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NONTRANSVERSE HETERODIMENSIONAL CYCLES:
STABILISATION AND ROBUST TANGENCIES

LORENZO J. DIAZ AND SEBASTIAN A. PEREZ

ABSTRACT. We consider three-dimensional diffeomorphisms having simulta-
neously heterodimensional cycles and heterodimensional tangencies associated
to saddle-foci. These cycles lead to a completely nondominated bifurcation set-
ting. For every r>2, we exhibit a class of such diffeomorphisms whose het-
erodimensional cycles can be C" stabilised and (simultaneously) approximated
by diffeomorphisms with C" robust homoclinic tangencies. The complexity of
our nondominated setting with plenty of homoclinic and heteroclinic intersec-
tions is used to overcome the difficulty of performing C" perturbations, r > 2,
which are remarkably more difficult than C'* ones. Our proof is reminiscent
of the Palis-Takens’ approach to get surface diffeomorphisms with infinitely
many sinks (Newhouse phenomenon) in the unfolding of homoclinic tangencies
of surface diffeomorphisms. This proof involves a scheme of renormalisation
along nontransverse heteroclinic orbits converging to a center-unstable Hénon-
like family displaying blender-horseshoes. A crucial step is the analysis of the
embeddings of these blender-horseshoes in a nondominated context.

To Jacob Palis, in the occasion of his 80th birthday

1. INTRODUCTION

Palis’ density conjecture [22]] claims that bifurcations through cycles (either ho-
moclinic tangencies or heterodimensional cycles) associated to saddles (hyperbolic
periodic points) are the main mechanisms for destroying hyperbolic dynamics: any
nonhyperbolic system can be approximated by diffeomorphisms displaying one of
those bifurcations. A homoclinic tangency associated to a saddle occurs when the
invariant (stable and unstable) sets of a saddle have a nontransverse intersection.
A heterodimensional cycle associated with a pair of saddles of different indices
(dimension of the unstable bundle) occurs when the invariant sets of these saddles
intersects cyclically. Note that heterodimensional cycles can only occur in dimen-
sion at least three and that there are settings (as the one in this paper) where both
types of bifurcations occur simultaneously with overlapping effects.
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As a consequence of the Kupka-Smale genericity theorerrﬂ a cycle associated
to saddles is a fragile configuration that can be destroyed by small perturbations.
However, these configurations can become robust (indestructible by small pertur-
bations) when these saddles are embedded in some special type of horseshoes.
Hence, it is natural to consider also heterodimensional cycles and tangencies asso-
ciated to (basic) hyperbolic sets (for the precise definition see Section [I.2). One
aims to understand when a bifurcation through a fragile cycle associated to saddles
can lead to such robust cycles.

Bonattiﬂ stated a stronger version of Palis’ conjecture using robust cycles: the
union of the C” open sets of hyperbolic diffeomorphisms (satisfying the Axiom
A and the no-cycles properties) and of diffeomorphisms with C" robust cycles is
dense in the space of C" diffeomorphisms, see [8, Conjecture 1.10]. For results
and recent progress in the previous conjectures, see [26} [11}|12]] for the Palis’ one
and [21, 119, 1, |8]] for Bonatti’s one. Some of these results will be discussed below.

The latter conjecture has several motivations, one of them comes from the study
of global dynamics of diffeomorphisms when considering the decomposition of the
chain recurrence set into its chain of recurrence classes. Note first that two saddles
involved in a cycle are always in the same class of recurrence. One aims to put
these saddles robustly into the same class. If such saddles are contained in a pair
of transitive hyperbolic sets involved in a robust cycle then the continuations of
the hyperbolic sets (and hence the ones of the initial saddles) are also in the same
class of recurrence. This gives a way to put saddles with different indices into pre-
scribed recurrence classes. This process is known as stabilisation of a cycle. More
precisely, a heterodimensional cycle of a C" diffeomorphism f associated to sad-
dles P and ) can be C" stabilised if there are diffeomorphisms arbitrarily C” close
to f with a C" robust cycle associated to transitive hyperbolic sets containing the
continuations of P and (). The stabilisation of a homoclinic tangency associated
to a saddle is defined analogously.

The stabilisation of cycles depends on the type of cycle, differentiability, and
dimension. To avoid technicalities, we will restrict our discussion to dimensions
two and thre We first consider homoclinic tangencies. For surface diffeomor-
phisms this question is completely solved: there are no C'! robust tangencies and
hence no homoclinic tangency can be C stabilised, [I9]. On the other hand, if
r > 2 then every such a tangency can be C" stabilised, [20]. In dimension three,
a combination of [20, 27, 25] and the theory of normal hyperbolicity implies that,
every C" homoclinic tangency can be C" stabilised for > 2. In the C' case,
the stabilisation of homoclinic tangencies involves geometrical constraints and, in

Periodic points of generic diffeomorphisms are hyperbolic and their invariant manifolds are in
general position (i.e., either they intersect transversely or they are disjoint).

Formulated in Bonatti’s talk The global dynamics of C* generic diffeomorphisms or flows, in the
Second Latin American Congress of Mathematicians, Cancin, México (2004). See also [6].

3This allows us to skip the technical discussion of the so-called coindex of a heterodimensional
cycle, since in dimension three the coindex is always one. For phenomena that may occur in higher
dimensions, as for instance robust tangencies of large codimension, we refer to [2} 4].
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general, it is not known which tangencies can be stabilised (see also [[10]]). For in-
stance, combining normally hyperbolic surfaces and [19], one can get homoclinic
tangencies that cannot be C 1 stabilised, see also [6, Sections 4.3-6].

Consider now heterodimensional cycles. First, every three-dimensional het-
erodimensional cycle leads to C'* robust cycles [7], although these cycles may
be not related to the saddles in the initial cycle. In [8] there is given a class of
heterodimensional cycles that cannot be C' stabilised (twisted cycles). Finally, in
[9] it is proved that every nontwisted cycle can be C'! stabilised. The techniques
used in these works are genuinely C''. Due to the absence of suitable tools, the
stabilisation problem in higher differentiability is widely open.

To explain our results, we recall that, in dimension three, two saddles with dif-
ferent indices have a heterodimensional tangency if their two dimensional invariant
manifolds have some nontransverse intersection. These tangencies were introduced
in [[15] as a source of robustly nondominated/wild dynamics, see also [[18, [3]. In
this paper, we consider a class of three-dimensional C" diffeomorphisms whose
heterodimensional cycles involve heterodimensional tangencies (see Figure[T)). For
every r > 2, we state the C” stabilisation of such cycles and show that they also
provide C" robust homoclinic tangencies, see the Stabilisation and Robust tangen-
cies theorems below. Let us now provide further details of our statements.

FIGURE 1. Heterodimensional cycles with heterodimensional tangencies.

Let M be a three-dimensional compact manifold. We consider a set p; (M) of
C" diffeomorphisms of M having a heterodimensional cycle with a heterodimen-
sional tangency associated to saddle-foci P and () of indices two and one satisfying
the following conditions:

e Linearising assumptions at P and () and spectral conditions implying some
sort of locally dissipative behaviour (Section [2.1.1).

e The one-dimensional invariant manifolds W9(P, f) and W"(Q, f) have a
quasi-transverse intersection along the orbit of some point X and the two
dimensional invariant manifolds W" (P, f) and W*(Q, f) have a heterodi-
mensional tangency along the orbit of some point Y. This tangency may
be of hyperbolic or elliptic type (Section[2.2)). The type of tangency plays
an important role in the resulting dynamics.
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e Conditions on the “transitions” from P to () and from @) to P along the
orbits of the heteroclinic points X and Y (Section[2.1.2)).

The precise description of the set (M) is given in Section Our main results
are the following, see Theorem |[I.1] for further details.

Stabilisation of cycles. Ler r > 2. Any cycle in Hp (M) can be C” stabilised.

The next result deals with diffeomorphisms in Hp;(M) whose heterodimen-
sional tangency is of elliptic type (see the lefthand side of Figure [T). This leads
to the definition of the subset H,;; . (M) of Hpu (M), see Section for the

precise definition and a discussion.

Robust tangencies. Let v > 2. Every diffeomorphism in Hiy; (M) can be C"
approximated by diffeomorphisms with a C" robust homoclinic tangency associ-
ated to a basic set containing the continuation of the saddle-focus of index two.

1.1. Our approach: a renormalisation scheme leading to blender-horseshoes.
To explain the strategy of the proof of our results let us first recall the approach in
[23, Chapter 6ﬂ to stabilise homoclinic tangencies of C? diffeomorphisms. The
construction in [23]] has the following main ingredients: (a) a renormalisation
scheme at a homoclinic tangency, (b) convergence of the scheme to a quadratic
one-parameter family, (¢) existence of parameters of the family corresponding to
thick horseshoes (horseshoes with large “fractal-like dimension™), and (d) control
of the localisation of the thick horseshoe guaranteeing that it is homoclinically re-
lateaﬂ to the continuation of the initial saddle. A key property in this approach is
that thick horseshoes are C? robust, thus their existence for the limit map extends
to nearby systems.

Our strategy to get the C” stabilisation of cycles in Hpj; (M) translates the ideas
of [23]] to a heterodimensional setting following the approach started in [14)]. In
our construction, the ingredients (a)—(d) above are replaced by: (a’) a renormal-
isation scheme at a heterodimensional tangency, (b’) convergence of the scheme
to a center-unstable Hénon-like family, (¢’) existence of parameters corresponding
to blender-horseshoes, (d’) prove that the blender-horseshoes are homoclinically
related to the initial saddle of index two and have a robust cycle with the initial
saddle of index one. Let us observe that, in very rough terms, blender-horseshoes
are local hyperbolic plugs used to get robust heterodimensional cycles, where they
play a role similar to the one of the thick horseshoes for homoclinic tangencies, see
SectionE]for details. As above, a key step is to analise how the blender-horseshoes
are embedded in the global dynamics.

‘In [23] it is proved the generic coexistence of infinitely many sinks, in this proof the occur-
rence of robust tangencies is a key step. In this homoclinic case, these robust tangencies imply the
stabilisation of the tangency, defined similarly as in the case of a cycle.

STwo hyperbolic sets with the same index are homoclinically related if their invariant manifolds
intersect cyclically and transversally.
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Here we rely on preliminary results in [[16} [17]] towards the development of the
strategy (a’)—(d’). In our context, the “limit” family is the center-unstable Hénon-
like family given by

1

Go(r,y,2) = (Yo u+ > +myz+m2®2+y), @@= (&um,m0).

For diffeomorphisms in #;;; (1), the renormalisation scheme and its convergence
to the family G, (steps (a’) and (b’)). were obtained in [[16]]. A crucial property
(step (¢”)) is that there is an open set Opyy of parameters w for which the family G,
exhibits blender-horseshoes, see [[17]. In the final step (d’), we analyse how these
blender-horseshoes are embedded in the global dynamics (the blender-horseshoe
is homoclinically related to P and has a robust cycle with )). This is a major
difficulty in our nondominated setting. It turns out that the lack of domination is
simultaneously a difficulty and, in some sense, an advantage. First, the existence
of nonreal multipliers makes the renormalisation scheme and the “existence and
localisation” of blenders a difficult task. On the other hand, the dynamics at the
bifurcation is very rich and, in particular, enables us to find new homoclinic and
heteroclinic orbits close to the initial cycle. As a heuristic principle, this richness
allows us to overcome the difficulty of performing C" perturbations, r > 2, which
are notably more problematic than C'! ones.

The lack of domination also means that there are plenty of possibilities for un-
folding the cycles involving many parameters. For instance, comparing with the
setting of homoclinic tangencies where any transverse direction of unfolding be-
haves in the same way, the lack of domination implies that any direction of unfold-
ing is different. Thus we have eight natural parameters: six parameters correspond-
ing to the unfolding of the nontransverse intersections (three for the heterodimen-
sional tangency and three for the quasi-transverse heteroclinic intersection), and
two parameters associated to the arguments of the saddle-foci, see Section [6.1]
We see that “unfoldings following appropriate directions” lead to robust cycles.
However, the complexity of these cycles is huge and a complete description of the
bifurcations is beyond reach.

We now recall some definitions and state precisely our results.

1.2. Stabilisation of cycles and robust tangencies: precise statements. Let M
be a compact boundaryless manifold. Let Diff” (M) be the space of C” diffeomor-
phisms of M endowed with the C" uniform topology. Consider f € Diff" (M) and
A a hyperbolic transitive set (i.e. with a dense orbit) of f. Recall that there is a
C" neighbourhood U/ of f such that every g € Uy has a hyperbolic set A, that is
topologically conjugate to A ; called the continuation of A ;. The index of Ay is the
dimension of its unstable bundle (by transitivity, this number is well defined).
Consider f € Diff"(M) having a pair of transitive hyperbolic sets Ay and Y ¢
with different indices. These sets form a heterodimensional cycle if their invari-
ant stable and unstable sets intersect cyclically, i.e., W3(Ay) N W (Y ¢) # 0 and
WY (Ay) N W3(Yf) # (. This cycle is C” robust if there is a C" neighbourhood
Uy of f consisting of diffeomorphisms g such that the sets A, and T, have a het-
erodimensional cycle. The notion of a C” robust homoclinic tangency associated
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to Ay is stated similarly: there is a C" neighbourhood U/ of f such that for every
g € Uy the invariant stable and unstable sets of A, have some nontransverse in-
tersection. Recall that robust cycles cannot be associated to trivial hyperbolic sets
(i.e., periodic orbits).

A heterodimensional cycle of a C" diffeomorphism f associated to saddles Py
and Q¢ can be C" stabilised if there are diffeomorphisms g € Diff" (M) arbitrarily
C" close f with a C" robust cycle associated to transitive hyperbolic sets A, and
T, containing the continuations Py and ()4, respectively.

Our main result is the following theorem.

Theorem 1.1. Let r > 2 and M be a compact boundaryless three-dimensional
manifold. Given f € Hpy (M), with a cycle associated to saddle-foci Py and Q ¢
of indices two and one, there are diffeomorphisms g arbitrarily C" close to f with
a blender-horseshoe A4 of index two such that:

(i) Ay and Q4 has a C" robust heterodimensional cycle and
(ii) Ay and Py are homoclinically related.

Moreover, if f € Hpy .+ (M) then the blender-horseshoe Ay has a C" robust
homoclinic tangency.

1.3. Steps of the proofs. We now explain the steps of the proof of Theorem (1.1
Consider f € Hpy (M) with a cycle associated to saddle-foci Py and Qs as in the
theorem. A preliminary step is to perturb the original cycle to obtain a new diffeo-
morphism in Hp (M) (that continue denoting by f) having transverse homoclinic
points and new additional quasi-transverse heteroclinic points associated to Py and
Q¢ (see Proposition . We can now apply the renormalisation scheme to this
new cycle, getting diffeomorphisms g arbitrarily C" close to f whose dynamics in
a neighbourhood of the cycle is close to a Hénon-like map G, with w € Opy. By
Proposition each diffeomorphism g has a blender-horseshoe A, of index two.
We will see that the following holds:

(ia) The two-dimensional manifolds W" (A4, g) and W5(Qg, g) intersect trans-
versely, see Proposition The difficulty of this step is to control the size of
the unstable manifold of A4, assuring that it is sufficiently “large” so that it is con-
nected to the stable manifold of Q),. We overcome this difficulty with an analysis
motivated by the constructions in [23, Section 6.4] for homoclinic tangencies of
surface diffeomorphisms.

(ib) The one-dimensional manifolds W*5(Ag, g) and W*(Qg, g) have nonempty in-
tersection, see Proposition [I0.1} This step is inspired by [14, Theorem 1.4] (see
Remark [I.T| for a discussion) and involves quantitative aspects of the renormalisa-
tion scheme in [[L6]. In this step the new quasi-transverse heteroclinic points above
play an important role.

(ii) The saddle P, and the blender-horseshoe Ay are homoclinically related, see
Proposition This step is a relatively simple consequence of (ia) and (ib)
where the existence of transverse homoclinic points of Qs is used.



STABILISATION AND ROBUST TANGENCIES OF CYCLES 7

Conditions (ia) and (ii) are C" open, r > 1, while (ib) is not (due to deficiency
of the sum of the dimensions). The blender-horseshoe allows us to make this non-
transverse intersection C” robust, » > 1. Thus conditions (ia) and (ib) give a C"
robust cycle between (), and Ay4. As A, and P, are homoclinically related, they are
contained in a larger hyperbolic set, implying the stabilisation of the initial cycle.

In the second part of the theorem, about robust tangencies, we consider diffeo-
morphisms with elliptic tangencies in HEH,ﬁ (M) (lefthand side of Figure [I)) and
study the intersections between the two-dimensional manifolds of the saddle-foci
in the cycle. We see that these intersections generate “tubes crossing the reference
domain of the blender-horseshoe”, see Section[5.2] These tubes will provide robust
tangencies. This step involves the constructions in [8|] using folding manifolds.

Remark 1.1. In [14] it is obtained a renormalisation scheme for C" diffeomor-
phisms f, r > 2, with a configuration somewhat similar to the one here, where
the saddle-foci are replaced by a pair of saddles with real multipliers. In [14] the
intersection between the one-dimensional manifolds in (ib) is obtained for C1¢
perturbations of f. Let us observe a perhaps counterintuitive fact: the intersections
between the “big” two dimensional manifolds in (ia) are more difficult to obtain
than the intersections between the “small” one dimensional manifolds in (ib). In-
deed, in [14]] the intersections (ia) and (ii) were not achieved.

Organisation of the paper. The bifurcation setting is described in Section [2| In
Section 3] we introduce the perturbations used in our constructions. In Section [
we prove that the set of diffeomorphisms having additional “special” homoclinic
and quasi-transverse heteroclinic intersections is dense in Hp (M ). These “spe-
cial” homoclinic and heteroclinic points will play an important role in our proof.
Blender-horseshoes and their occurrence in center-unstable Hénon-like families are
discussed in Section [5] In Section [6] we review some relevant ingredients renor-
malisation scheme in [16] used in our constructions. In Section [/, we study the
interplay between the blender-horseshoes given by the renormalisation scheme and
the additional heteroclinic points. Section [§]deals with orbits and itineraries asso-
ciated to the renormalisation scheme. The proof of Theorem [I.1]is completed in
SectionsOHI2l Section[ldeals with the intersections between the two-dimensional
invariant manifolds of @) and of the blender-horseshoe. In Section [I0] we state
the occurrence of robust intersections between the one-dimensional invariant man-
ifolds of () and of the blender-horseshoe. In Section [T} we see that the saddle
P and the blender-horseshoe are homoclinically related. Finally, in Section [T2]we
prove the part of the theorem corresponding to robust tangencies. Section [13]is
an appendix collecting some explicit calculations of the renormalisation scheme
borrowed from [[16].

2. THE BIFURCATION SETTING

In this section, we describe precisely the set Hiypy (M), see Definition We
close this section with some comments on the geometry of the cycle. Throughout
this section we consider diffeomorphisms f having a pair of saddle-foci of different
indices P = Py and ) = Q.
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2.1. The set H;; (M ). We now explain the conditions in the definition of H (M ):
linearising dynamics and nontransverse intersections and transition maps.

2.1.1. Linearisable local dynamics.

(A) Saddle-foci periodic points: Let w(P) and w(Q) be the periods of P and Q.
We assume that f7(7) and f™(@) are C" linearisable in small neighbourhoods Up
of P and Uy of Q. Denote the eigenvalues of D f™(")(P) and D f™(@)(Q) by

e ()\p,ap e 2P Gp e%wp) where 0 < [Ap| <1< op, pp €[0,1],
' ()\Q 6_2ﬂ-wQ,)\Q 627”'(’0Q,0Q) where 0 < )\Q <1l< ‘UQ‘, PQ € [0, 1].
We assume that

log |A5*
2.2) 0< |IAplt op|"oq| <1, where 5= ePg |
log |op|

In what follows, we assume that in the linearising local coordinates the sets Up
and Ug are the “cubes” [—ap, ap]® and [—ag, ag]?, for some ap,ag > 0. For
simplicity, we also assume that the periods 7(P) and 7 (()) are equal to one.

2.1.2. Nontransverse intersections and transition maps.

(B) Quasi-transverse intersection and its transition map: The one-dimensional in-
variant manifolds of P and () intersect quasi-transversely along the orbit of a point
X = Xy, thatis X € W3(P, f)nW"(Q, f) and

After replacing X by some iterate, we can assume that X € Ug. Associated to
X there is a transition map corresponding to some iterate of f going from Ug to
Up defined as follows. There are N1 € N such that

MX) Y X eUp and fY(X)gUp forevery 0<i<N;

and a small neighbourhood Ux of X contained in Ug such that

def

N (Ux) = Uz C Up.
In the local coordinates at P and @, the restriction T1 of fV1 to Uy is of the form:
(2.3) X +W) = fMNX+W) =X+ AW) + H(W),
where
ap Qz ag
(2.4) A=(0 B 0], aifey#0,

0 0 3

and H : R? — R3 is such that H(0) = 0 and DH (0) is the null matrix. Note that
a1P2y3 # 0 is not an additional assumption since ™! is a diffeomorphism.
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(C) Heterodimensional tangency and its transition map: The two-dimensional in-
variant manifolds of P and () intersect along the orbit of a point Y = Y} thatis a
heterodimensional tangency, that is, the orbit of Y is contained in the set

(WP, f)n W@, )\ (WP, f) dhIV(Q, f)).

As above, after replacing Y by some iterate, we can assume that Y € Up.
Associated to Y there is a transition map corresponding to some iterate of f going
from Up to Ug defined as follows. There are N> € N such that

MYy e Ug and fY(Y)gUg forevery 0<i< Ny
and a small neighbourhood Uy of Y contained in Up such that

def

2 (Uy) = Uy C Ug.

In the local coordinates at () and P, the restriction o of f N2 to Uy is of the form:

(2.5) LY + W)=Y+ W)=Y + BW) + HW),

where B is a quadratic map of the form

x a1T + a2y + asz
26) Bly| =|biz+boy®+b32% +byyz |, b1 (agcs — ageg) # 0.
z C1T + coy + c32

where H : R?® — R? is a map such that H(0) = 0, DH(0) is the null matrix, and

0? o? o?

here H; is the i-th component of H. Note that by (azcs — aszea) # 0 is not an
additional assumption since V2 is a diffeomorphism.
The constants aq, ..., c3 in the definition of B satisfy the following conditions

2.7 c = c3, y3(az —az) >0
that will guarantee the convergence of the renormalisation scheme.

Notation 2.1. Given f € Hp (M) we say that P,Q, X, and Y are the elements
of the cycle of f and that Ny and N are the transition times of the cycle.

Notation 2.2 (Coordinates of the heteroclinic points). In what follows, we will
assume that, in our local coordinates, the heteroclinic points above are of the form:

X =(1,0,0), Y =(0,1,1) (in the neighbourhood Up),
X =1(0,1,0), Y = (1,0,1) (in the neighbourhood Ug).
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2.1.3. Parameters of the transition maps. To each diffeomorphism f satisfying
(A)-(C) and ¢ > 1 we associate the following parameters

(2.8) =36 ) = (s1,5,53,5,55) € R,

where

aet B2(az + az) aet 33 (b2 + b3 + bs) det .9 (b2 + b3 — by
S1l=—F=", &= s =& T3 |
(29) \/§ 2 (ag—ag)
' REING <52(b3—b2)> o Ba(c2 + ¢3)
as—az ) V2 oo
here 35 is as in (2.4) and a1, ..., cg are as in (2.6).

Definition 2.3 (The set Hp;;(M)). The set Hip (M) consists of the C” diffeo-
morphisms f satisfying (A)-(C) such that

(2.10) (ag + ag)(ba + bz + by) # 0

and whose vector ¢(&, f) satisfies

(€, 576365 1y s16a65 1) € (1.18,1.19) X (—epm, eBn)?,

where epy is a number fixed in Theorem [5.6]

Remark 2.4. Equations (2.4)) and (2.10) implies that <1 ¢2 g5 # 0. These conditions
are used to get blender-horseshoes in the renormalisation scheme.

2.2. Geometry of the cycle: the sets Hpy (M), Hpy (M), and Hiy o (M).
For R = P, () consider

VVlOC(R f) = (R’ VVI?)C(Ru f) N UR)7 * =8, U,

here C'(z, A) is the connected component of the set A containing the point x.

The next definition classifies the two types of heterodimensional tangencies that
we will consider. Note that given any f € Hpy (M) the set Up \ W2 (P, f) has
two connected components.

Definition 2.5 (Elliptic and hyperbolic tangencies). The heterodimensional tan-
gency at Y is elliptic if there is a neighbourhood P35, of Y in W*(Q, f) N Up such
that the set %, \{Y'} is contained in a connected component of Up \ W2 (P, f).
The tangency is hyperbolic if every neighbourhood of Y in W*(Q, f) contains
points in both components of Up \ W} (P, f).

In Figure[T] the heterodimensional tangency in the left-hand side is elliptic while
the one in the right-hand side is hyperbolic.

We observe that if f € Hpj(M) then the heterodimensional tangency at the
point Y is either hyperbolic or elliptic. We split the set H;j;(M) in two parts,
Hpp (M) and Hpy (M) consisting of hyperbolic and elliptic heterodimensional
tangencies, respectively.

For diffeomorphisms in f € Hpy (M) we need to take in consideration the
relative position of the tangency and the quasi-transverse heteroclinic points. We
consider the subset Hyy (M) of Hiy (M) such that (with the notation above)
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the set P \{Y'} and X are in the same connected component of Up \ We (P, f),
see Figure |1l These geometrical considerations have the same flavour of those in
[24, Section 2].

3. TRANSLATION AND ROTATION-LIKE PERTURBATIONS

In this section, we describe the two types of C” perturbations used in our con-
structions. We start by introducing a class of auxiliary bump functions.

Caveat. For simplicity, throughout this paper, we will use the term perturbation to
refer to arbitrarily small ones.

3.1. Auxiliary bump functions. Consider a family of C” bump functions 4%, § >
1, such that

0, x| > 0,
(3.1) V)=20<b(z)<1, 1<|z[<0,
1, lz| < 1.

Associated to b? we consider the family of bump functions

0 def ;9 [ L
b(r) = b (), p>0
P
and the three-dimensional bump functions
0. 3 9 _ 10 9 0
(3.2) I,: R® — [0, 1], Hp(as,y,z) = bp(a:) bp(y) bp(z).

Denote by B(z, ) the open ball in R? with center 2 and radius 7 and by || - ||, the
C" norm. Note that the support of Hf; is the closure of B(0,0p) and that

(3.3) T < ([[7)])% "

In what follows, for simplicity, when § = 2 we write b?) = b, and HZ = II,,.

3.2. Translation-like perturbations. Given a point Z, € R3, a vector w € R3,
and small p > 0, we consider the C" map Tz, 5 , : R3 — R3 defined by

Z +1,(Z — Zo)i, it Z € B(Zo,2p),
G4 Tza,2) = L
Z, ifZ & B(Zy,2p).
By construction and by (3.3), it holds
1 Tz0,3,0 — 14|, < [[IL,[], 1] < (lfollr)® p~" [J0]].

Therefore, for small ||w||, the map T, 5, is a C" perturbation of the identity
supported in B(Zy, 2p). Finally observe that

TZOJLE)P(B(ZO’ 2p)) = B(ZO, 2p)
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3.3. Rotation-like perturbations. We now consider maps 1%, I$: R? — R3
w € [—m,m], defined by

1 0 0 cos2mw 0 —sin27w
FE( 0 cos2mw —sin2rw |, e 0 1 0 ,
0 sin27mw  cos2mw sin2nw 0 cos27ww

and for # > 1 and x > 0 their associated C'*° diffeomorphisms

3.5) Lo BT =R R (W) = Loy, % =2y,

w,0,kK * w,0,k

where W7 denotes the transpose of the vector W € R3.
Note that the restriction of R , _to the set [—x ™!, k~1]3 coincides with I}, and

* 4. is the identity map in the complement of [—6x~1, 6k~ !]3. Note also
5o ([FOr710671P) = [=071 0571, x =y,

and that there is a constant C'(#, k) > 0 such that
| RS 6. — id|

w,0,k

or <CO,K)|w], *=uz,y.

Thus, for every w small enough, the map R} 0. 182 C" perturbations of identity
supported in [—0x 1, 13,

4. NEW HETEROCLINIC AND HOMOCLINIC INTERSECTIONS

Recall the definitions of the sets Hpy (M), Hpy (M), and Hiy . (M) in
Section The main result of this section is Proposition claimiﬁg that for
every f in Hpy (M) (resp. Hpy .+ (M) there are local C™ perturbations f; in
Hipp (M) (resp. Hy .+ (M) of f with pairs of additional quasi-transverse het-
eroclinic points in W*(P, f.) N W*(Q, f.) and additional transverse homoclinic
points in W3(Q, f:) m W"(Q, f-). The proof of this proposition is done in Sec-
tion 4.2] To prove it, in Section [4.1] we state some preliminary results about the
invariant manifolds of the saddle-foci in the cycle. In Section [4.3] we study the
transitions associated to the new heteroclinic points. Finally, in Section {.4] we
consider parameterisations of special unstable discs throughout the new hetero-
clinic points contained the unstable manifold of ). The unfolding the cycle asso-
ciated to these heteroclinic points will provide unstable discs intersecting robustly
the stable manifold of the blender-horseshoes. We now go to the details.

Given f € Hp (M) with elements P, Q, X, Y (recall Notation define the
closed invariant set

4.1) Tpoxy(f) = Orb(X, f) UOrb(Y, f) U{P,Q},

where Orb (W, f) denotes the f-orbit of the point W.

Recall also the neighbourhoods Ux and Uy of X and Y in Sectionm

In what follows, we use the notation d,.(f, g) for the C" distance between two
maps f, g € Diff"(M).
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Proposition 4.1. Let f € HgHj*(M), x = h,eT, with elements P,Q,X,Y and
transition times N1 and Na. For every €,6 > 0 there is f. € Hpy (M) with
d,(f, fe) < € such that:

(1) fz coincides with f on the sets I'p g x v (f) and

N1—1 Na—1

U Fux)u [ Fove)
i=0 i=0

where Uy . is a neighbourhood of Y contained in Uy depending on ¢.
(2) f- has two quasi-transverse heteroclinic points

Xl,a; XQ,E € ngl (Wlic(Pa fa)) N Wu(Q7f6) N B(X7 5)

such that Orb(X ¢, f2), Orb(Xa., f2), and Orb(X, f.) are pairwise dis-
jointand X1 ¢, X9, — X ase — 0.
) fe has two transverse intersection points

ZE e WH(Q, f) h W (@, f-)

such that in the local coordinates
ZE=(0,1+¢50), 0<F <o

A preliminary step of the proof of this proposition is Lemma4.1]in Section 4.1
claiming that the closure of the one dimensional invariant manifold of P (resp. Q)
contains the two dimensional invariant manifold of @) (resp. P).

4.1. Density properties of W*(P, f) and W"(Q, f). Consider f € Dift"(M)
with a saddle focus R with f(R) = R such that the eigenvalues of D f(R) are
A€ Rand get?™% ¢ C, where 0 < |\| < 1 < o0 and ¢ € [0,1), and that is
C" linearisable in a neighbourhood Ugr of R. We identify Ur with the Cartesian
product of the local invariant manifolds of R (where the - and yz-spaces are the
stable and unstable eigenspaces of D f(R), respectively.) We assume that there are
(see Figure[2)):
e A one-dimensional C" disc . C Ug such that L is quasi-transverse to
W (R, f) at some point W in interior of L. We let L and L_ the two
connected components of L \ {IWV}.
e A two-dimensional C" disc S C Up intersecting transverselly W2 (R, f)
in a curve y which is not contained in any radial direction of W2 (R, f)
(i.e., a straight-line containing the origin). In this case, we say that the
curve vy has a nontrivial radial projection.

We need the following simple auxiliary lemma.
Lemma 4.1 (Accelerating angles). Consider a diffeomorphism f, a saddle R, a

disc L, a local surface S, and a curve v C SN VVl‘éC(R, f) as above. Then there is
g arbitrarily C" close to f such that W} (R, g) = W (R, f), * = s,u, and

(a) W.(R,g) is simultaneously contained in the closure of the sequences of
discs (¢7(L4)) and (¢7(L-)), j > 1, and
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FIGURE 2. The discs L, L* and S and the curve ~y

(b) there are infinitely many ji > 1 such that g7+ (L) meets transversely S
at points arbitrarily close to 7.

Proof. The result is obvious if the argument ¢ of D f(R) is irrational, in that case
we can take g = f. Otherwise, it is enough to consider a sequence (;) — 0 such
that ¢ + «; is irrational, rotations I, gj (defined on Ug) with argument «; (recall
the definition in Section , and local perturbations g = f; of f of the form
fi=1 gj o f in the set Ur. These perturbations can be chosen supported on an
small neighbourhood of the closure of Up. (]

Remark 4.2. There are the corresponding version of Lemma for saddle foci
with index one.

Remark 4.3. Changing the surface “S” by a one-dimensional disc and “transver-
sality” by “quasi-transversality”, the part (b) of Lemma [.T] can be stated as fol-
lows: there is arbitrarily large j+ such that g/* (L) meets quasi-transversely .S at
some point arbitrarily close to +.

Remark 4.4. Assume that f € Hp;;(M) and that g is obtained perturbing f using
Lemma Then g can be taken such that g € Hpy (M) and Tpg xv(g9) =

PP7Q7X7Y(f)’ recall @'

4.2. Proof of Proposition[d.T, We first consider hyperbolic tangencies, that is, we

assume that f € Hpyy 1, (M). Consider the points Y and Y = fN2(Y) correspond-

ing to the heterodimensional tangency in condition (C) in Section and their

neighbourhoods Uy and Uy in the definition of the transition map T3 in (2.3)).
Using the notation in Definition we can select small two-discs

Py CWHQ.f)NUy and PEC WP, f)NUs



STABILISATION AND ROBUST TANGENCIES OF CYCLES 15

containing Y and Y (respectively) in their interiors and assume that 7§, contains a
pair of disjoint surfaces S and S_ intersecting transversely W (P, f) throughout
curves 74 and y_ with nontrivial radial projection, see Figure

Consider now the quasi-transverse heteroclinic points X and X = f™(X) in
condition (B) in Section Fix small 6 > 0 such that B(X, ) is contained in
Ux . Consider small curves

LY C Up 0 M (Wike(Q, £) N B(X,8)), L C W*(P, f) N Uq

containing X and X in their interiors, respectively. See Figure[3| As above, we let
LY the connected components of L* \ {X}.

Fix small ¢ > 0. Applying item (b) of Lemma §.T|to P, the surfaces Sy, and
the disc LY, we get a diffeomorphism f. with d,(f, f;) < 5 and arbitrarily large
numbers 74,7_ > 0 such that fzi (LY ) transversely intersects Si at some point
Z;, . The points Z;, can be chosen converging to some point of 7. Item (3) of the
proposition follows taking Z* = f;_(NlHi) (Zi,). Note that, arguing as before, we
can assume that the argument of the complex eigenvalue of D]A‘;(Q) is irrational.

Note that by Remark , the transitions of fa and f are the same, therefore
fe e Hpg (M) and Tpoxy(f:) = Tro.xy(f). Moreover, we observe that all
perturbations that we will perform in what follows will keep this property.

To prove item (2), consider small disjoint closed subdiscs L} = L% (¢) C LY
as follows (see Figure[): Let £ € {+, —}, there are numbers i, = i¢(c) with

o fL(L}) C Up forall j € {0,..., i}, o
o (L} NUy =Dforall j € {0,... i — 1} and fir(L}) C Uy,
o fi(L}) M Sy at the point Z;,,
o the family
LY L FI(LY): j €{0,... g+ No}, €€ {+,~}}

consists of pairwise disjoint sets,
o fUtNALY) C Uy, £=+,—.
By the definition of the transition T and the choice of the neighbourhoods
Ug, Uy, Uy, the subfamily of L" given by

L4 L0\ { firtN2(Ly))

is disjoint from Up.
To prove item (2) of the proposition, consider the homoclinic points of )

2o (Z;) € Wiel Qo J2) AWNQLJ2), 0=+~
and take arbitrarily small

15
4.2 0 _—
*2) TR
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FIGURE 3. The discs LY} in W*(Q, f) and LS in W*5(P, f).

such that
B(Y,2p)UB(Z4+,2p) UB(Z_,2p) C Uy
B(2+,2p), B(Z,,Qp), B(}N/,Qp) are pairwise disjoint.

Arguing as above, considering f;l and applying item (a) of Lemma to @, the
disc L®, and the points Zi we get disjoint closed subdiscs LS. = L5 (p) of L®
satisfying the following conditions (see Figure [3): Let K be the C” norm of the
map b, in (3.1), there are numbers k4 (p) = k+ such that:

o the family of sets

{FH(L8) i =0,k b U/ (L2): j=0,... .k}
is pairwise disjoint,
. ;_Z(Li) C (UQ \ B(Zi, ”;—J;l )) foreveryi € {0,..., ks — 1},

T+1

o [MH(1h) € B(Za, 255 ).
Let X4 be the closest point of Zy in f- "+ (L%.) and define the vector

def r+l

(4.3) wi & Xy — Z, lwa|| < 2

K3~
Using the function II, in (3.2)), consider the perturbation of the identity given by

O p(Ze+W) S Zo 4 W+ T,(W)we, if Zi+W € B(Z+,2p)

and the identity otherwise. Since |[w| < % and HHﬁHr < K3p7" (recall

(33)), it holds

[0+, —1d]lr < [Tl - W]l < p.
Finally, consider the perturbation of f. defined by

def =
- 19i,p o fe.

fa = fa,p =
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Recalling the choice of p in (4.2)), we get

A(f ) < A(f e+ d(Fer fo)r < 5 + ol Follr < 5

By construction, f. , coincides with f outside £ (B(Z,2p) U B(Z_,2p)) and
by (@.3) we have that the points X, X ., and X5 . with

X1 € = k+ (X+)7 X2,€ = faki (X*) € fa_,le (I/I/IZC(P7 f€,p)) N Wu(Qa fs,p)
are quasi-transverse heteroclinic points of f. , with different orbits.

Thus, f; , € ’HTBH 1 (M) and satisfies items (1)-(3) in the proposition.

We now study the elliptic case when f € HBH + (M). We apply the variation
of Lemma [4.T]in Remark 4.3] and observe that an arbltrarily small modification of
the angle provides two transverse intersections (for the same iterate). The rest of
the proof is identical to the hyperbolic case.

Finally, note that in our construction the transitions are preserved, thus if f &

B (M) then f. , € Hiy (M), * = h, e™. The proof of the proposition is now
complete. U

+o(lfll-+e) <e

4.3. Transitions for the new heteroclinic points. Given f € Hpy (M), x =
h,e*, and small £ > 0, consider its perturbation f. € Hpy (M) and the hetero-
clinic points X4 . and X5 . given by Proposition Take diéjoint neighbourhoods
Ui, and Us . of X . and X5 . contained in Ux where the transition map ¥y in
is defined. By shrinking these neighbourhoods, we can take a small neighbourhood
Up,e C Ux of Xg. = X disjoint from Uy . and U .. We write

def def

4.4) X; E = X + Zz €5 Zi,a = (xi,87 Yies Zz'@)a 1=0,1,2.

Note that Z7 ., Zo . — 0 ase — 0.
Denote by %1 ; . the restriction of Tq to U, .,

(4.5) Tiie: Ui,e = Ug, Tie(2)=fNM(2)="(2), i=0,1,2.
Hence, recalling (2.3]
Xgﬁawm>=ﬁ+mzo+MaJ
Using equation (#4) and that X; . € f- N (WS (P, f-)) N Ux we get
def

4.6) Xie“ X +Z.ecWS.(P f.), where Zi.=A(Z.)+H(Z.).

Note that )A(/ ,Xi. € W (P, f.) and that (in local coordinates) W (P, f.) is
contained in {(x,0,0)} C Up. Hence

4.7) Zie = (#i¢,0,0).
Then the map T ; . can be written as follows: for X; . + W € U; . we have
(4.8) Tiie(Xie + W) = X; 0 + AW) + HA(W),

where H 7. R3 — R3 is defined by
(4.9) HI(W) ¥ H(Zie + W) — H(Z:.).

def
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Remark 4.5. Let H! = (H!

g,
~§,1(0) = ~2,2(0) = ﬁ§73(0) =0.

Although the maps H ; ; do not satisfy the same “flat conditions” at O satisfied by

ﬁg’Q, ﬁg?,) Then

the terms H; of T1, see (2.3), the following convergence property holds:

O ~. O ~. o ~.
%H;k(()) — 0, 87:[;/ ;k(O) — O, &H;k(o) — 0, g — O, k? = ]., 2, 3.
4.4. Parameterisations of unstable discs throughout the points X; .. Take an
unitary vector v; . € T, W"(Q, fz). For small 6 > 0, consider the parameterised
segment of the local unstable manifold of () containing X; . in U; . obtained con-
sidering its Taylor expansion,

(4.10) LY.(8) S {Xie + tvie + Pic(t) : [t] <6} CWH(Q, f2),
here p; . is an C" map satisfying

- d
4.11) pz‘,a(o) = %Pi,&(o) =0.

Remark 4.6. By the A\-lemma we have that v; . — e = (0,1,0) and || p; ¢||» — O
as € — 0. By a C" perturbation of f., we can assume that v; . = e,. To see this,
let 7; - be the plane generated by v; - and e; in T'x, . M and «; . the smallest angle
(modulus 27) of the rotation map taking v; . into e2. Note that o;; . — 0O ase — 0.
Performing a rotation-like C" perturbation as in Section [3.3]at X . around of the
orthogonal direction to II; ., we get a diffeomorphism O(«; ) C™ close to f. (that
we continue to call f.) such that

(412) L} (6) = {Xic +tea+pic(t) : [t| <6} cWHQ, f2), i=1,2.

With a slight abuse of notation, the higher order terms p; . in (4.12) are denoted as
the ones in (4.10). As the latter are obtained as “small rotations” of the terms in

(4.10), they satisfy the flat conditions in (@.1T].

5. BLENDER-HORSESHOES AND CENTER-UNSTABLE HENON-LIKE FAMILIES

In this section, we introduce blender-horseshoes and their main properties (Sec-
tion[5.1)) and explain how they may lead to robust tangencies (Section[5.2). We also
state their occurrence in center-unstable Hénon-like families (Section @ Finally,
we study the geometry of the unstable manifolds of these blenders (Lemma [5.5).
All blenders considered in this paper are blender-horseshoes, thus if there is no
misunderstanding in some cases we will refer to them simply as blenders.

5.1. Blender-horseshoes. We refrain to give a precise definition of a blender-
horseshoe (for details see [8, [13]), instead we will focus on their relevant prop-
erties. We also restrict our discussion to our three dimensional context. A blender-
horseshoe is alocally maximal hyperbolic set I'f of a diffeomorphism f : M — M
that is conjugate to the complete full shift on two symbols and satisfies a geomet-
rical condition stated in Lemmas and We now go to the details.
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There is an open neighbourhood A of I' such that
Ty=()f(A)caA

icZ
The set I'; is also partially hyperbolic: there is a dominated splitting with one-

dimensional bundles £ © E* ¢ E" of 1T fM such that Ev &< ECu @ Fuu
and E® are the unstable and stable bundles of I', respectively. The bundle E""
is the strong unstable direction. We consider a D f-invariant cone fields C"" and
C"around E" and E%,a D f ~linvariant cone field C* around E*°, and a center
unstable cone field C'°" around E°". The latter is not D f invariant, but the norm
of the vectors in C°" are uniformly expanded by D f.

As a hyperbolic set, the blender-horseshoe I'y has a continuation I, for every
g sufficiently close. The important fact is that for diffeomorphisms nearby these
continuations are also blender-horseshoes. Blender-horseshoes can be also defined
for endomorphisms, see [[17, Definition 2.7], with the following reformulation of
the continuation property: every map (diffeomorphism or endomorphism) close to
an endomorphism with a blender-horseshoe also has a blender-horseshoe with the
same reference domain.

A key ingredient of a blender-horseshoe is its superposition region. To describe
it define the local stable manifold of Iy by

(5.1) Wite(Lr, f) o {zeM: fi(z) €A forevery i >0}

and observe that the set I'; has two fixed points P™ and P, called the reference
fixed points of the blender. One defines “large” one-dimensional uu-discs (con-
tained in U) tangent to C" at the right and at the left of WlsOC(Pi, f). The set
of such discs at the right of W (P, f) and at the left of W (P, f) form the
superposition region denoted by Dy. We say that these uu-discs are in-between.

The next two lemmas (see for instance [5, Lemma 3.13] and [17, Lemma 2.5])
state an intersection property for discs in the superposition region of the blender
that will play a key role to get robust heterodimensional cycles.

Lemma 5.1 (The superposition region). Let I'; be a blender-horseshoe of f and
D compact disc whose interior contains a disc in the superposition region of I'.
Then for every C'-neighbourhood U of D there is a Cl-neighbourhooaﬁ Vof f
such that every compact disc in U contains a disc in the superposition region of I
forevery g € V.

For further explanation of this lemma see Remark [5.4] See also Lemma [5.4] for
a “quantitative version” of this result.

Lemma 5.2. Let I'; be a blender-horseshoe of f and D a compact disc contain-
ing a disc the superposition region of T'y. Then W (T'¢, f) N D # () and this
intersection is quasi-transverse.

®Letr > 1 and f € Diff"(M). Any C"*-neighbourhood of f contains a C" neighbourhood of f.
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This lemma follows from the fact that the image of any disc D in the super-
position region contains a disc in the superposition region. Arguing inductively,
it follows that any disc in the superposition region contains a point whose for-
ward orbit is contained in A. The lemma now follows from the characterisation of
W Ty, f) in (5.I). This construction also guarantees that the obtained intersec-
tion between D and W} (T, f) is quasi-transverse: the disks in the superposition
region are tangent to a strong unstable cone field, W} (I'¢, f) is tangent to a stable
cone field, and these cone fields have no common directions.

5.2. Blender-horseshoes: tubes and folding manifolds. We now analise when
the local stable manifold W (I'f, f) of a blender-horseshoe I' ¢ has a (robust) tan-
gency with a surface S “passing throughout its domain A”. In [8] it is proved that
occurrence when S is a folding manifold. Motivated by this fact, we introduce the
notion of u-fubes and prove that they generate folding manifolds after iterations. In
this way, Proposition[5.2] provides a mechanism guaranteeing the robust tangencies
in Theorem We now go into the details of this construction that follows the
ideas in [&, Section 4].

5.2.1. Folding manifolds and tubes. Throughout this section, we consider a dif-
feomorphism f with a blender-horseshoe I'y with domain A and reference fixed
points P~ and P*. Next definition is an extension of [} Definition 4.2].

Definition 5.1 (Strips, tubes, and folding manifolds). Consider a surface with
boundary S of the form

S=|J Dica,
te(0,1]
where (Dt)te[o,l} is a family of uu-discs depending continuously on t. We say that
Sisa
e u-strip if the family of discs (Dy)¢[o,1) is pairwise disjoint and S is tangent
to the unstable cone field C",
e uu-tube if the family of discs (D¢)s¢[o,1) is pairwise disjoint and Do = D;.
e a folding surface if the family of discs (Dy)yco,1) is pairwise disjoint, Dy
and D; both intersect W (P, f) (or both intersect W (P™, f)), and
Dy is in-between P~ and P+ forevery ¢ € (0, 1).
A strip or a tube S is in-between if every D; is in-between P* and P~. Note that
a folding surface cannot be in-between.

In what follows, we will use the letters S, 7', and F' to denote strips, tubes, and
folding manifolds, respectively. The main result of this section is the following:

Proposition 5.2. Let I'y be a blender-horseshoe of a diffeomorphism f and T a
uu-tube in-between. Then Wi, (I's, f) and T have a tangency point.

An immediate consequence of this proposition is the following version of [8,
Corollary 4.11] where folding manifolds are replaced by uu-tubes:
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Corollary 5.1. Let I'y be a blender-horseshoe of f and ' a uu-tube in-between
contained in the unstable manifold of a saddle Ry of index two. Then there is a
C" neighbourhood V¢ of f such that W (I'g, g) and W"(Ry, g) have a tangency
point for every g € Vy.

Proposition will follow from [8, Proposition 4.4]: any folding manifold has
a tangency with WP (I'¢, f). The main ingredient of the proof in [8]] is the fact
that the image of any folding manifold contains a folding manifold, see [8, Lemma
4.5]. We reformulate that lemma in our context. For that we need to analise the
central width of iterations of u-tubes and u-strips. We refer to see [[13, Section 2]
for a detailed analysis of iterations of strips. We now go into the details.

First, a central curve is a curve tangent to the center unstable cone field C°". The
central width of a u-strip S = Uy¢g 1) D¢ is defined by

w(S) = inf{length(¢): ¢ C S is a central curve joining Dy and D; }.

Note that there is & = x(I'f) > 0 such that w(.S)<x for every u-strip in-between.
To define the central width of a uu-tube T in-between (denoted with a slight
abuse of notation also by w(7")), we note that (A \ T°) has two connected compo-
nents, one of them is disjoint from P~ and P™. We denote this component by A
and let
w(T') = sup{w(S): S is a u-strip contained in Ar}.

Note that the width of any uu-tube in-between is bounded by the constant x above.

Lemma 5.3. Let I'y be a blender-horseshoe. Then there is X\ > 1 such that for
every uu-tube T' in-between one of the following possibilities holds true:

(@) f(T) has tangency with either W (P~ f) or with W§ (P, f),

(b) f(T) contains a folding manifold,

(¢) f(T) contains a wu-tube T" in-between with w(T" )=\ w(T).

Proposition [5.2] easily follows from this lemma. Observe that, by the comments
above, in cases (a) and (b) we get a tangency between 1" and W (I's, f) and we
are done. Otherwise, we let Ty = T and get a new tube 77 in-between such that
Ty C f(Tp) and w(T1)=>A w(Tp). We can now apply Lemma[5.3]to 7 and argue
recurrently. But case (c) cannot occur infinitely many consecutive times: in such a
case we get a sequence of tubes (7},) in-between with

T, C f(Taot) and  w(Tp)2Aw(Tpo1) 2N w(Th).

Since the widths of the tubes 7;, are bounded by « there is a first step of the recur-
rent construction when we fall in cases (a) or (b). We now prove the lemma.

5.2.2. Proof of Lemma We have the following version of Lemma [5.3| for u-
strips imported from [8, Lemma 4.5] (see also the proof of [13| Proposition 2.3]).

Lemma 5.4. Consider a blender-horseshoe It of f. Then there is X > 1 such that
for every u-strip S in-between then one of the two possibilities holds:

(i) f(S) intersects transversely either WS (P~ , f) or WS (P, f),

(i) f(S) contains a u-strip S’ in-between with w(S") =\ w(S).
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The main ingredient of the proof of this lemma is in Remark [5.4]

Remark 5.3 (Iterations of u-strips in-between). Lemma [5.4] implies that the orbit
of any u-strip in-between transversely meets either W (P, f) or W (P, f).
More precisely, let Sy = S and assume that f(.Sy) intersects transversely neither
We (P, f) nor W§ _(PT,f). In that case, we get a new strip S; in-between
such that S; C f(Sp) and w(S1)=>Aw(Sp). We can now apply Lemma [5.4 to
S1 and argue recurrently. As above, this possibility cannot occurs infinitely many
consecutive times.

We are now ready to prove the lemma. Given any € > 0, associated to the uu-
tube Ty = T there is an internal strip So C Ag,, with w(Sp)>w(Tp) — . Note
that this strip is in-between. Consider now f(7) and assume that cases (a) and (b)
in Lemma [5.3| do not hold. This implies that the image of f(Sy) satisfies (ii) in
Lemma5.4f We now see that and in that case there is u-tube 71 C f(Tj) such that
S1 C Arpy. Since this holds for every ¢ > 0 item (c) in the lemma follows.

We now explain how the tube T} is obtained. We will refer to [13) Section 2]
for details. A blender-horseshoe has a Markov partition associated to two disjoint
“subrectangles” Ay, Ag C A such that

Ty=()f(AxUAR).
i€Z

Moreover, the map that associates to each x € I'y the sequence (§;(z))ez €
{A,B}? defined by f(z) € Ag, () 1s @ conjugation between I'y and the com-
plete shift on the symbols A, B. In particular, the reference fixed points of the
blender satisfy P~ € Ay and PT € Ag. In what follows, we denote by f the
restriction of f to |, E € {A,B}. Given a set X we let Xg & X N Ag.

Next remark explains the mechanism guaranteeing Lemma [5.1] and is a conse-
quence of the definition of a blender-horseshoe.

Remark 5.4 (Iterations of uu-discs ans u-strip). There is A > 1 with the following
property: Consider a uu-disc D and a u-strip .S in-between.

e Then either f(Dy) or f(Dp) contains a uu-disc in-between.
e Suppose that f(Sg) is a u-strip in-between, then w f (Sg) >Aw(Sg).

By Remark [5.4] for a given ¢ € [0,1] either f(Dy ) or f(Dyp) is a uu-disc
in-between. We have the following three cases:

(A) f(Dyp) is a uu-disc in-between for every ¢ € [0, 1],

(B) f(D¢g) is a uu-disv in-between for every ¢ € [0, 1],

(C) Cases (A) and (B) do not hold.
In case (A), by Remark we have that 7y = f(71}; ) is a uu-tube such that
w(T1)=>Aw(T'). Analogously, in case (B) 77 = f(Tip) is a uu-tube satisfying
w(T1)=Aw(T'). In both cases, item (3) in the lemma holds. Thus it remains to
consider case (iii).

In case (C), there is ¢ € [0,1) such that f(D.4) is a uu-disc in-between
but f(D.p) is not a uu-disc in-between (this possibility includes the case where
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f(De,g) is not a uu-disc). After changing the parameterisation of the tube we can
take ¢ = 0. Recall that Dy = D;. Let

t sup{t € [0,1]: f(Ds,a) is in-between for all s € [0, t]},

def .

to = inf{t € [0,1]: f(Dsa) is in-between for all s € [t, 1]}.
Note that ¢; = 1 if and only if o = 0. Moreover, if this does not hold then
t1<t2. Thus, a priory, there are the following cases, (i) t; = 1 and ¢35 = 0, (ii)
t1 =t9 € (0,1),and (iii) 0 < t; < ta < 1. Case (i) implies that we are in case (A)
above, a contradiction. Thus it can be discarded.

Note that, by continuity, if ¢; < 1 then f(Dy, o) "W (P, f) # (. Similarly,
if to > Othen f(Dy, o)W (P, f) # 0. Note that the local stable manifolds are
tangent to the stable cone field and the uu-discs are tangent to the strong unstable
cone field, hence the previous intersections are quasi-transverse.

In case (iii), consider the interval [t2 — 1,¢1] and let ﬁt = D, ift € [0,t1] and
D, = Dy ift € [ta — 1, 1]. By construction,

SE |J  f(Den)
t€fta—1,t1]
is a folding manifold, thus item (b) in the lemma holds.

Finally, in case (i) we have that T = (J,¢(o 1) f(Dy,a) is tangent to Wig (P, f)

and we are in case (a) in the lemma. This completes the proof of the lemma.  [J

5.3. Blender-horseshoes in the center-unstable Hénon-like family. Let us start
by defining the Hénon-like families of endomorphisms that we will consider.

5.3.1. Center-unstable Hénon-like families of endomorphisms. We consider the
parameterised families of Hénon-like endomorphisms E ,, ¢, G¢ .70 R® — R?,
defined by

(52) Eepc(,y,2) E (Ex4qy, p+oi’ +ar?+azy, svy),
: def
Gepr(®,y,2) = (Yo p+y> +myz+m 2 2 +y),

where € > 1,0 € R, ¢ < (¢1,,3,5,55) € R®, and 7 = (n1,72) € R2. These
families are called center-unstable Hénon-like.

These families are conjugate, this allows us to translate properties from one
family to the other. More precisely:

Remark 5.5. Consider the families of endomorphisms
_/E\&f, 65’772 R4 — R4
defined by

(5.3) (M,xylhz) = E&f(u,l‘,y,l‘) = (/uv EE,,u,f(m:yaz))a

~ ef
(M) z,Y, Z) = G&J_](:u’v €, Y, Z) = (/’Lv Gﬁ,/.t,ﬁ(xa Y, Z)) :
Consider the map

(5.4) () = (m (), 12() = (s7s3sy s s16a55 ).
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Suppose that < is such that
16265 # 0,
then E&g— and @5’7—7(5) are conjugate:

where
(5 5) 65: R4 — R47 65(M7$>y72) = (§2_1:u7 @€($,y,x)),
Oz R 5 R, Oc(z,y,2) = (55 12,5 'y, 5 ' 5a).

5.3.2. Occurrence of blender-horseshoes. Consider the set
(5.6) A E[—4,4)% x [-40,22].

Theorem 5.6 (Theorem 1 in [[17]). There is egyg > 0 such that for every

def 2

(gnu’aﬁ) € OBH = (1187 119) X (_107 _9) X (_8BH7€BH)

the endomorphism G, ;; has a blender-horseshoe A¢ ,, ; with domain of reference
A such that

Mgy =) Gt ,q(A) C interior(A).
1€Z
As a consequence, every diffeomorphism or endomorphism sufficiently C' close to
G¢ i has a blender-horseshoe in A.

Remark 5.7. By Remark the map E¢ ;, ¢, with ¢ = (s1,...,5), has blender-
horseshoes if ¢16265 # 0 and

(€7M7§12§3§2_17§1§4§2_1) S (1187 119) X (_107 _9) X (_EBvaBH)2'

Let us say a few words about the blenders in Theorem Let Pgiﬂ 7 be the
reference fixed points of the blender A¢ ,, 5 of G¢ ,, 5 in in A. The fixed points of

def . .
Gep = Ge i 1n A, satisfy

I + _ (pt ot St
5.7) Pf,u o (pf,u’pf,u’pf,u)’ PE,M - (pf,u’pf,u’pf,u)

with
—2.7<pg,<-25 13<p, <15
3.5 <pf, <371, —206<pf, <184
For the map G¢ ,, the strong unstable cone field is given by
(5.8) Cu“(Z)d:ef{(u,v,w) eR’ : Vu?+w?< i},

see [17, Lemma 3.10]. We also have that
+ + + o~ . + +
Wioe (Peju Gen) = { Py +1PgpPey) + —4— P, SESA—pg, }

TWith the notation in [L17], say P-Ei,u = P, and Pgu = Qe
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The superposition region of the blender A¢ , o A¢ 0 consists of (large) discs

tangent to the cone field C*™* which are at the right of W (P, G¢,,) and at the
left of I/VISOC(Pgr w0 Ge, ). These observations imply the following:

Remark 5.8 (A disc in the superposition region). Consider the disc

def

(5.9) L={(0,9,0): |y <4} cCcA

in the superposition region the blender A¢ , 5 of G¢ ,, 5 for every (&, p1,7) € Opn.
Then, by Lemma for every diffeomorphism F' close enough to G¢ , 5 every
disc sufficiently close to L is in the superposition region of the blender A .

Lemma 5.5. The unstable manifold W" (PgJr i Gg%ﬁ) is unbounded in the y-
and z-directions.

Proof. We will show that W (Pg+ o G, u) contains the set
def
G&u(HZ#), where HZM ={(z,y,2):y > pz#} C R

The general case follows studying 2-dimensional projections of W* (Pgm 7 Ge, u,ﬁ) .

Consider the plane II¢ ,, C{y= pg Wt C R? and note that

_ def (( + + =t .
G&»M(HgvlL) - Eé?# - { (pﬁ,,u,’pﬁ,,u’pﬁ,,u + t) : t € R} - H{,,u,

It is easy to see that L¢ ,, is G¢ ,-invariant and that the restriction of G¢ , to L¢ ,
is an expanding linear map (with expansion factor £ > 1). Consider the cone field

CYZ) = {(u,v,w) e R?: |u| < V2 +w?
By [17, Claims 3.12 and 3.14], this cone field is DG¢ ,-invariant and uniformly

expanding for every Z = (z,y, z) with |y| > v/5. A simple calculation implies
that for every Z € G¢, u(Hg ,,) the following holds

Gg,M(HZ#) C HZH and Tz(anu(ng)) c CY(2).
These properties and the expanding property of C" imply the lemma. ([

Notation. We will consider blenders in R® and in the ambient manifold M. We
will denote the first ones by A and the second ones by Y.

6. THE RENORMALISATION SCHEME

In this section, we outline the renormalisation scheme in [16], see Proposi-
tion For that we embed any f € Hpy (M) in a bifurcating eight-parameter
family

R® >0 — f; € Diff (M) with fo=f
and construct a renormalisation scheme for f consisting of:
e asequence of local charts Wy, from R3 to Ug,
e a sequence of reparameterisations R > p — T;,ﬁ (1) € R® with ¢ > 1 and

Di (1) — 0 on compact sets,
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D) N2+mk+N1 +ng de—
U, (/'L)
fined on a neighbourhood of the heterodimensional tangency Y, satisfies

e sequences Ny, My € N such that the “return maps

\I/_l ° No+mp+Ni+ny
i)
where the convergence is C", E¢ ,, ¢ is defined (5.2)), and ¢ = ¢(&, f) satis-
fies (2.9)).
This section is organised as follows. We define the unfolding family (f5)segrs in

Section[6.I]and review the renormalisation scheme in Section[6.2] The convergence
of the scheme is stated in Section

oWy — Ee e

6.1. The unfolding family. Given f € H};;(M) and
o= (i, 7,0,0) € R xR? xR x R =R&,

we consider a (smooth) family (f5)scgrs in Diff" (M) with fo = f, f5(Q) = Q,
and f5(P) = P such that

o the parameter zi unfolds the heterodimensional tangency )Z,

o the parameter  unfolds the quasi-transverse intersection X, and

e the parameters « and  modify the arguments of D f(P) and D f(Q).

Recall the translation-like perturbations Ty , and rotation-like perturbations
* o in (34) and (3.9), respectively. For v = (fi,7,«,3) and small p > 0
consider the perturbation of the identity defined by

2,91,51(2)7 if Z € UP7

T)Z',l‘/,p(Z)’ if Z € V)?,

qu’p<Z> - Q(ﬂ7,77a7,3)7p(Z) - R%7627K]2(Z)’ le E UQ7
Ty, (2), ifZeV;,
lid(Z), fZ¢VpUVuUVgUVs,

where Vp, Vg, Vg, and V5 are small neighbourhoods of P, @, X , and Y contained
in Up,Uq, Uy, and Uy, respectively, recall Section |2l The numbers 01,02 > 1,
K1, ko > 0 are chosen such that

X,Y €[- w1, Y, X €[- wy by kg 13,
[—61k7 Y, 016712 C Up, [—0ar5 L, 095 13 C Up.
Finally, we let
(6.1) Jo,p =8o,p0 f.

Remark 6.1 (The parameter p). Above we emphasise the role of the parameter p
related to the size of the translation-like perturbation of f.



STABILISATION AND ROBUST TANGENCIES OF CYCLES 27

Remark 6.2 (Support of the rotation-like part of €2 ,). Consider the linear maps

A 0
oe=10 osin2rp ocos2mp |,
0 —ocos2mp osin22mp

_ osin2mp 0 ocos2mp
f)\,o',gp - 0 A 0
—ocos2mp 0 osin2me

With this notation, the restriction of f to Up is the map f), ;. .5, recall Sec-
tion Note that if Z € f~([—k1, k1]*) N [—K1, K1]? then
Qopo f(Z)=Rig, x, 0 [(Z2) =Reg, 1, © Fapopior = PrpopgrtalZ).
IfZ e ffl([—eml_l, 01,%1_1]3)6 N Up then
Qopo f(2) = Rop s 0 f(2) = F(2).

Similarly, the restriction of f to Ug is fAQ’ and analogous conditions hold.

7Q:%Q
Remark 6.3 (Support of the translation-like part of €25 ,). Note that
¢ Qo f(2) =Tx, o f(Z) = [(Z)forevery Z € M\ f~}(B(X,2p)),
© Up0f(2)=Tx, o (7 (X) =X+
Analogously, we have that
o Qop0f(Z)=Tyu,o0 f(Z) = f(Z)forevery Z € M\ f~(B(Y,2p)),
« Vo f(Z) =Ty, 0 f(f (V) =Y+
6.2. The renormalisation scheme. We now summarise the ingredients of the
renormalisation scheme: Sojourn times and adjusting arguments (Section [6.2.1)),
reparameterisations (Section [6.2.2)), and changes of coordinates (Section [6.2.3)).

6.2.1. Sojourn times and adjusting arguments. Fix & > 1 and consider
T %(af/;@), where 73 is as in (2.4) and as, a3 are as in (2.6).
Note that 7 > 0, see (2.7). By [16, Lemma 6.1], associated to 7'_15, there is a
residual subset R = R -1, of (0,1) x (1,00) consisting of pairs (o, \) having a
sequence of sojourn times sy, = (my,n) in N2, adapted to 7~1¢ satistying

(6.2) lim o™\ = 77 1¢
k—o0
where my, and ny, are related by the inequality
aer log(A™h) _aer log(T€71)

< i1, lof
T < AT log (o) log (o)

Our hypotheses allow us to consider (op, Ag) € R having a sequence of sojourn
times sy = (my, ng) adapted to 71 &, see [14, Lemma 5.1] and [16, Lemma 6.1].
The spectral condition in (2.2) provides a constant C' > 0 such that

(6.3) Ap o™ < O ((Ap2op)Tog)™ — 0
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Associated to the sequence (sy,) there is a sequence Oy = ((my;Un,) € RZ,
with O — (0, 0), of adjusting arguments leading to the following argument maps

Oék(9> def 1 (E — 2mm0 + 27T[mk9] + ka) ;
(6.4) s 2

o 1
Br(w) o Dy~ (g — 2w + 27 [ngw] + 19,%> )
k

where [z] denotes the integer part of € R. The sequence (¢, ) is chosen such
that g + By is irrational (here (g is the argument in item (A) in Section 2.1.1).
There are no further restrictions on the definition of ((y, ).

6.2.2. Reparameterisations. Associated to the sequences (s;) and (©y) we define
the sequence of reparameterisations U = @,E of the family f3 , in by:

Upr R RS, of(u) = (g (1), 7, 05 (0p), Bi(#q)) € R® x R® x R xR,
where (for simplicity, in what follows we eliminate the dependenceﬁ of the coordi-
nate maps of @i on &):

o [i;, : R — R? is defined by
(6.5) fie (1) = (=Aprar, 05"™ + 05 o p ™ 1 — XFby, —Xprer),

where aq, by, ¢1 are as in (2.6). Note that jix () — (0,0,0) as k — oc.
e To define 7, € R? consider first

vpr = op+ak(pp) and ok 0o + Br(pq)
and the sequences

66) & = cos (2mmi(epk)), Sk < sin (2mmy(ep)),

o 2 cos (27mk(goQ’k)), s, < sin (27rnk (PQ,k )
Remark 6.4. By the definition of ay(¢p) and Bi(pg) in (6.4), it follows that
¢z — 0,5, — 1,and ¢, 5, — 1/V/2.
Recalling the coordinated maps H, and H. 3 of H in (2.3)), we let
der 1 ok 1 02

. P2k = 550 ——5 Ha(0) (e — 51,)” + 39, 5 Ha(0)(sk + 1),
(©7) a1 0% = 1 02 )
P3 = 5@&’)(0)(% — o)’ + iﬁHﬁx(O)(ﬁk + )"

Finally, we let
Uy = ( — MG (an (ex — sk) + az (s + ),
(6.8) ap" (E +51) — AQ"™ Pak,
op"* (G = 8k) — AQ V3 (ck + 8k) — /\énkﬁ:s,k),
where o, a3, 73 are as in (2.4). Note that 7, — 0 as k — oc.

8This dependence is given by the choice in 2.
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6.2.3. Change of coordinates. Using the local coordinates in U, we consider the
sequence of maps V. : U, — Ug = [—ag, ag]® defined by

Uz, y,2) = (L+ o™ 0, ™ 1,
69) ( )= (1 +op " 0g

—2my,

o +op UQ_Q"‘“ y, 1+ 0, og "™ 2),

7Q
where Uy, is the “cube” of R? such that U (Uy) = Ug. Recall that Y = (1,0,1)
and note that for any compact set K C R3 it holds ¥y (K) — {Y'} as k — oc.

6.3. Convergence of the renormalisation scheme. Fixed £ > 1, small p > 0,
and f € Hpy (M), consider the renormalisation scheme above and the sequence
of one-parameter family of maps
sus
Rop — Rﬁi M)m(f) € Dift" (M)
(6.10) def ¢ Ny o fMk o fM1 o fMk

R def
”i(“)vﬂ(f) oL(w)e T oR(we (e ()

called renormalised sequence of f. Here we are emphasising the roles of £ and p.

Proposition 6.5 (Theorem 1,[16]]). Fix & > 1, small p > 0, and p € R. Given any
f € Hiy (M) the sequence of maps

Uit o Ry, (N oW Uy > R, keEN,

converges, on compact sets of R® and in the C" topology, to the endomorphism
E¢ ¢ in (53.2), where ¢ = (&, f) is as in 2.8).

Notation 6.6 (The parameters p and &). When the role of p is not relevant it will
omitted, writing fz and R _e ) instead of f5 , and R e ()" Similarly with & > 1.
k k ;

Remark 6.7. Recall the perturbation f. of f in Proposition4.1] The renormalisa-
tion scheme of f associated to X and Y can be applied to f. and it is preserved. In
this way, we get the one-parameter family of diffeomorphisms f; g, (4),p-

7. INTERPLAY BETWEEN BLENDERS AND HETEROCLINIC POINTS

In Section|7.1}] see Proposition we state the occurrence of blender-horseshoes
in the renormalisation scheme for diffeomorphisms f € H[,;;(M) and their per-
turbations f. € Hpyy (M) given by Proposition

Note that f. has additional heteroclinic points X1 ., X2 .. In Section we see
how these intersections are unfolded without modifying the blenders given by the
renormalisation scheme.

Before going into the details, recall the definitions of the transitions T ; . asso-
ciated to X; . and their domains U; . in (#.5)) and consider the neighbourhoods

def

Ue = Tic(Uie) of Xie=T1.(Xi), i=0,1,2
Take sufficiently small p = p(¢) > 0 such that
(7.1)  B(X,2p) CUpe, B(Xi:,2p) CUie, B(Xae,2p) C Use.
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In particular, these three balls are disjoint. We can now consider the renormalisa-
tion scheme R ¢ () p( f) and observe that by the choice of p the renormalisation
k k)

preserves the heteroclinic points X . and Xo.. Note that as the transitions of f
are not modified, recalling (2.8)), we have

§=3(& f) =2(& fo)-
7.1. Blenders in the renormalisation scheme. Recall the definitions of ¥, and
of Uy in and of R ¢ p(fa) in (6.10). Define the maps
k )
Up: R x U, = R x Ugp, Rﬁg(u)’p(fe):RxM%RxM

by

\/I}k(lu’aX) déf (:U’a \Ijk(X))a

Rk,p(fs)(:qu) = (M’Rﬁi(u),p(fg)(X))

and consider (with slight abuse of notation on the domain of definitions) the maps
®y. and Py, defined by

def

X eR® — &,(X) = T, 00:(X) € U,
(7.2) (1, X) ER X R® 5 Bp(p, X) & Uy 0 Oc(p, X)
= (o ', (X)) € R x Ug,

where O and O are the conjugations in (3.3).
The following explicit form of the maps @;1 will be used in Section

Remark 7.1. Note that for (1 + z,y,1 + 2) € Ug close to Y = (1,0,1) we have
that

— Nk M —1
—UQ JP §2§5 Z,

2

def 2ng  2my

(£,5,5) Z 0 1+ 2,y,142), {G=x0,% 0™ (y—oy™),
5=k gk cyet
Finally, consider the sequence of maps Ry ,(f-): R x R¥ - R x R?

def

(:ua X) = E)C{k,p(fz-:)(:ua X) = (/1\)1;1 © 7/?\'k,p(fz-:) © ‘/I\)k(ua X)

Finally, note that for each fixed 4 the projection of Ry, ,(f:)(u, -) in the “second
coordinate” R? is exactly the map R ) p( fe).
k b

Recalling the definition of 7(<) in (5.4) and of ¢(&, f) = (&, f-) in 2.8) we
define (with slight abuse of notation) the map
(€, f2) S A(S(E, f2) = 0(E, f)-

Recalling Proposition[6.5] Theorem|[5.6|(and the definition of the set Oy there),
Remark and the definition of G¢ j in (5.3) we get the following:
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Proposition 7.2. Consider f € Hyy (M), & > 1, small e > 0, and f. as in Propo-
sition There is p() such that the sequence of maps (Ry, (<) (fe)) converges in

the C" topology and on compact sets of R* to G (6, f)-
As a consequence, for every k large enough the map R._ o (u ( fe) has a

blender-horseshoe Aﬁi G0p(e) A = [—4,4]? x [-40,22].

We now describe more precisely the blenders Al_)g(“) oe)’ For 1 € (—10,-9),
k )
large k, and small ¢, consider the diffeomorphism
def
Feon(w)oe) = Qoy(w.p(e) © fes

where Qg, () (<) 18 defined as in (6.1). Proposition [7.2] implies that f. 5, () »(c)
has a blender-horseshoe defined as follows. Let

(7.3) Ar(p) = A = B(A),
A(p) = 0 (A() = (537" 1 k(D)) = (537" 1 A).

Recalling that R ¢y (fe) = gé,j(;’l)’j,j(gﬁ”k, see (6.10), we have that

Tfs,'Dk(,u.),p(E) = ﬂ (R HIONIO) (fE)) (Ak(p))

1254
(7.4) o
+mp+N1+
- m f&"U2 Zka) )¢ (Ak’)
LeZ
is a blender-horseshoe of fgg;%ﬂgﬁnk Note that, by construction,
—1
(7.5) A e o) = Pk (s 0er)-
Notation 7.3. The reference saddles Pi( 1.0(6) Aﬁg (u)p(e) AT€ the continuations
jz k()

of the saddles Pgi .. of the blender of G¢ , 5 in (5.7).

Remark 7.4. Consider (ﬁ,u, n(&, f)) € Ogpp and write 7 = 7(&, f). Recall the
definition of the disc L C R3 in the superposition region of the blender of Ge s
see Remark[5.8] The second part of that remark and the C” convergence

oRg (fs)oq)k_)Géun

RONIG)

on compact subsets of R? imply that for every large k the set
O Rty o) f2) © B(L)

contains a disc in the superposition region of the blender A_¢ .
oy (1),p(e)
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7.2. Unfolding the heteroclinic points X; .. By construction, we have that X .
and X5 . are quasi-transverse heteroclinic points of f; 5, ( ) and (recalling the

definitions in (4.6))
Xie € Wie( Py feoyu).00) VW@, feo(ote))-

w)sp(e

Remark 7.5. The choices of ¢ and p(&) imply that the closure of the orbits of )NQE

and the orbit of the blender Y s o) p(e) ATE disjoint. Moreover, the orbit of the

blender is also disjoint from the neighbourhoods U; . of X; . (and thus from the
neighbourhoods U; . of X; ;).

We now consider a “local unfolding of the heteroclinic point X 1,e independent
of the renormalisation process”: this unfolding is given by a perturbation whose
support is disjoint from B ()N( ,p(¢)) and B (17, p(e)). For that, consider a family
of local perturbations of f. given by

(7.6) e,or(1)ple) = ek © Sevn() p(e)>

where 0. ; is a O perturbation of identity supported on B(X1.,2p(c)) C Use
satisfying limy_,o0 d(6z i,id) = 0. To define 6. j, recall the definitions of the
bump function II; in (3:2) and the sequences my, ny, in Section[6.2.1] ¢ and §j, in
(6.6), and 7, in (6.8)), and consider the sequence of vectors

(7.7) Tk S (O,U;mk (Ek —I—gk),(f;mk (Ek —gk)) S R?’, T — 0.

The map 0. ;,: M — M is defined by:
‘95 k

ag (2) = Z + T, (W) s if Z=Xi.+WeB(Xi, 20(c)),
0-1(2)< Z, if Z¢B(Xic, 2p(c)).

Recalling that [|TL,.) || < ([|b]|»)? p(e) ™", see (B-3), and that [¢}, £ §;| < 2, see

(6.6), we get
dr(Oc i, id) < 2(||bl)2 ple) Lop™ =0,  k— oo
Remark 7.6. By definition of 6, j, for every W ¢ f-'! (B()Z'Ls, 2p(e)) it holds
that
e 0 (w)p(e) (W) = Oz e © fe . 10).p(0) W) = e () o(e) (W)

As a consequence, if W & f=(B(X1,20)) then

Rgi(#)ﬁp(g) (fo)(W) = Rgi(u),p(g) (gs,{)k(u),p(s))(W)-

Hence, by Remark [7.5] the maps g. s, (u),0(c) a0d fz 5, (1) have the common

blender T Fe sy ()op(e) defined in (7.4).
Moreover, by construction, the curve L3 (p(¢)) in (#.12) containing Xs . is
contained in W*™(Q, gz 5, (1),p(c))-

.p(€)
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8. ORBITS AND ITINERARIES ASSOCIATED TO THE RENORMALISATION

This is a preparatory section to the proof of Theorem We study admissible
points and returns: we select a set of points whose itineraries for the diffeomor-
phisms g. 5, (u),p(e) I are associated to the renormalisation scheme, see (8.I)).

Recall the charts ®;, = & = ¥y 0 Oc: U C R3? — Ug in and that for
every compact set K C R3 it holds ®(K) — Y as k — oo.

Recall the definitions of the neighbourhoods Ux, U % Uy, and U}~, of the het-
eroclinic points of the cycle in Section and of the balls B(X,2p(c)) C U 5

and B(Y,2p(¢)) C Uz in (Z1).
Consider the subset U, g, (4), () Of B(Y,2p(e)) € ®x(Uy) = Ug of points

having the following itinerary for f. 5, (,1),p(c): @ point w € U, g, (1), p(e) if
N + +N + y o
we fL NN (B(Y, 2p())) N B(Y, 20(e))

and it satisfies (see Flgure E[)

svk(p (w) € Ug, forevery 0<i< ny,
6vk(u P(E)(w) € Ux,

& NJ5+< @ e BE .
gvk(u o) (w) € Up, forevery 0<j<my,
ﬁ:Nﬁn (w) € Uy, and

RN () € B(Y, 2p(c)).

We say that the points in U, 5, (4),(c) are (€, 0x(11), p(€))-admissible and that ny, +
N1+ my + Ny is the (e, 0k (1), p(€))-admissible return. We now define the maps

. &1 5
Feonmoe)t i Ueon(uy o) = RY,
def 1 o pN2tmp+ N1+
Fevﬁk(ﬂ)vﬂ(a) =o, o fa,gk(zlfp(f)l "k o Oy
Recall that. e ok (n).p(e) = Ok fe o4 (1), p(e) @nd that for the p(.)ints‘in Us 500.06)
the map 0, is the identity, SO ge 5, (4),p(c) = Je,5(),p(c) fOr points in Uz 5, (1) p(e)-

Remark 8.1. Every point of the blender is (&, Ux (1), p(€))-admissible:

(Na+mg+Ni+ng)
Yeonwo© C [ Fonimmioy ™ (Ue o) ote)
JEZ
j (No+mp+Ni+nyg)
gg,ﬂkfu),pl(ca) o (U5717k(ﬂ)7p(5))'
JEZ

Notation 8.2. In what follows, if there is no possibility of misunderstanding, we
will simply write:
® fckuand ger , in the places of f&@k(u),p(g) and e op (1), p(e)>
o A. g, and Y, in the place of Ag, () () an
® R. i, in the place of Rt‘)k(u),p(s)-

feop(m),0(e)?
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FIGURE 4. The points in the blender are admissible points

9. PROOF OF THEOREM [L. 1 INTERSECTIONS BETWEEN THE
TWO-DIMENSIONAL MANIFOLDS

Throughout this and the next section, we will assume that f € Hp (M), r > 2,
and consider the perturbations g.  , of f. By Proposition the set T, , in
Remark [8.1]is a blender of g, j, ,,.

We prove that the unstable manifolds of the blenders T, j, ,, of g. 1, transversely
intersects the stable manifold of the saddle Q).

Proposition 9.1. For every small € > 0, large k, and 11 € (—10, —9) it holds
Wu (Tga,k,u795:k://') rh WS (Qgs,k,,u’gfzk:,u') # @

The proof of this proposition is inspired by [23, Proposition 1, Chapter 6.4].
Here there are additional difficulties due to the heterodimensional nature of the
bifurcation. A comparison between the two settings is done in Section[9.1.1

Notation 9.2. Recall definitions of f., Fy, Yy, and U, with x = (g, 0k (1), p(€)),
in Section (8| If there is no possible misunderstanding, in what follows € and p(¢)
will be omitted, simply writing ff}k(u)’ F@k(u)’ T@k(u)’ and Uﬂk(ﬂ)'

By Proposition the sequence of maps Fy, (,) = F 5, (u),p(c) CONVerges (on
compacta) to the family of endomorphisms G¢ , 5 for some fixed § and 7. Hence
we write G, in the place of G¢ ,, 5.

This section is organised as follows. In Section [9.1] we introduce an auxiliary
one-dimensional foliation D in Up which subfoliates the reference domain of the
blenders. The main property of this foliation is that the strong unstable foliation
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of the blender approaches to D. We translate the foliation D to Uy by fé\f(“) and
thereafter by <1>,;1 to R3, obtaining in this way a foliation 5%( p)- In Lemma

we see that the leaves of 5%(#) converge to parabolas when £k — oco. In Sec-
tion [9.2] using the foliation D, for the admissible points and returns in Section
we study the expansion of vectors and how the angles change, see Lemma
In Section we translate these estimates for the map F3, (). In Section
we study the separatrices of the saddles of the blenders nearby heterodimensional
tangencies. Finally, in Section 9.5 we conclude the proof of Proposition

9.1. The auxiliary one dimensional foliation. We start with some preliminary
constructions. We consider first auxiliary foliations f}%’@k () R = P,(Q, defined
on the neighbourhoods Up and U as the natural extensions of the invariant local
manifolds of the saddles in the cycle. The leaf 775 (A) of the point A € Up
of the foliation ]:Igﬂjk(li) is the intersection of the set Up and the plane parallel to

the coordinate plane yz containing A. Similarly, the leaf 77, B (1) (A) of F3, B (1)
is the intersection of Up and the straight line parallel to the axis x containing A.
Thus these leaves are “parallel” to W (P) and W} (P), respectively. The leaves
of the foliations ]-"5’% () and ]—"Z)’ () € defined similarly and are “parallel” to
Wioe(Q) and Wig (Q). Note that the foliations F7 Be (1
on Uy ().

For x = s, u, we “transport” the foliations ]:22 Bk (1) fromUx C UgtoUg C Up

) k=81, do not depend

by the transition fé\li l(u) and continue denoting the resulting foliations by F

c Q@k(ﬂ)'
Similarly, we “transport” the foliations ]:If-, Bk (1) from Uy C Up to U3~, C Ug by

fé\;i Q(M) and continue denoting these foliations by f;,ﬁk(u)

sions do depend on U ().
We now consider an auxiliary one-dimensional foliation D in Up. For that con-

sider the family of curves

. Note that these exten-

low Z {(s,a,—a) + (0,4,8) : teR}NUp, s,a€R.

and define the diagonal foliation of Up = [—ap, ap]® by
9.1 DL {E(s,a) i a,s € [—ap,ap] }
Note that D “subfoliates” the leaves of F3

P (1) in Up, see Figure

Consider the domain A () of the blender Yy, (,) in (7.3). By [16, Lemma
3], for every large k, the coordinates (z,1 + y,1 + z) € Up of the points in
frmet Nitng (Ag(p)) are close to Y = (0,1,1). Moreover, they have Landau

Ok (1)
symbols

r = O()\pmk), y = O(U;mk O_Q—’I’Lk)’ 5 = O(O_;mk O'Q_nk)-
These conditions and equation (6.3 imply that

9.2) g:z:)]\h—i_nk (Ak(u)) - U {K(s,a) ac€ [—CLP,CLP] }
seJk
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where

(93) Jk; déf [_O_éQHk O.I;QWkCLP’ 06—22nk O_;kaap ]

As above, we consider the intersection of the leaves of D with Uy and “trans-
port” them by fé\; 2( e obtaining the following foliation of Uy (see Figure :

04 Do) = {lsaonw) = forgy sy NUY) = ays € [ap,ap] }.

Similarly, we let
95 Do = {lsanw) = O Csaseu)) : @5 € [—ap,ap] }.

9.1.1. Comparison of the homoclinic and heteroclinic settings. Our heterodimen-
sional analysis is inspired by the one in [23, Chapter 6.4] for homoclinic tangen-
cies. Let us highlight some key differences and similarities. For that recall that
[23] considers a surface diffeomorphism with saddle R having a homoclinic tan-
gency Z. There are associated auxiliary local stable and unstable foliations W),
* = s, u, defined on a neighbourhood of Z, here u refers to a “renormalisation”
parameter unfolding the tangency. In [23]] the renormalisation scheme converges
to the quadratic family ¢, (2, y) = (y,y* + p).

The construction in [23] implicitly uses the fact that (for suitable parameters) the
family ¢, has a fixed point whose unstable manifold has an “infinite” separatrix.
Here we have a property with the same flavour stated in Lemma 5.5}

The foliations W, and W, converge (in the charts of the corresponding renor-
malisation scheme) to foliations whose leaves are horizontal lines and parabolas of
the form (z, 2 + ), respectively. Here, the foliation Dg, (u) plays the role of the
unstable foliation W,. Lemma [Zf] states a convergence property of the foliation
Dy, (u) (involving some projections). The stable foliation F¢ i) defined above
is similar to W,.

Both foliations W}, and W, foliate a neighbourhood of the tangency Z. Here,
we have that the foliation Dy, (,,) covers a neighbourhood of the heterodimensional

tangency Y and therefore of the reference domain A (u) of the blender Y
see (9.2)). There is a similar assertion for Fo o ()"

In [23]], the unstable leaves of the limit thick horseshoes approach to parabola of
the limit unstable foliation and its projection along stable leaves “covers” several
fundamental domains of the local unstable manifold of the saddle R. Here, we have
a similar property: the leaves of the strong unstable foliation of the blenders T3, (,,
are close to the leaves of Dy, (,,). Due to the lack of domination of our setting, it is
not possible to get a similar covering property. Instead, we prove that “projections”
of the leaves of Dy, (,,) covers a fixed proportion of a fixed fundamental domain of
Wi (Q). This will be enough to see that the blenders are involved in the robust
cycles with the saddle () and are homoclinically related to the saddle P.

k(1)

9.1.2. Convergence to parabolas. We now go to the details of our construction.
Consider:

e the projection 71 5: R® — R? given by 71 o(, y, 2) = (7, y);
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{Z(O,a) rac ]R}

A é%\‘
%\Jﬁv )

FIGURE 5. The diagonal foliation on the leaf 7" (P).

e the maps «, § : R — R defined by
a(a) = V2 By (by — b3) a,
ﬁ(,u,s,a)Ci:efy+b1g25+(b2+b3—b4)g2a2,

where b1, ba, bs, by are parameters associated to the heterodimensional tan-
gency in (2.6)) and 3 is as in the definition of the Hénon-like maps in (3.2));
o the family of curves

OD s ® = m2(loann®) = M2 (0 (Usanun 0));

o the re-scaling maps 5y, 4y, {5 : [—ap,ap| — R, given by

9.6)

/S\k(S) def —2ny, O_—ka

=0g P rs,
(9 8) Zik(a) d:ef O'énk O';mk(l,
—~ o 2 _ _
Bo(t) V2 2np =2y

= o o
Ba(by+bs+by) @ P
Noting that 53, (s) € Jj, for every s € [—ap, ap], we can define the curves

Us.aon)®) = Usi(s) anta@), o) (1)), (s,0) € [—ap, ap]

and the sets
-~ def

L(s,a,f)k(u)) = {e(s,a,ﬂk(u)) (t) tte [_aP7aP] }
Lemma 9.1. The sequence of sets E( s,a,05 (1)) converges to the parabola

9.9 y =2+ a(a)z+ Bla,s, 1),
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| |
7 |

il |
\\\/// (y, 1+ 9% | %/L_:_
\V/

FIGURE 6. The limit family of parabolas of the sets E(s,o, k(1)
(left). Angles between parabolas and horizontal lines (right)

I /2 arctan(K)

s y(

when k — oco. The convergence is C" uniform on compact sets of R.

Next remark will be used in Section[9.3] It relates the parabolas in Lemma[J.1}

hence the foliation Dy, (,,), and the Hénon-like maps. It will play a key role in the
arguments for controlling the size of unstable sets of blenders.

Remark 9.3. Recall the reference domain A = [—4, 4]? x [—40, 22] in (5.6) of the
blender of G, and that

m2(Gu(x,y,2)) = (Y, u+y* + Ky 2 +12%).

Hence for each fixed zyp we have that 71 2(G (2, y, 20)) is a curve of the family
in (0.9). Therefore given any K > 0 there is y(K') such that for every zg €
[—40,22] and every y > y(K) the angle between the curve 7 o(G . (x, v, 20)) and
the parallel to the z-axis at the point (0,y) are strictly bigger than 2 arctan(K),
see Figure[6]

Proof of Lemma(9.1) We first give an explicit calculation of the coordinates of the
curves (s o5, (u)) in ©.4). Consider the parameterisation of £, , 5, () C Uy
given by

Uy = 33, (s, 1+t +a, 1+t —a)

Vk

def ()1 2 3
(i@ B ) i (0
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Recalling the expression fé\; T in 23), Remark and (6.3), we get

Usamp(uy(®) = 1+ a1s + (az — az)a + (az + a3)t

+ Hy(s,t+a,t —a) — Np* a,
E%vak(u))(t) = bis+ (bQ + by — b4) a2 + (bg + bg + b4) t2 + 2(b2 — 53) at
+ Hy(s,t+a,t —a)+ aén’“ + 0527”“ O';2mk p— NpE by,

3 ))(t): 1+cas+ (ca+c3)t+ Hz(s,t +a,t —a) — N5F ¢y

g(svavak (/’L

Write ) ,
- def (= -
g(s,a,@k (w)) (t) = (z(s,a,ﬁk(u)) (t)a Z(s,a,f)k(u)) (t)> :
From the definitions of £, , 5, (,))(t) in (9.7) and of @, !in Remark we get

7 o my . Babatbs+ba) 0 om
s oy () = 12y L ogf ophs + 7 on ot

+ & %—1 O'gk op*Hs(s, t +a,t —a) — Np* ng op¥ s ggl c1,

-2
s a,on(u) () = b1 62 O'Z?nk oP™ s + 6 (by + by — by) O'énk on"a?

2(bg + b3 + by)?
+ 62( 2 +23 + 4) O_énk O_%mk t2 4 2(b2 _ bS) & Uénk O_?Dmk at

+ & Uénk 0'123”"”C Hy(s,t+a,t —a)+p— Ap* O‘énk 0'123”"”C Gy by.
Recalling the re-scaling maps 5, Gy, £, in (9.8) and performing the correspond-
ing substitutions, a straightforward calculation implies that

E(s,a,ﬁk(u))(t) - (t’ t? + a(a) t+ B(/‘La S, a)),
where « and 3 are as in (9.6). This ends the proof of the lemma. O

9.2. Estimates of angles and expansion for admissible iterations. We prove the
lemma below, which is version of [23 Claim 1 in Chapter 6.4] in our context. To
state this lemma consider the projection 72 3: R® — R? defined by m23(z,y,2) =
(y, 2) and recall the definitions of the foliation Dy, (,,y of Uy in (9.4) and of the set
Us, () of points with an admissible itinerary as in (8.1]).

Lemma 9.2. There is a constant C' > 0 such that for every p € (—10,—9) and
every sufficiently large k the following holds:

Consider K > 0, a U (p)-admissible point w € Usy(u)> and a vector v € T, M
such that

(9.10) angle(v,fa@k(u)) > Koy op™.
Then
(D) [ma3(Du(fo ™) )| > C K o],
) angle(Dw(féiz(zr’“JrNH"’“)(v),f}‘i@k(u)) = O()\?’“Jg’“) - 0ask —

0o, and
3) angle(Dw(ffiz(:;n’“JrNH"’“)(v),D@k(u)) —0, ask— oo.

v,
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We begin with some preliminary estimates. For R = P, (), consider the coor-
dinate vector fields aiR , %, a(ZR , defined on the neighbourhood Ug and
tangent to the corresponding foliations 7, ()’

transition maps T1 = fM in 2.4) and T, = V2 in 2.6) satisfy

* = u,s. The derivatives of the

0 0
Dzl(axQ) dap’
3} 0 0
D% (=) = .
Sl(ayQ) Oanp_‘_IBQayp’
0 0 0
DTl( )20137-#73 ;
©.11) 0zq oz 0zp
’ 0 0
DT =) = a1+ b © 1ol
dxp dxg 0yq 0 zg
0 0 0
DTy (=) = .
52(83/13) a28xQ T dzq’
0 0 0
D = 43— + cy——
rZQ(@ZP) a38$Q+ 382@

9.12) V=V

we give the explicit expression of D,,( fév 2(:)7”’“+N 1) (). Tt follows the sketch

of the step by step calculations of this derivative, for details see [[16, Section 7].
Recalling the linearising coordinates of f at @ in (2.1)) and the definitions of

¢k, 5% in (6.6), we have

n n a n a n a
Duy(f2% ) (V) = N (k. — 58) v 5— + 005 vy e+ Ay (¢, + s1) v 3o

v 0zq
Write
Ni+ng _ 9
wFoy ) = Vo) 5 T Voo o T s 5,
Using (9.11)) we have that

Ve, Opo (1) = )\gk(ck — 5k) Uy 1 + O’gk Uy a2 + )\g’“(ck — §k) VU, (g,
9.13) Yy = 0 vy Pa,

Uz, o0 () = )‘gk (Ck: =+ 5k:) Uz 3.

Write

+N1+
w(Fontey T 0o G T g,

D) )(v) = @c,ﬂk(u) %
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Using (9.13), the linearising coordinates of f at P in (2.1]), and the definitions of
(., 5% in (6.6), we have that

@mﬁk(u) = )\ZL’“ (/\gk (Ck - ﬁk) Vg 1 + ng Vy 2 + )\g’“(tk - Sk) Vy 043),
(9.14) ’6y,5k(ﬂ) = O'g““ O'gk Ek Vy ,82 — Ugbk )\g“ ﬁk (Ck +5k) Vy 73,
Vs () = op* 05’“ 8, vy B2 + op* )‘Z)k Ck (Ck + Sk) V2 3.

Finally, we write

o ) 0
No+mp+Ni+n ~ ~ ~
Du(foy™ ™) () = B (0 Bag T Len) gyo Tl g

Using (9.11)) and (9.14) we get

20y (1) = @ Va5 () T A2 Vy 5y () 1 3 V25 (1)

)

<

)

<

9.15) .0 (1) = 01 Uz ()

2ok (1) = C1 Uz, () T €2 Uy, () + €3 Uz (1)

<)

Proof of Lemma[9.2) Take an unitary vector v, write it as in (9.12), and let oy, =

angle (v, Fo o (u))' Note that by hypothesis (9.10)

(9.16) vyl = sin(ag,,) > sin(K 0y™ op™) = K oy o™ .

To prove item (1), recall the definitions of U, 5, (,) in (0.13) and of ¥, 5, (,.),

Vy, 5y ()> AN V. y in (0.14)) and note that

2,0k (1

~

my N~ mr Nk mg Nk mp Mg °
O'P O'Q O'P O'Q O'P O'Q O'P O'Q

Recalling that op, 0 > 1, op* )\8“ — 771 (see (6.2)) and ¢, 51 — 1/v/2,
¢ — 0, s, — 1 (see Remark[6.4), we get

Veon(n) Vone) _, P2y Vson(n) _, P2ty
mg Nk ’ mg TNk ’ mg TNk :
optag opt oy V2 optog V2

Thus, for every large enough k, we get
9.17) 10,0 | = V205 00 [ea + sl B2 [vy]-

Note that co+c3 # 0, see (2.7) and (2.6)), and 32 # 0, see (2.4). Finally, from (9.16)
and (©.17) it follows

No+mp+Ni1+n ~
723D (fo ™ ) @D = (0200
(9.18) ~V205% o [ea + 3l |B2] |vy]
>CK,

where C' = /2 |32| |c2 + c3|. This proves the first item in the lemma.
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To prove item (2), let 3}, ,, be the angle between the vector D, ( gz ’Z;“)Nﬁ”’“ )(v)

and the unstable foliation ]:1’; o

) (tangent to ayip and 8?}3). Then

. 7 V2,3, ()| < V2,3, ()| _ Py
sin(B,.) = N

IDw (£ ) )| (s (Du(fH ) @)~ CK

Nk

where in the last inequality we use (9.18) and that v, 5, () = O(Np*a()), see

(9.14). Note that by (6.3)

)\g"ag’“ < )\gkaénkafgm’“ — 0.

Therefore,
ﬁk,,u ~ Sin(ﬁk,u) = O()‘nPlko-gk) — 0,

proving the second item in the lemma.

To prove the last item in the lemma, recall again the definitions of v, 5, (,,) and
U, 5, (u) in (9.14) and note that
Oy o] 1op" 06" vy Ba — op* NG Sk (ek + s1) vz 3
Vo] 1op" 06" Sk vy B2+ op" A T (ek + 81) vz 3
= opE NG B (cktsi) 0273
9.19) ’Ck vy By — 2F ngk i
- e — 1,

m k
- op" Ag" Ck (Cptsk) vz Y3
)Ek 'Uy BQ + o_mk O'gk
P

where for the limit we use again that ¢, 5, — 1/v/2and ¢;, — 0, 55, — 1.
This implies that the angle between D, (f;! ’E/j)NlJr”’“ )(v) and the diagonal foli-
ation D in (9.1)) tends to 0 as k goes to infinity. Hence, by the definition of Dgy (u)»

the angle between D, ( fé\li Q(Z)mHN 178 (p) and Dy, () also tends to 0 as k goes to
infinity. This ends the proof of the lemma. ]

9.3. Separatrices of the saddles of blenders nearby heterodimensional tan-
gencies. We now study the stable and strong unstable separatrices of the reference
saddle Prj; () of the blenders Ay, (,,) of Fy, (,) in R3, recall Notation Our goal
are the angular estimates in Lemma[9.3]

Let us go to the details. Consider first blenders for the endomorphisms G ,. Take
p € (—=10,—9) and the blender A, = A¢ , 5 of G, and its reference fixed point
P = (pt,p},p}) in G7).

Denote by 0" the separatrixﬂ of W"(Pf) contained in {y > p}} and by o3,
the separatrix of W*(P,") contained in {x > p;}, y = p}, 2 = p/} }. We consider
the curve a7, = {P;r } U o},. We now introduce the ingredients of our construction
which are depicted in Figure

9That is, one of the connected components of W (PH\{PF}

I
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FIGURE 7. Separatrices of the reference saddles of the blender

e Strong unstable separatrices. Given K > 0 define y(K) as in Remark and
consider the point

yr(K) € ol n{y = y(K)}.

Let o, be the segment of o};" bounded by y,,(K) and P; and consider its fun-
damental domain

TR = o\ G (R).

After increasing K, if necessary, we can assume that the angles between the curve
m1,2(0",) and the lines parallel to the z-axis are strictly bigger than arctan(K).

For € (—10,—9) and large k, we consider the continuations of the objects
defined above for G ;:

e the separatrices 02" . of W“u(Pg; ()

A
o the points ygk(u) (K) = Ug;:(u) N{y = y(K)},
e the curves o, ) of o3 ) bounded by g7\ (K) and PDJ; (u) 3nd

the fundamental domain

~uu

_ _uu -1 uu
TR o) = OKooe() N Fop () (TR B )

By Remark and continuity, for every p € (—10,—9) and large k, the angles
between the curve ﬂl,g(ﬁ?(“ﬁk (u)) and the lines parallel to the z-axis are strictly

bigger than arctan(K).
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e Stable separatrices. For large k, define the continuations Effjk () of 73, for Fy, ()

contained in a separatrix of WS(P;; (u)) and whose boundary contains P;; (u)°

e Angles between the separatrices. Note that, by equation (5.8)), the tangent space
of VV““(P;r ) at Pj is contained in a cone field transverse to the horizontal line
(parallel to the z-axis). In particular, equation implies that for every p €
(=10, —9) the angle between o;" and 73, at P, is bounded from below by 7 /7.
Thus, for every k large enough, the angle between O'%l;:(,u) and E;k (w & Pg; ) is
bigger than 7 /8.

For the next lemma recall the definition of the curves g(s,a@k( w) in ©.5) and of
the parameter interval Jj in (9.3)).

Lemma 9.3. For every K > 0 there is ko = ko(K) > 1 such that for every
w € (=10, —9) and every k > kg the angles between
o the lines parallel to the x-axis in R2 and the curves Wl,g(ﬁ?(‘j@
least arctanﬁK ),
e the curves (E(s,a,ﬂk(u)))

k(u)) are at

and 7T1’2(5’%k(ﬂ)) are at least g,

ae[—(lp,(lp}, SeJk
e the lines parallel to the x-axis in R? and T1,2(0%, (“)) are at most K1,

e the curves (K(M@k (u))) and the curves 711,2(5}1(‘}5 ) are

a€l—ap,ap), s€Jk k(1)

at most K 1.

Proof. The first three items of the lemma follow from the discussion before the
lemma. The last item follows from Lemma[9.1] and Remark 9.3l O

9.4. Estimates of angles and expansion for iterations of 7, (). By the formula
of @}, in Remark[7.1] we have that D,,®}, is a diagonal matrix that does not depend
on the point w. Hence we will omit this dependence. Thus, after identifying the
tangent spaces in Uy with R3, we have that
— N: N
1DuFig iy (0)1] = [ DB (Dayy ) S22V (D) (0) |

= (| Dy AN ()

Observe also that the angles in Lemma [9.3] are taken with respect the coordinates
in the zy-plane in R3. To get these angles in Us we need to replace each angle «
by arctan(op"" 05" tan(a)).

We have the following consequence of Lemma For that recall also the
definition of the foliation 751—% () In

Lemma 9.4. There is a constant C > 0 such that for every u € (—10,—9) and
every sufficiently large k the following holds:

Take K > 0, a point w € CI),;l(U@ (u))» and a unitary vector v = (v1,va,v3) €
R3 such that

(9.20) |vg| > arctan(K).
Then
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(D) [[71,2 (D Foy iy (0) | = C K o],

(2) angle(Dy Fy, (1 (v), @5 (F3 () = arctan (O(NFrog oi*)) — 0
as k — oo, and _

(3) angle(DyFy, () (v), Dy, () = 0, ask — occ.

Proof. The first two items of the lemma are direct translations of the corresponding
items of Lemma(9.2] For the convergence to zero in the second item we use (6.3).
The third item follows from (9.19) and the definition of ®. O

9.5. End of the proof of Proposition@ Using the local coordinates in Uy, fixed
small § > 0 consider the neighbourhood

Ux (0) € [=6,0] x [1 — 6,1+ 6] x [, 4]
of the heteroclinic point X = (0, 1,0) and the two-disc (see Figure
S(6) = [—6,8] x {1 — 8} x [=6,8] € dUx(6).
For large k£ > 0 and i € (—10, —9) define the set

So () = C(£,718,(0,1=6,0), £, (S(6)) N Ug),

recall that C'(z, A) is the connected component of the set A containing the point x.
We finally let

gﬂk(u) (6) = gﬂk(u)(‘s) NUy and  Sg, (,)(9) = ey (Svk(ﬂ)(é)) CR’.

Lemma 9.5. For every § > 0 there is ko such that for every k > ko and every
w € (=10, =9) it holds

Wuu(Pfj;;( ) vk(u)) o S'Uk(ﬂ)((s) # 0.

Proof. Let C' > 0 be the constant in Lemma [0.4] and take large X > 0 with
C K =7 > 1. Applying Lemma[9.3|to K, we get k¢ such that the angles between
the lines parallel to the z-axis in R? and 7r1,2(5§<uﬁk ( “)) are at least arctan(K).

Thus, after increasing ko, we get the angular condition (9.20) in Lemma[9.4] Hence
lenght (Fo, ) (TR o, (s))) 2 7lenght (55, () )-

The curve F5, () (a}(‘f@k (u)) is contained in the strong unstable separatrix ag;‘(”

wu(pt (u)) By construction, the curve Fy, () (0 (“)) also satisfies the angu-

)of

lar condition @D The proof now follows inductively: the curves F (a3, ()
are contained in o ( ) and their lengths grow exponentially. This implies that this
separatrix transversally intersects the two-disc Sy, (,,)(0). U

Note that, for every sufficiently large k, there are defined the continuations
Zij;(u) = Z:EU () of the transverse homoclinic point ZZ of @ in Proposition
These points are transverse homoclinic points of ) for f, () and (in the coordi-

nates in Ugy) are of the form

+ +
Zowon = O LG (00, Gy €(0,0).
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FIGURE 8. Two-dimensional connection between the blender and
the saddle Q).

For each k and p, we can also consider a disc W@ik () in W*(Q, fo,(u)) centred
at Z@ik () which has uniform size and is uniformly transverse to W} (Q, f5, (#))’

meaning that the angles between W@ik () and W3 (Q, fo, () at Z@ik (u) re uni-
formly bounded from below.
We are now ready to conclude the proof of Proposition E} Let ~y 8 be the
8)

segment of o; ( ) joining P, L (10) and Sg, () (6) and consider (see Figure

~uu def pn uu
Tortw) = Fop(u) (PE(T,0))-

Consider the domain A (p) of the blender Y5, (,,) in (7.3). The calculations in
(16l Step A, eq. (35)] imply that for every large & the coordinates (x, 1+y, z) € Ug
of the points in f_ (Ak( )) are close to X = (0,1,0) and they have Landau

symbols
r=0M\Q"™), y=0(p"" ag™™), z=0M\Q™).

Hence fg:(u)(Pfj; (u)) converges to X as k — oo. It follows now from Lemma

that the curves %l:(u) accumulate to the disc

{0} > [1 = 8,1] x {0} € WBo(@, S5 -
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This implies that for sufficiently large k the curve 55;1(“) transversely intersects the

disc W;Dk () C WE(Q, fo, () As the curve ;?;:(u) is contained in the unstable
manifold of the blender this ends the proof of Proposition[9.1]

10. PROOF OF THEOREM[L. I} INTERSECTIONS BETWEEN ONE-DIMENSIONAL
MANIFOLDS

We now prove that the stable manifold the blender T, . ,, of g.  , robustly in-
tersects the unstable manifold of the saddle Q).

Proposition 10.1. For every small € > 0, large k, and 1 € (—10,—9), there is a
C" neighbourhood V' 1. ,, of ge k., consisting of diffeomorphisms g such that

W*(Yq,9) "W (Qq,9) # 0,

where Yy and @, are the continuations of Y. ., and Q. Moreover, this intersec-
tion can be chosen quasi-transverse.

By Lemmas|[5.1] and [5.2] this proposition follows from the next result:

Lemma 10.1. For every small ¢ > 0, large k, and . € (—10,—9), the unstable
manifold W"(Q, ge k) contains a uu-disc in the superposition region of Y. i, .

10.1. Proof of Lemma[10.1} We import some ingredients from Section[5.3] Con-
sider the disc L in (5.9). By Remark[7.4] for sufficiently large & the set

O, 0 Reku(ge ) © P (L) CR?

contains a disc in the superposition region of the blender A, . ,, in (7.5).
def

Take small 6 = d(e) > 0 and the segment Li . = L} _(6) C W'(Q, f:) in
(@.12). By the definition of g . ,,, this disc is contained in W*"(Q, g. x,,). Thus

(10.1) S 9o (L1 ) © WHQ, gekp)-

Note that the transition gév 3 u does not depend on p, thus in what follows we

will omit the dependence on p of the sets J';, L writing just J',. We will prove

that there is a compact subdisc j} i of J, such that the C" distance between the
discs

_ N ~ _
O tog (L) and @t o Re g (9o ) © Ph(L)

goes to zero as k — 0o. As the latter set contains a disc in the superposition region
of the blender, this implies the lemma (see Figure[9). We now go to the details of
the proof.

Recall the definition of ®;, = ¥, 0O¢in and consider the parameterisation
of @ (L) given by

o [~44] = M, () = U0 O¢(0,1,0) = Wr(0,63 1, 0).
We will provide a parameterisation . i, : [—4,4] — M of j;‘ ;. such that

. — N- N — N:
(102) Jim [|(@5 g N 0y — a0 N 0y ) [, = O



48 L.J. DIAZ AND S. A. PEREZ

(I)lzl o gN2+mk(Aau,k) (I)]zl ) Re,k,u(ga,k,u) o (I)k(L)

ek,p

FIGURE 9. One-dimensional connection between the blender and
the saddle Q.

As the set \111;1 o gé\f ;j;karN 7% o~ ([—4, 4]) contains a disc in the superposition
region of the blenders (see Remark [7.4) this proves Lemma(I0.1]
To get equation (10.2)) we observe that

-1 No+mp+N1+nyg -1 Nao+my, _
H (I)k ° gs,k,,u Mk — <I>k © ge,k,u © Ve k Hr -

-1 -1 No+mp+Ni+ng -1 -1 No+my
H @f © \Ijk Oga,k,u OV — 65 © \I’k Oga,k,u O Ye,k Hr <

_ N. N - N.
C Wit o gz Mo gy — Wt o g2 20 M oy g |

where C'is an upper bound of the C" norm of © Lin the cube A. Thus to conclude

the proof of the proposition it is enough to prove the following:

Lemma 10.2. There is a parameterisation 7. j, : [—4,4] — M of j\;‘ i Such that

lim H(\Ijlzl ogN2+mk+N1+nk ° No+my

e,k Tk — \:[11;1 ° gs,k,u © nyzk) ‘[_4»4] =0.

k—o0 ‘r

We begin by giving the explicit parameterisation of 7, j of j; e

10.1.1. The parameterisations .. We first write the segment J, in (I0.I)) in

local coordinates. Recalling the definitions of L} _ in @I0), T1,1. = M|y, in
(@.8), and 6, i, in (7.8) (where 7, is defined), we have

T = { X1+ A(tes + pro(t)) + H (tes + 51 (t))+
+ 5 (A(tes + pre(t)) + HE(tes + pre(t) )7 : [t| <3 =d(e)}.

Using @.11), @.9), p1,(0) = 0, and Remark we get & € (0,6) such that for
every |t| < ¢ it holds

A(tes + pio(t)) + H (tes + pro(t) € B(0,6).
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As the map I, is igual to 1 in B(0,0) (recall (3.2))), we can consider the subdisc
T S Xie+ Altes + pro(t)) + HE (tes + pro(t)) + 7 : [t <O} C J.
For convenience, we write J' ', in the following compact form:
T = {X1e +tA(vie) + pre(t) + 7 [t <90},
where
vie Zes+ ATIDHL(0) e,

~ def — 77l — 77l

Pre(t) = A(pre(t)) + H. (tez + p1(t)) — t DHZ(0) e
Note that, by (@.1T)), we have that

SF0) = p1.(0) =0

We now consider the subdisc J k of J 1, obtained by rescaling the parameter ¢

by the factor 0;27"’“0 M g1 < § < Las follows:
Juk et {)?1,5 + U]; mkUQ_nk §2_ tA(VLg) + ﬁl@k(t) + T |t| < 4},
where

def ~

P1ek(t) = p e(Upzm’“UQ_"’“ oS t).

To rewrite the set fau ;. in a compact form, let
a0 (@B TH)E DI O
p176,k(t) def ﬁ":li €( —kao-Q Nk §2—1 t)’ E = 17 27 3’

where Z)fa is the ¢-th coordinate of p .
Remark 10.2. Remarkﬂlmphes that (@, Wy, Wy) — (0,0,0) as e — 0.

Recalling that X; . = (1 +Z1,0,0), see (@6) and @7), and the definitions of
A in 24) and of 7, in (7.7), we can write

o = {1+ Tre + 2ep(t), yer(t), 2o (1)) : [t < 4},
where
2 p(t) Z op o (a4 @y%) o+ Pl (L),
04y VB TR0 (Bt @) 6t Bkt
+op" (Ck + 51),
2en(t) E op og T w0y 6t + BY L (t) + o™ (6 — Br).

The announced parameterisation of J i, 1s given by

(10.5) Ve ,k * [_47 4] — M, 'Vs,k(t) = (1 + xl,a + !Ts,k(t)y ye,k(t)a Za,k(t))~
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10.1.2. End of the proof of Lemma [I0.2] (thus of Proposition[I0.1). We calculate
separately the two terms in the lemma. This involves some explicit calculations in
the renormalisation scheme borrowed from [16] which are stated in Section [13]

o The term ¥, ' o gévitm”Nﬁ"’“ (7k()). Write

_ _ _ def o N- N
0 T Tk 0 e (®) = Wyt o gl T (1))
= W0 gl NI 6 g (04(0,1,0).

Using the formula in (13.1), replacing f5, (), bY Ge ko = Ok © fe 5, (u),p(e) (this
leads to a dependence on € of the next expressions), and considering the curve

0:(0,t,0) = (0,5, t,0) (see (3.3)), from equation (T3.3) we get
T€7k7“<t) = <a1 )\gk U;mk g + (Ek as + 5p CL3) 52>§2_1 t+opmk O'g’“ hOtg,k,H<t)a
— _ -1 b )\mk ng —1 "'Qb ~2b ~ = b 2 =22
Yehou(t) =3 01 Aph 0Q™ gy t+ (¢ ba + 55 bs + xSk ba ) By sy “ 7+
+ op?ME 0622”’“ hot! , ,(t),

Zepu(t) = (cl ANpEop™ ag + (ko + g c3) Bg) Gt op™ ag’“ hot? ;. (1),
where hot; ;. (), x = x,y, 2, are high order termﬂ
Remark 10.3 (Lemma 8.3 in [[16]). The terms

op™ o hotZ (1), op2mk Jé”’“ hotgjkﬂ(t), op™ og hot? (1),

go to zero in the C" topology as k goes to infinity.

o The term ¥, ' o gévli";mk (Ve (1))
Recalling the parameterisation of 7. x(¢) in (10.3)), write

. ~ ~ ef — N-
(Te b (8, T o (£, Ze o (8) = W 0 22 (3 (1))
=¥ o ggﬁmk (1+ Z1c 4 2o (t), Ye i (), 21 (2)).

Using equation (T0.4) and the linearity of g. ;. , in Up, we get

(10.7)

def /.~

9% (U Tre + 2o (D), Ye i (D), 2e 5() = (Fen () 1+ Gep(t), 1+ 204 (1)),
where
Tep(t) = Ap™ (14 T10) + Ap™ 0> o ™ (ag + @) o5 L t
+ Ap"k ﬁ%,s,k(t%
Ueo(t) = (€1(B2 + Wy) — Wy° 5p) op " oM oy 4 o™ ug (1),

:2\57]{(15) = (gk(ﬂg + @;’a) + @;’6 Ek) O';mk Uank §2_1 t+ O’pmk Ug,k(t),

101y [16] these high order terms are denoted by h.o.t.*, h.o.t.**, h.o.t.***.
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with
ue k(t) = & Dy, k(t)
Ve k() = 8 Pk

Recalling the expressions of pLa’k( ), 03 . k,(t in @) fori = 2,3 we get

(10.9) O(ue k(1)) = O(ve (1)) = OBy . (1)) = O(op ™o ™™ ).

Thus the Landau symbols of Z, 1 (), - x(t), and Z ;,(t) are of the form

Teg(t) = ONP™),  Tek(t) = O(op™ o ™) = Z(1).
Note that
Te (D), Ueou (1), Ze o (8)) = Wit 0 o227  (Bek(8), 1+ Te g (£), 1 + 22 4 (8)).
Recalling the definitions of ¥, in (]@[) and of f_ (see Remark and that

gs = faNik )o(e) = f, ) in the nelghbourhood f, ( (Y, p(e ))) of Y that
we are con51der1ng, we get

(10.8)

o
“,.i,
14
&

—~

~

~—

b& b)

/-\

~

SN—

5E,k,,u<t) = ax )\Pka' 0Q kl'lg

+ <a1 Ap™Eop ™ (g + @,%) + az (€ (B2 + Wy©) — Wy “51)

+ ag (8x (B2 + Wy°) + Wy* Ek)) o 't + Hot?, ,(t);
ga,k,u(t) = ngl [+ b )\Pmkal%)mkUQan o s by )\Pmko.Qk (012 + {Di,e) g{lt

~1,e

+ (bQ (x(Ba + @) — @5 51)° + by (34(B2 + By°) + Wy ° &)

+ by (& (Ba + Wy°) — Wy® 51,) 3k (Bo + Wy°) + Wy ° Ek)) G2t
+ Hot€ & u( );
Zeou(t) = c1 Ap"MoproQ"™ T e

+ (Cl ApTkop Tk (042 + ’l;i’s) + o (Ek (52 + @;’8) — @’5 gk)

5 (B (B2 + T57) + By &) ) 31t + Hot . (8),

where Hot? ; ,(t), * = x,y, z, are high order terms. Their explicit expressions can
be found in Section[[3.2]

e Comparing the terms in Lemma[[0.2]We are now ready to estimate the difference
between the coordinates of the points in (10.6) and (T0.7). For that writing

def ~ —
gk,,u(t) = wS,k‘,M(t) - w&k‘,li(t)v w=x,Y,z
we obtain

T m n ma —myg ~1le ~ ~le ~ ~le
Crpu(t) = a1 ApMroptog kx1a+<a1>\p Fop ™y + ag (S Wyt — 5y W3°)

+ ag (5, w Wy + Wy )) Gttt HotZ (1) — op* o hotj (1);



52 L.J. DIAZ AND S. A. PEREZ
0¥ 1 u(6) = bi AP0 0 * M Ty ¢ 4 by Ap oy Wy 6y
+ (b2 28 @7 & + (@37)2 & — 2681 B (B + @) + (057) 5]
+ by 280 @y ° 8, + (@, °)* 5, + 2 85 W3 (B2 + Wy °) + (05°)° &
+ by [2 B9 w2’ S Cp + (w2’5)2§k Cr
(@ -8 @ (B + @) — (@))% k] ) 52
+ Hot? MO ok g2k hot (t);
2hat) = NPT O e+ (en Ao p T B (6 Wy — 8 )

+ ey (B Wy + G, @;E)) oy ' t+HotZ, ,(t) — op* ofrhot (£).

We now prove that H(SE o | (=44 H — 0. The proofs of H5
* = 1, z, are similar and hence omltted For that write

?,k,,u(t) = AE,k,,u( ) + HOte k ,u,( ) ng nghOti (t)v
where A.  ,,(t) denotes the affine part of 57, ().

Claim 10.4.

(1) limp o || Ask,u![ 24|l =
() limyoo |oB* o hotg Bl 44]H 0,
(3) limp_soo HHotE ko li—aq]], = 0.

Ek,u 4»4]Hr — 0,

Clearly, this claim implies Lemma (10.2)

Proof of Claim For the first item recall that by @]) we get Ap* alzjm’“ oo —

0 and that by Remark the norm of (@, @Wy*, wy*) is small. The second
item was stated in Remark [I0.3] The proof of last item is postponed to Sec-
tion[13.2.11 O

The proof of Proposition [I0.1]is now complete.

11. PROOF OF THEOREM [L. I HOMOCLINIC RELATIONS
We now prove that blender Y. . , and the saddle P are homoclinically related.

Proposition 11.1. For every small € > 0, large k, and p € (—10,—9) there is g
arbitrarily C" close to g ., such that

WY(Y,,9) NWS(Pog) #0 and W*(T,.g) 0 WY (P,g) # 0.

Proof. Note that Propositions [0.1] and hold for perturbations g of g. i ,. Re-
call the definition of the quasi-transverse heteroclinic point X5 . in Proposition
and observe that this intersection point is preserved by the local perturbations we
have considered. Therefore X5 . is also a heteroclinic point of g, x ,. Note also
that after a perturbation g of g. 1., (that does not destroy the heteroclinic points)
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FIGURE 10. Robust homoclinic tangencies

we can assume that the argument of Dg((Q) is irrational. Thus the hypotheses of
Lemma[.Tlhold.

By Proposition W' (Yy,9) h W*(Q,g) # 0. Thus, after a perturbation,
that we continue denoting by g and does not change the argument of the com-
plex eigenvalue of Dg((Q), we can assume that there is a disc S C W" (T, g) that
transversely intersects W} (Q, g) along a curve -y with nontrivial radial projection.
Lemma (4.1 now implies that W*(P, g) transversally intersects S C W"(Yy, g),
proving the first item of the proposition. Note also that g has a robust cycle associ-
ated to ) and Y.

To prove the second intersection, note that W" (P, g) and W} (Q, g) interesects
transversely along a curve with a nontrivial radial projection. Note also that by
Proposition , Ws(Yy,g) and W (Q, g) intersects quasi-transversely at some
point Z. Consider a curve D C W?*(Y, g) and containing the point Z in its inte-
rior. Arguing as above and applying Lemma[4.1] we have that the negative iterates
of D (contained in W*(Y, g) transversally intersects W*(P, g). This completes
the proof of the proposition. U

12. PROOF OF THEOREM [I.I HOMOCLINIC TANGENCIES

In this section, we consider perturbations g j ,, of the diffeomorphisms f in
EH’(# (M). Next proposition implies the part of Theorem about homoclinic
tangencies.



54 L.J. DIAZ AND S. A. PEREZ

Proposition 12.1. For every small € > 0, large k, and jn € (—10,—9) there is g
arbitrarily C" close to ge ., with a C" robust homoclinic tangency associated to
blender-horseshoe Y .

Proof. Note that close to the original heterodimensional tangency, the manifold
wu (P, ge,k,u) intersect W* (Q,g&k?u) in closed curve denoted by C . ,. Let
Se k., be the two-dimensional compact disc contained in W* (P, ge,k,u) bounded
by C. 1, By the A\-lemma, the forward iterates gé k,,u(ngkvﬂ) of S. ,, accumu-
lated to the unstable manifold of (). By Lemmam the unstable manifold of Q)
contains a disc in the superposition region of the blender Y, ;, ,. Thus there are
infinitely many iterates of S, ;. , containing uu-tubes in the superposition region of
the blender, see Figure [I0and recall Definition[5.1] Corollary [5.1]implies that the
manifold W*(P, g. x.,.) and W (Y. ki, 9= k) have a C” robust tangency. The
proposition follows noting that by Proposition [I1.1] the point P and the blender
Y. k. are homoclinically related. O

13. CALCULATIONS IN THE RENORMALISATION SCHEME

We collect some calculations from [16] that we used in the previous sections.

13.1. The renormalisation formula. First, recall the perturbations f3 , of f €
i (M3) in (6.0)). For that, we borrow from [[16} Section 7.3] the explicit formula
for compositions of the form

(13.1) W, Lo iVt

def . . .
B ()0 oWy (:Z:7 Y, Z) = (:Ek‘,u,pa Yk, p,p5 Zk,u,p)'

Here, the iterates corresponding to ny occurs in Ug, the Ny iterates correspond
to the transition ¥1, the iterates corresponding to my occurs in Up, and the No
iterates correspond to the transition To.

Consider the heteroclinic points X, Y in the cycle (see Section[2.1.2)) and write

def _
(13.2) Xkup (8,9, 2) = foln 0 Un(@,y,2) = X,

~ ef N-
Xk:,/hp(xvy7 Z) = ng?$7pl+nk © \I/k(xa y,Z) -Y.
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Using the notation in Section [6] the composition in (I3.1) reads as follows:

jjk“u’p =a; /\WP% )\an (a1 (Ck T — 5 Z) + a3 (Ek T+ cg Z))
+ a1 ApFop™ agy + (Spaz + 8, a3) Bay
+ O'}gk )\gk Y3 (Ek as — 5 CLQ) (Ek T+ C Z)
n
+op"* o5 hoty , ,,
Jropp = B+ b1 NpF 0Q™ @z y
+ b1 Ap"k gp™E )\gk O'gk (Oq (Ck xr — 5k Z)ag (ﬁk T+ ¢k Z))
(b2 + 52bs + diby) B3
(133) + ka )\27’lk ~2 b ~2 ~. =< 2 2
Op o \5k 2+Ckb3*Ck5kb4 73(5ksn+ckz)
+ ng )\gk (QEk gk: (b3 — bg)(Ei — gz) b4>,32 73(514 Ty + Ck yz)
2 2
+op Mk O'an hotz’#’p,
Zhpp = CLAPE AQ™ (al (ckx — sk 2) + as (spx + ¢k z))
+ e Apt o™ any + (Ek co + S, 03) B2y
+opk )\g’“ Y3 (Ek c3 — 5, 02) (s + ¢k 2)

+ op™Mk ag"' hot , ,,

where hoty , , = hoty , (z,y,2), * = w,y,z, are higher order terms whose
Laundau’s symbols satisfy the following conditions (see [16, Lemma 8.3]). Write

_ﬁQ(Xk,,u,p) © FIQ(Xk,#,p) — )\én’“ P2k
where po i, is defined in (6.7). Then
(i) O(hOti,u,p(x7 y,2)) = O(Ap™ H, (Xk,p)) + O (0" ﬁ2(xk,u,p>)

+O(H1(Xkpup)), - ~
(ii) O(hOtZ,u,p(x’y7 z)) = O(Ap™ )+O (Hi(Xpp,p)) +O((op* Hz(xk7u7p))2)

+ O(aénk ﬁQ(Xk,u,p)) + O(H2(§k,u,p))’
(iii) O(hotz7u7p(x, Y, z)) = O()\PmkHl(xk7u7p)) + O(g}?’k HQ(Xk,u,p))
+ O(HS(ik,#,p))'

13.2. The high order terms of ¥, ' o gév zzm’“ (Ve,k(t)). Recall the definition of
Y,k in (I0.3). We now provide an explicit expression of the high order terms

Hot? . ,(t) in \11;1 o gi_vlizm’“ (Ve,k(t)). Define X, 1, ,, and X. , ,, as in (I3:2), where

Jou () 1s replaced by f; 5, () (this is why the subscript € appears). Write

def def ~

WE,k,#(t) = Xe k,u © @5(0, t, 0), Wf»k»ﬂ(t) = Xe k,u © @6(0, t, 0),
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where Oc¢ is an in (5.3). We have
HotZ i, (1) = a1 Ap™ 0" 0™ pL (1) + az 05" 0" ue 1 (1)
+ a3 0p> ™ 0Q v k(1) + 0 pF Q" Hy (We (1))
Hot?, ,(£) = bi Ap™ 0™ 0> L 1 (t)

~1,e~

+ 0'12_-,ka'an (21)2 (Ck(a2 + Wy®) — Wy 55)

by (Elan + T57) + @57 8) )55 buep(t)
+ o kg (2b3 (5k (2 + Wy®) + Wy “Tx )

b (@ + B3%) — B3 8) )55 vkt
+op g (bz (us,k(t))2 + b3 (Ue,k(t))2

- ba e (1) Ve (1)) + TR0 Q M Ha (Weypu(1)):

HotZ ), ,(t) = c1 Ap™ 05 0Q™ pL 1, (1) + ca 07" 0™ uc k(t)

ek,p
+c3 (Tp2m’“UanUE,k(t) + U?kJanHg (ﬁ’gykyu(t)).

13.2.1. Proof of item (3) in Claim[I0.4, We claim that
| (Hot?y, ,, — o5 0™ Hi o Weky) l—aa|, — O

For this just note that
o u.(t), ver(t) and f)gk(t), ¢ = 2,3, have the same symbol of Landau

0(0;47”’“ 0652"’“), see (10.8) and (10.9),

e pl, is bounded and (6.3).
Finally, the convergence

klggo lop*oQ™ Hy o We g ||, =0

follows exactly as in [[16, Claim 8.4].
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