)(v)|| = ||DΦ−1
k

(
DΦk(w)f

N2+mk+N1+nk
ῡk(µ) (DΦk)(v)

)
||

= ||DΦk(w)f
N2+mk+N1+nk
ῡk(µ) (v)||.

Observe also that the angles in Lemma 9.3 are taken with respect the coordinates
in the xy-plane in R3. To get these angles in U

Ỹ
we need to replace each angle α

by arctan(σ−mkP σ−nkQ tan(α)).
We have the following consequence of Lemma 9.2. For that recall also the

definition of the foliation D̃ῡk(µ) in 9.5:

Lemma 9.4. There is a constant C > 0 such that for every µ ∈ (−10,−9) and
every sufficiently large k the following holds:

Take K > 0, a point w ∈ Φ−1
k (Uῡk(µ)), and a unitary vector v = (v1, v2, v3) ∈

R3 such that

(9.20) |v2| > arctan(K).

Then
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(1) ‖π1,2

(
DwFῡk(µ)(v)

)
‖ > C K ‖v‖,

(2) angle
(
DwFῡk(µ)(v),Φ−1

k (Fu
P,ῡk(µ))

)
= arctan

(
O(λmkP σ2nk

Q σmkP )
)
→ 0

as k →∞, and
(3) angle

(
DwFῡk(µ)(v), D̃ῡk(µ)

)
→ 0, as k →∞.

Proof. The first two items of the lemma are direct translations of the corresponding
items of Lemma 9.2. For the convergence to zero in the second item we use (6.3).
The third item follows from (9.19) and the definition of Φk. �

9.5. End of the proof of Proposition 9.1. Using the local coordinates inUQ, fixed
small δ > 0 consider the neighbourhood

UX(δ)
def
= [−δ, δ]× [1− δ, 1 + δ]× [−δ, δ]

of the heteroclinic point X = (0, 1, 0) and the two-disc (see Figure 8)

S(δ)
def
= [−δ, δ]× {1− δ} × [−δ, δ] ⊂ ∂UX(δ).

For large k > 0 and µ ∈ (−10,−9) define the set

Ŝῡk(µ)(δ)
def
= C

(
f−nkῡk(µ)(0, 1− δ, 0), f−nkῡk(µ)(S(δ)) ∩ UQ

)
,

recall that C(x,A) is the connected component of the set A containing the point x.
We finally let

S̃ῡk(µ)(δ)
def
= Ŝῡk(µ)(δ) ∩ UỸ and Sῡk(µ)(δ)

def
= Φ−1

k (S̃ῡk(µ)(δ)) ⊂ R3.

Lemma 9.5. For every δ > 0 there is k0 such that for every k > k0 and every
µ ∈ (−10,−9) it holds

W uu(P+
ῡk(µ), Fῡk(µ)) t Sῡk(µ)(δ) 6= ∅.

Proof. Let C > 0 be the constant in Lemma 9.4 and take large K > 0 with
C K = τ > 1. Applying Lemma 9.3 to K, we get k0 such that the angles between
the lines parallel to the x-axis in R2 and π1,2(σ̃uu

K,ῡk(µ)) are at least arctan(K).
Thus, after increasing k0, we get the angular condition (9.20) in Lemma 9.4. Hence

lenght
(
Fῡk(µ)(σ̃

uu
K,ῡk(µ))

)
> τ lenght

(
σ̃uu
K,ῡk(µ)

)
.

The curve Fῡk(µ)(σ̃
uu
K,ῡk(µ)) is contained in the strong unstable separatrix σuu

ῡk(µ) of
W uu(P+

ῡk(µ)). By construction, the curve Fῡk(µ)(σ̃
uu
K,ῡk(µ)) also satisfies the angu-

lar condition (9.20). The proof now follows inductively: the curves Fnk (σ̃uu
K,ῡk(µ))

are contained in σuu
ῡk(µ) and their lengths grow exponentially. This implies that this

separatrix transversally intersects the two-disc Sῡk(µ)(δ). �

Note that, for every sufficiently large k, there are defined the continuations
Z±ῡk(µ) = Z±ε,ῡk(µ) of the transverse homoclinic point Z±ε of Q in Proposition 4.1.
These points are transverse homoclinic points of Q for fῡk(µ) and (in the coordi-
nates in UQ) are of the form

Z±ῡk(µ) = (0, 1± ζ±ῡk(µ), 0), ζ±ῡk(µ) ∈ (0, δ).
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γ̃uu
ῡk(µ)W s(Q)

•
Z−ῡk(µ)

•X

S(δ)

FIGURE 8. Two-dimensional connection between the blender and
the saddle Q.

For each k and µ, we can also consider a disc W±ῡk(µ) in W s(Q, fῡk(µ)) centred
at Z±ῡk(µ) which has uniform size and is uniformly transverse to W u

loc(Q, fῡk(µ)),
meaning that the angles between W±ῡk(µ) and W u

loc(Q, fῡk(µ)) at Z±ῡk(µ) are uni-
formly bounded from below.

We are now ready to conclude the proof of Proposition 9.1. Let γuu
ῡk(µ) be the

segment of σuu
ῡk(µ) joining P+

ῡk(µ) and Sῡk(µ)(δ) and consider (see Figure 8)

γ̃uu
ῡk(µ)

def
= fnkῡk(µ)(Φk(γ

uu
ῡk(µ))).

Consider the domain ∆k(µ) of the blender Υῡk(µ) in (7.3). The calculations in
[16, Step A, eq. (35)] imply that for every large k the coordinates (x, 1+y, z) ∈ UQ
of the points in fnkῡk(µ)(∆k(µ)) are close to X = (0, 1, 0) and they have Landau
symbols

x = O(λQ
nk), y = O(σ−2mk

P σQ
−nk), z = O(λQ

nk).

Hence fnkῡk(µ)(P
+
ῡk(µ)) converges to X as k →∞. It follows now from Lemma 9.5

that the curves γ̃uu
ῡk(µ) accumulate to the disc

{0} × [1− δ, 1]× {0} ⊂W u
loc(Q, f

nk
ῡk(µ)).
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This implies that for sufficiently large k the curve γ̃uu
ῡk(µ) transversely intersects the

disc W−ε,ῡk(µ) ⊂ W s
loc(Q, fῡk(µ)). As the curve γ̃uu

ῡk(µ) is contained in the unstable
manifold of the blender this ends the proof of Proposition 9.1.

10. PROOF OF THEOREM 1.1: INTERSECTIONS BETWEEN ONE-DIMENSIONAL
MANIFOLDS

We now prove that the stable manifold the blender Υε,k,µ of gε,k,µ robustly in-
tersects the unstable manifold of the saddle Q.

Proposition 10.1. For every small ε > 0, large k, and µ ∈ (−10,−9), there is a
Cr neighbourhood Vε,k,µ of gε,k,µ consisting of diffeomorphisms g such that

W s
(
Υg, g

)
∩W u

(
Qg, g

)
6= ∅,

where Υg and Qg are the continuations of Υε,k,µ and Q. Moreover, this intersec-
tion can be chosen quasi-transverse.

By Lemmas 5.1 and 5.2 this proposition follows from the next result:

Lemma 10.1. For every small ε > 0, large k, and µ ∈ (−10,−9), the unstable
manifold W u(Q, gε,k,µ) contains a uu-disc in the superposition region of Υε,k,µ.

10.1. Proof of Lemma 10.1. We import some ingredients from Section 5.3. Con-
sider the disc L in (5.9). By Remark 7.4, for sufficiently large k the set

Φ−1
k ◦ Rε,k,µ(gε,k,µ) ◦ Φk

(
L
)
⊂ R3

contains a disc in the superposition region of the blender Λε,k,µ in (7.5).
Take small δ = δ(ε) > 0 and the segment Lu

1,ε
def
= Lu

1,ε(δ) ⊂ W u(Q, fε) in
(4.12). By the definition of gε,k,µ, this disc is contained in W u(Q, gε,k,µ). Thus

(10.1) Ju
ε,k,µ

def
= gN1

ε,k,µ

(
Lu

1,ε

)
⊂W u(Q, gε,k,µ).

Note that the transition gN1
ε,k,µ does not depend on µ, thus in what follows we

will omit the dependence on µ of the sets Ju
ε,k,µ writing just Ju

ε,k. We will prove

that there is a compact subdisc Ĵu
ε,k of Ju

ε,k such that the Cr distance between the
discs

Φ−1
k ◦ g

N2+mk
ε,k,µ (Ĵu

ε,k) and Φ−1
k ◦ Rε,k,µ(gε,k,µ) ◦ Φk(L)

goes to zero as k →∞. As the latter set contains a disc in the superposition region
of the blender, this implies the lemma (see Figure 9). We now go to the details of
the proof.

Recall the definition of Φk = Ψk ◦Θς̄ in (7.2) and consider the parameterisation
of Φk(L) given by

γk : [−4, 4]→M, γk(t)
def
= Ψk ◦Θς̄(0, t, 0) = Ψk(0, ς

−1
2 t, 0).

We will provide a parameterisation γε,k : [−4, 4]→M of Ĵu
ε,k such that

(10.2) lim
k→∞

∥∥(Φ−1
k ◦g

N2+mk+N1+nk
ε,k,µ ◦γk − Φ−1

k ◦g
N2+mk
ε,k,µ ◦γε,k

)
|[−4,4]

∥∥
r

= 0.
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∆

L

•

•

Φ−1
k ◦ Rε,k,µ(gε,k,µ) ◦ Φk(L)Φ−1

k ◦ g
N2+mk
ε,k,µ (Ĵu

ε,k)

FIGURE 9. One-dimensional connection between the blender and
the saddle Q.

As the set Ψ−1
k ◦ g

N2+mk+N1+nk
ε,k,µ ◦ γk([−4, 4]) contains a disc in the superposition

region of the blenders (see Remark 7.4) this proves Lemma 10.1.
To get equation (10.2) we observe that∥∥Φ−1

k ◦ g
N2+mk+N1+nk
ε,k,µ ◦ γk − Φ−1

k ◦ g
N2+mk
ε,k,µ ◦ γε,k

∥∥
r

=∥∥Θ−1
ς̄ ◦Ψ−1

k ◦ g
N2+mk+N1+nk
ε,k,µ ◦ γk − Θ−1

ς̄ ◦Ψ−1
k ◦ g

N2+mk
ε,k,µ ◦ γε,k

∥∥
r
6

C
∥∥Ψ−1

k ◦ g
N2+mk+N1+nk
ε,k,µ ◦ γk − Ψ−1

k ◦ g
N2+mk
ε,k,µ ◦ γε,k

∥∥
r
,

whereC is an upper bound of theCr norm of Θ−1
ς̄ in the cube ∆. Thus to conclude

the proof of the proposition it is enough to prove the following:

Lemma 10.2. There is a parameterisation γε,k : [−4, 4]→M of Ĵu
ε,k such that

lim
k→∞

∥∥(Ψ−1
k ◦ g

N2+mk+N1+nk
ε,k,µ ◦ γk − Ψ−1

k ◦ g
N2+mk
ε,k,µ ◦ γε,k

)
|[−4,4]

∥∥
r

= 0.

We begin by giving the explicit parameterisation of γε,k of Ĵu
ε,k.

10.1.1. The parameterisations γε,k. We first write the segment Ju
ε,k in (10.1) in

local coordinates. Recalling the definitions of Lu
1,ε in (4.10), T1,1,ε = fN1

ε |U1,ε in
(4.8), and θε,k in (7.8) (where τ̄k is defined), we have

Ju
ε,k =

{
X̃1,ε +A

(
t e2 + ρ̄1,ε(t)

)
+ H̃1

ε

(
t e2 + ρ̄1,ε(t)

)
+

+ Πδ

(
A
(
t e2 + ρ̄1,ε(t)

)
+ H̃1

ε

(
t e2 + ρ̄1,ε(t)

) )
τ̄k : |t| < δ = δ(ε)

}
.

Using (4.11), (4.9), ρ̄1,ε(0) = 0, and Remark 4.5, we get δ̂ ∈ (0, δ) such that for
every |t| < δ̂ it holds

A
(
t e2 + ρ̄1,ε(t)

)
+ H̃1

ε

(
t e2 + ρ̄1,ε(t)) ∈ B(0, δ).
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As the map Πδ is igual to 1 in B(0, δ) (recall (3.2)), we can consider the subdisc

J̃u
ε,k

def
=
{
X̃1,ε +A

(
t e2 + ρ̄1,ε(t)

)
+ H̃1

ε

(
t e2 + ρ̄1,ε(t)

)
+ τ̄k : |t| 6 δ̂

}
⊂ Ju

ε,k.

For convenience, we write J̃u
ε,k in the following compact form:

J̃u
ε,k =

{
X̃1,ε + t A(v1,ε) + ρ̃1,ε(t) + τ̄k : |t| 6 δ̂

}
,

where

v1,ε
def
= e2 +A−1DH̃1

ε (0) e2,

ρ̃1,ε(t)
def
= A

(
ρ̄1,ε(t)

)
+ H̃1

ε

(
t e2 + ρ̄1,ε(t)

)
− tDH̃1

ε (0) e2.

Note that, by (4.11), we have that

d

dt
(ρ̃1,ε)(0) = ρ̃1,ε(0) = 0.

We now consider the subdisc Ĵu
ε,k of J̃u

ε,k obtained by rescaling the parameter t

by the factor σ−2mk
P σQ

−nk | ς−1
2 | � δ̂

4 < 1 as follows:

Ĵu
ε,k

def
=
{
X̃1,ε + σ−2mk

P σQ
−nk ς−1

2 t A(v1,ε) + ρ̂1,ε,k(t) + τ̄k : |t| 6 4
}
,

where
ρ̂1,ε,k(t)

def
= ρ̃1,ε

(
σ−2mk
P σQ

−nk ς−1
2 t

)
.

To rewrite the set Ĵu
ε,k in a compact form, let

(w̃1,ε
1 , w̃1,ε

2 , w̃1,ε
3 )

def
= DH̃1

ε (0) e2,

ρ̂`1,ε,k(t)
def
= ρ̃`1,ε

(
σ−2mk
P σQ

−nk ς−1
2 t

)
, ` = 1, 2, 3,

(10.3)

where ρ̃`1,ε is the `-th coordinate of ρ̃1,ε.

Remark 10.2. Remark 4.5 implies that (w̃1,ε
1 , w̃1,ε

2 , w̃1,ε
3 )→ (0, 0, 0) as ε→ 0.

Recalling that X̃1,ε = (1 + x̃1,ε, 0, 0), see (4.6) and (4.7), and the definitions of
A in (2.4) and of τ̄k in (7.7), we can write

Ĵu
ε,k =

{(
1 + x̃1,ε + xε,k(t), yε,k(t), zε,k(t)

)
: |t| 6 4

}
,

where

xε,k(t)
def
= σ−2mk

P σQ
−nk

(
α2 + w̃1,ε

1 ) ς−1
2 t+ ρ̂1

1,ε,k(t),

yε,k(t)
def
= σ−2mk

P σQ
−nk

(
β2 + w̃1,ε

2

)
ς−1
2 t+ ρ̂2

1,ε,k(t)

+ σ−mkP (c̃k + s̃k),

zε,k(t)
def
= σ−2mk

P σQ
−nk w̃1,ε

3 ς−1
2 t+ ρ̂3

1,ε,k(t) + σ−mkP (c̃k − s̃k).

(10.4)

The announced parameterisation of Ĵu
ε,k is given by

(10.5) γε,k : [−4, 4]→M, γε,k(t) = (1 + x̃1,ε + xε,k(t), yε,k(t), zε,k(t)).
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10.1.2. End of the proof of Lemma 10.2 (thus of Proposition 10.1). We calculate
separately the two terms in the lemma. This involves some explicit calculations in
the renormalisation scheme borrowed from [16] which are stated in Section 13.

• The term Ψ−1
k ◦ g

N2+mk+N1+nk
ε,k,µ

(
γk(t)

)
. Write

(xε,k,µ(t), yε,k,µ(t), zε,k,µ(t))
def
= Ψ−1

k ◦ g
N2+mk+N1+nk
ε,k,µ

(
γk(t)

)
= Ψ−1

k ◦ g
N2+mk+N1+nk
ε,k,µ ◦Ψk(Θς̄(0, t, 0)).

(10.6)

Using the formula in (13.1), replacing fῡk(µ),ρ by gε,k,µ = θε,k ◦ fε,ῡk(µ),ρ(ε) (this
leads to a dependence on ε of the next expressions), and considering the curve
Θς̄(0, t, 0) = (0, ς−1

2 t, 0) (see (5.5)), from equation (13.3) we get

xε,k,µ(t) =
(
a1 λ

mk
P σ−mkP α2 +

(
c̃k a2 + s̃k a3

)
β2

)
ς−1
2 t+ σP

mk σnkQ hotxε,k,µ(t),

yε,k,µ(t) = ς−1
2 µ+ b1 λ

mk
P σQ

nk α2 ς
−1
2 t+

(
c̃2k b2 + s̃2

k b3 + c̃k s̃k b4

)
β2

2 ς
−2
2 t2+

+ σP
2mk σ2nk

Q hotyε,k,µ(t),

zε,k,µ(t) =
(
c1 λ

mk
P σ−mkP α2 +

(
c̃k c2 + s̃k c3

)
β2

)
ς−1
2 t+ σP

mk σnkQ hotzε,k,µ(t),

where hot∗ε,k,µ(t), ∗ = x, y, z, are high order terms10.

Remark 10.3 (Lemma 8.3 in [16]). The terms

σP
mk σnkQ hotxε,k,µ(t), σP

2mk σ2nk
Q hotyε,k,µ(t), σP

mk σnkQ hotzε,k,µ(t),

go to zero in the Cr topology as k goes to infinity.

• The term Ψ−1
k ◦ g

N2+mk
ε,k,µ

(
γε,k(t)

)
.

Recalling the parameterisation of γε,k(t) in (10.5), write

(x̃ε,k,µ(t), ỹε,k,µ(t), z̃ε,k,µ(t))
def
= Ψ−1

k ◦ g
N2+mk
ε,k,µ

(
γε,k(t)

)
= Ψ−1

k ◦ g
N2+mk
ε,k,µ

(
1 + x̃1,ε + xε,k(t), yε,k(t), zε,k(t)

)
.

(10.7)

Using equation (10.4) and the linearity of gε,k,µ in UP , we get

gmkε,k,µ
(
1 + x̃1,ε + xε,k(t), yε,k(t), zε,k(t)

) def
=
(
x̂ε,k(t), 1 + ŷε,k(t), 1 + ẑε,k(t)

)
,

where

x̂ε,k(t) = λP
mk (1 + x̃1,ε) + λP

mkσ−2mk
P σQ

−nk
(
α2 + w̃1,ε

1

)
ς−1
2 t

+ λP
mk ρ̂1

1,ε,k(t),

ŷε,k(t) =
(
c̃k(β2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)
σ−mkP σQ

−nk ς−1
2 t+ σP

mk uε,k(t),

ẑε,k(t) =
(
s̃k(β2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

)
σ−mkP σQ

−nk ς−1
2 t+ σP

mk vε,k(t),

10In [16] these high order terms are denoted by h.o.t.∗, h.o.t.∗∗, h.o.t.∗∗∗.
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with

uε,k(t)
def
= c̃k ρ̂

2
1,ε,k(t)− s̃k ρ̂

3
1,ε,k(t),

vε,k(t)
def
= s̃k ρ̂

2
1,ε,k(t) + c̃k ρ̂

3
1,ε,k(t).

(10.8)

Recalling the expressions of ρ̂2
1,ε,k(t), ρ̂3

1,ε,k(t) in (10.3), for i = 2, 3 we get

(10.9) O(uε,k(t)) = O(vε,k(t)) = O(ρ̂i1,ε,k(t)) = O(σ−4m
P σQ

−2nk).

Thus the Landau symbols of x̂ε,k(t), ŷε,k(t), and ẑε,k(t) are of the form

x̂ε,k(t) = O(λP
mk), ŷε,k(t) = O(σ−mkP σQ

−nk) = ẑε,k(t).

Note that

(x̃ε,k,µ(t), ỹε,k,µ(t), z̃ε,k,µ(t)) = Ψ−1
k ◦ g

N2
ε,k,µ

(
x̂ε,k(t), 1 + ŷε,k(t), 1 + ẑε,k(t)

)
.

Recalling the definitions of Ψk in (6.9) and of fN2

ῡk(µ) (see Remark 6.3) and that

gN2
ε,k,µ = fN2

ε,ῡk(µ),ρ(ε) = fN2

ῡk(µ) in the neighbourhood f−N2

ῡk(µ)(B(Ỹ , ρ(ε))) of Y that
we are considering, we get

x̃ε,k,µ(t) = a1 λP
mkσmkP σQ

nk x̃1,ε

+
(
a1 λP

mkσP
−mk (α2 + w̃1,ε

1 ) + a2

(
c̃k (β2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)
+ a3

(
s̃k (β2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

))
ς−1
2 t+ Hotxε,k,µ(t);

ỹε,k,µ(t) = ς−1
2 µ+ b1 λP

mkσ2mk
P σQ

2nk x̃1,ε + b1 λP
mkσnkQ (α2 + w̃1,ε

1 ) ς−1
2 t

+
(
b2
(
c̃k(β2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)2
+ b3

(
s̃k(β2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

)2
+ b4

(
c̃k(β2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)(
s̃k(β2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

))
ς−2
2 t2

+ Hotyε,k,µ(t);

z̃ε,k,µ(t) = c1 λP
mkσmkP σQ

nk x̃1,ε

+
(
c1 λP

mkσP
−mk (α2 + w̃1,ε

1 ) + c2

(
c̃k (β2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)
+ c3

(
s̃k (β2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

))
ς−1
2 t+ Hotzε,k,µ(t),

where Hot∗ε,k,µ(t), ∗ = x, y, z, are high order terms. Their explicit expressions can
be found in Section 13.2.

• Comparing the terms in Lemma 10.2 We are now ready to estimate the difference
between the coordinates of the points in (10.6) and (10.7). For that writing

δwε,k,µ(t)
def
= w̃ε,k,µ(t)− wε,k,µ(t), w = x, y, z,

we obtain

δxε,k,µ(t) = a1 λP
mkσmkP σQ

nk x̃1,ε +
(
a1 λP

mkσP
−mk w̃1,ε

1 + a2

(
c̃k w̃

1,ε
2 − s̃k w̃

1,ε
3

)
+ a3

(
s̃k w̃

1,ε
2 + c̃k w̃

1,ε
3

))
ς−1
2 t+ Hotxε,k,µ(t)− σmkP σnkQ hotxk(t);
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δyε,k,µ(t) = b1 λP
mkσ2mk

P σQ
2nk x̃1,ε + b1 λP

mkσnkQ w̃1,ε
1 ς−1

2 t

+
(
b2
[
2β2 w̃

1,ε
2 c̃2k + (w̃1,ε

2 )2 c̃2k − 2 c̃k s̃k w̃
1,ε
3 (β2 + w̃1,ε

2 ) + (w̃1,ε
3 )2 s̃2

k

]
+ b3

[
2β2 w̃

1,ε
2 s̃2

k + (w̃1,ε
2 )2 s̃2

k + 2 c̃k s̃k w̃
1,ε
3 (β2 + w̃1,ε

2 ) + (w̃1,ε
3 )2 c̃2k

]
+ b4

[
2β2 w̃

1,ε
2 s̃k c̃k + (w̃1,ε

2 )2 s̃k c̃k

+ (c̃2k − s̃2
k) w̃

1,ε
3 (β2 + w̃1,ε

2 )− (w̃1,ε
3 )2s̃k c̃k

])
ς−2
2 t2

+ Hotyε,k,µ(t)− σ2mk
P σQ

2nk hotyk(t);

δzε,k,µ(t) = c1 λP
mkσmkP σQ

nk x̃1,ε +
(
c1 λP

mkσP
−mk w̃1,ε

1 + c2

(
c̃k w̃

1,ε
2 − s̃k w̃

1,ε
3

)
+ c3

(
s̃k w̃

1,ε
2 + c̃k w̃

1,ε
3

))
ς−1
2 t+ Hotzε,k,µ(t)− σmkP σnkQ hotzk(t).

We now prove that
∥∥δxε,k,µ |[−4,4]

∥∥
r
→ 0. The proofs of

∥∥δ∗ε,k,µ |[−4,4]

∥∥
r
→ 0,

∗ = y, z, are similar and hence omitted. For that write

δxε,k,µ(t) = Aε,k,µ(t) + Hotxε,k,µ(t)− σmkP σnkQ hotxk(t),

where Aε,k,µ(t) denotes the affine part of δxε,k,µ(t).

Claim 10.4.
(1) limk→∞

∥∥ Aε,k,µ |[−4,4]

∥∥
r

= 0,
(2) limk→∞

∥∥σmkP σnkQ hotxε,k,µ |[−4,4]

∥∥
r

= 0,

(3) limk→∞
∥∥Hotxε,k,µ |[−4,4]

∥∥
r

= 0.

Clearly, this claim implies Lemma 10.2.

Proof of Claim 10.4. For the first item recall that by (6.3) we get λmkP σ2mk
P σQ

2nk →
0 and that by Remark 10.2 the norm of (w̃1,ε

1 , w̃1,ε
2 , w̃1,ε

3 ) is small. The second
item was stated in Remark 10.3. The proof of last item is postponed to Sec-
tion 13.2.1. �

The proof of Proposition 10.1 is now complete.

11. PROOF OF THEOREM 1.1: HOMOCLINIC RELATIONS

We now prove that blender Υε,k,µ and the saddle P are homoclinically related.

Proposition 11.1. For every small ε > 0, large k, and µ ∈ (−10,−9) there is g
arbitrarily Cr close to gε,k,µ such that

W u
(
Υg, g

)
tW s

(
P, g

)
6= ∅ and W s

(
Υg, g

)
tW u

(
P, g

)
6= ∅.

Proof. Note that Propositions 9.1 and 10.1 hold for perturbations g of gε,k,µ. Re-
call the definition of the quasi-transverse heteroclinic point X2,ε in Proposition 4.1
and observe that this intersection point is preserved by the local perturbations we
have considered. Therefore X2,ε is also a heteroclinic point of gε,k,µ. Note also
that after a perturbation g of gε,k,µ (that does not destroy the heteroclinic points)
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P•

Υg

Q

•

FIGURE 10. Robust homoclinic tangencies

we can assume that the argument of Dg(Q) is irrational. Thus the hypotheses of
Lemma 4.1 hold.

By Proposition 9.1, W u
(
Υg, g

)
t W s

(
Q, g

)
6= ∅. Thus, after a perturbation,

that we continue denoting by g and does not change the argument of the com-
plex eigenvalue of Dg(Q), we can assume that there is a disc S ⊂W u(Υg, g) that
transversely intersectsW s

loc(Q, g) along a curve γ with nontrivial radial projection.
Lemma 4.1 now implies that W s(P, g) transversally intersects S ⊂ W u(Υg, g),
proving the first item of the proposition. Note also that g has a robust cycle associ-
ated to Q and Υg.

To prove the second intersection, note thatW u(P, g) andW s
loc(Q, g) interesects

transversely along a curve with a nontrivial radial projection. Note also that by
Proposition 10.1, W s(Υg, g) and W u

(
Q, g

)
intersects quasi-transversely at some

point Z. Consider a curve D ⊂ W s(Υg, g) and containing the point Z in its inte-
rior. Arguing as above and applying Lemma 4.1, we have that the negative iterates
of D (contained in W s(Υg, g) transversally intersects W s(P, g). This completes
the proof of the proposition. �

12. PROOF OF THEOREM 1.1: HOMOCLINIC TANGENCIES

In this section, we consider perturbations gε,k,µ of the diffeomorphisms f in
HrBH,e+(M). Next proposition implies the part of Theorem 1.1 about homoclinic
tangencies.
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Proposition 12.1. For every small ε > 0, large k, and µ ∈ (−10,−9) there is g
arbitrarily Cr close to gε,k,µ with a Cr robust homoclinic tangency associated to
blender-horseshoe Υg.

Proof. Note that close to the original heterodimensional tangency, the manifold
W u
(
P, gε,k,µ

)
intersect W s

(
Q, gε,k,µ

)
in closed curve denoted by Cε,k,µ. Let

Sε,k,µ be the two-dimensional compact disc contained in W u
(
P, gε,k,µ

)
bounded

by Cε,k,µ. By the λ-lemma, the forward iterates giε,k,µ(Sε,k,µ) of Sε,k,µ accumu-
lated to the unstable manifold of Q. By Lemma 10.1, the unstable manifold of Q
contains a disc in the superposition region of the blender Υε,k,µ. Thus there are
infinitely many iterates of Sε,k,µ containing uu-tubes in the superposition region of
the blender, see Figure 10 and recall Definition 5.1. Corollary 5.1 implies that the
manifold W u

(
P, gε,k,µ

)
and W s

loc

(
Υε,k,µ, gε,k,µ

)
have a Cr robust tangency. The

proposition follows noting that by Proposition 11.1 the point P and the blender
Υε,k,µ are homoclinically related. �

13. CALCULATIONS IN THE RENORMALISATION SCHEME

We collect some calculations from [16] that we used in the previous sections.

13.1. The renormalisation formula. First, recall the perturbations fῡ,ρ of f ∈
HrBH(M3) in (6.1). For that, we borrow from [16, Section 7.3] the explicit formula
for compositions of the form

(13.1) Ψ−1
k ◦ f

N2+mk+N1+nk
ῡk(µ),ρ ◦Ψk(x, y, z)

def
= (x̌k,µ,ρ, y̌k,µ,ρ, žk,µ,ρ).

Here, the iterates corresponding to nk occurs in UQ, the N1 iterates correspond
to the transition T1, the iterates corresponding to mk occurs in UP , and the N2

iterates correspond to the transition T2.
Consider the heteroclinic points X,Y in the cycle (see Section 2.1.2) and write

xk,µ,ρ(x, y, z)
def
= fnkῡk(µ),ρ ◦Ψk(x, y, z)−X,

x̂k,µ,ρ(x, y, z)
def
= fmk+N1+nk

ῡk(µ),ρ ◦Ψk(x, y, z)− Y.
(13.2)
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Using the notation in Section 6, the composition in (13.1) reads as follows:

x̆k,µ,ρ = a1 λ
mk
P λQ

nk
(
α1 (ck x− sk z) + α3 (sk x+ ck z)

)
+ a1 λ

mk
P σ−mkP α2 y +

(
c̃k a2 + s̃k a3

)
β2 y

+ σmkP λnkQ γ3

(
c̃k a3 − s̃k a2

)
(sk x+ ck z)

+ σP
mk σnkQ hotxk,µ,ρ,

y̆k,µ,ρ = µ+ b1 λ
mk
P σQ

nk α2 y

+ b1 λP
mk σP

mk λnkQ σnkQ
(
α1 (ck x− sk z)α3 (sk x+ ck z)

)
+
(
c̃2k b2 + s̃2

k b3 + c̃k s̃k b4

)
β2

2 y
2

+ σ2mk
P λ2nk

Q

(
s̃2
k b2 + c̃2k b3 − c̃k s̃k b4

)
γ2

3 (sk x+ ck z)
2

+ σmkP λnkQ

(
2c̃k s̃k (b3 − b2)(c̃2k − s̃2

k) b4

)
β2 γ3(sk x y + ck y z)

+ σP
2mk σ2nk

Q hotyk,µ,ρ,

z̆k,µ,ρ = c1 λ
mk
P λQ

nk
(
α1 (ck x− sk z) + α3 (sk x+ ck z)

)
+ c1 λ

mk
P σ−mkP α2 y +

(
c̃k c2 + s̃k c3

)
β2 y

+ σmkP λnkQ γ3

(
c̃k c3 − s̃k c2

)
(sk x+ ck z)

+ σP
mk σnkQ hotzk,µ,ρ,

(13.3)

where hot∗k,µ,ρ = hot∗k,µ,ρ(x, y, z), ∗ = x, y, z, are higher order terms whose
Laundau’s symbols satisfy the following conditions (see [16, Lemma 8.3]). Write

Ĥ2(xk,µ,ρ)
def
= H̃2(xk,µ,ρ)− λ2nk

Q ρ̃2,k,

where ρ̃2,k is defined in (6.7). Then

(i) O
(
hotxk,µ,ρ(x, y, z)

)
= O

(
λP

mk H̃1(xk,µ,ρ)
)

+O
(
σmkP Ĥ2(xk,µ,ρ)

)
+O

(
H1(x̂k,µ,ρ)

)
,

(ii) O
(
hotyk,µ,ρ(x, y, z)

)
= O(λP

mk)+O
(
H̃1(xk,µ,ρ)

)
+O
((
σmkP Ĥ2(xk,µ,ρ)

)2)
+O

(
σ−nkQ Ĥ2(xk,µ,ρ)

)
+O

(
H2(x̂k,µ,ρ)

)
,

(iii) O
(
hotzk,µ,ρ(x, y, z)

)
= O

(
λP

mkH̃1(xk,µ,ρ)
)

+O
(
σmkP Ĥ2(xk,µ,ρ)

)
+O

(
H3(x̂k,µ,ρ)

)
.

13.2. The high order terms of Ψ−1
k ◦ g

N2+mk
ε,k,µ

(
γε,k(t)

)
. Recall the definition of

γε,k in (10.5). We now provide an explicit expression of the high order terms
Hot∗ε,k,µ(t) in Ψ−1

k ◦ g
N2+mk
ε,k,µ

(
γε,k(t)

)
. Define xε,k,µ and x̂ε,k,µ as in (13.2), where

fῡk(µ) is replaced by fε,ῡk(µ) (this is why the subscript ε appears). Write

wε,k,µ(t)
def
= xε,k,µ ◦Θς̄(0, t, 0), ŵε,k,µ(t)

def
= x̂ε,k,µ ◦Θς̄(0, t, 0),
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where Θς̄ is an in (5.5). We have

Hotxε,k,µ(t) = a1 λP
mkσmkP σQ

nk ρ̂1
ε,k(t) + a2 σ

2mk
P σQ

nkuε,k(t)

+ a3 σP
2mkσQ

nkvε,k(t) + σmkP σQ
nkH1

(
ŵε,k,µ(t)

)
;

Hotyε,k,µ(t) = b1 λP
mkσ2mk

P σQ
2nk ρ̂1

ε,k(t)

+ σ2mk
P σQ

nk
(

2b2
(
c̃k(α2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

)
+ b4

(
s̃k(α2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

))
ς−1
2 t uε,k(t)

+ σ2mk
P σQ

nk
(

2b3
(
s̃k(α2 + w̃1,ε

2 ) + w̃1,ε
3 c̃k

)
+ b4

(
c̃k(α2 + w̃1,ε

2 )− w̃1,ε
3 s̃k

))
ς−1
2 t vε,k(t)

+ σ4mk
P σQ

2nk
(
b2
(
uε,k(t)

)2
+ b3

(
vε,k(t)

)2
+ b4 uε,k(t) vε,k(t)

)
+ σ2mk

P σQ
2nkH2

(
ŵε,k,µ(t)

)
;

Hotzε,k,µ(t) = c1 λP
mkσmkP σQ

nk ρ̂1
ε,k(t) + c2 σ

2mk
P σQ

nkuε,k(t)

+ c3 σP
2mkσQ

nkvε,k(t) + σmkP σQ
nkH3

(
ŵε,k,µ(t)

)
.

13.2.1. Proof of item (3) in Claim 10.4. We claim that∥∥(Hotxε,k,µ − σmkP σQ
nkH1 ◦ ŵε,k,µ

)
|[−4,4]

∥∥
r
→ 0.

For this just note that
• uε,k(t), vε,k(t) and ρ̂`ε,k(t), ` = 2, 3, have the same symbol of Landau
O(σ−4mk

P σ−2nk
Q ), see (10.8) and (10.9),

• ρ̂1
ε,k is bounded and (6.3).

Finally, the convergence

lim
k→∞

∥∥σmkP σQ
nkH1 ◦ ŵε,k,µ |[−4,4]

∥∥
r

= 0

follows exactly as in [16, Claim 8.4].
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[7] BONATTI, CHRISTIAN AND D ÍAZ, LORENZO J., Robust heterodimensional cycles and C1-
generic dynamics, Journal of the Institute of Mathematics of Jussieu, 7(2008), pp. 469–525.
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Hénon-like families, New trends in one-dimensional dynamics, Springer Proc. Math. Stat.,
285(2019), pp. 137–163.

[18] KIRIKI, SHIN AND SOMA, TERUHIKO, C2-robust heterodimensional tangencies, Nonlinear-
ity, 25(2012), pp. 3277–3299.

[19] MOREIRA, CARLOS GUSTAVO, There are no C1-stable intersections of regular Cantor sets,
Acta Mathematica, 206(2011), pp. 311–323.

[20] NEWHOUSE, SHELDON E., The abundance of wild hyperbolic sets and non-smooth stable sets
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