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Abstract. We study certain one-parameter families of partially hyperbolic
maps Ft : Σ2×R→ Σ2×R of skew-product type generating so-called porcupine-
like horseshoes. Such sets are topologically transitive and semiconjugate to the
shift map in two symbols. They exhibit a very rich fiber structure characterized
by the fact that the set Σ2 is the disjoint union of two dense and uncountable
subsets with opposite behavior: corresponding spines (preimage of a sequence
by the semiconjugation) are nontrivial and trivial, respectively, that is, the
semiconjugation is noninjective and injective, respectively. We will study the
bifurcation process of creation and annihilation of nontrivial spines as the pa-
rameter t evolves. In particular, we focus on the Hausdorff dimension of these
subsets of Σ2. This study illustrates the richness of the process.

1. Introduction

We consider one-step skew-products defined over a full shift of two symbols
(Σ2, σ) with one-dimensional fibers,

F : Σ2 × R −→ Σ2 × R, F (ξ, x) = (σ(ξ), fξ0(x)).

This dynamics is “partially hyperbolic” with a hyperbolic part inherited from the
shift dynamics and a central part corresponding to the fibers. The two fiber maps
f0 and f1 have no critical points, see Figure 1. The map f0 is increasing with
two hyperbolic fixed points, say 0 (repelling) and 1 (contracting). The map f1 is a
contraction reversing the orientation satisfying the cycle condition f1(1) = 0. Inter-
esting dynamical properties of these skew-products such as occurrence of heterodi-
mensional cycles, transitivity, intermingled contracting and expanding dynamics,
and phase transitions associated to the central exponents arise from the reversion
of the orientation, the cycle property of f1, and minimality-like properties of the
iterated function systems (IFS) associated to f0 and f1. See [5, 7, 9, 8] and the
survey [6].

On the one hand, viewing the dynamics of this skew-product as an IFS, one
gets a genuinely noncontracting IFS which mixes contracting and expanding be-
havior. It turns out to be difficult to analyze the dynamics as common approaches
are rather limited. Investigating random iterations of general noncontracting IFS,
fractal properties and, in particular, relations between Lyapunov exponents, dimen-
sion, and entropy have been studied recently (see, e.g. [9, 8] and also the references
in [6]). Such approaches focus on properties of measures that are stationary with
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respect to the IFS and are “essentially” contracting, compare the discussion in the
introduction of [13].

On the other hand, viewing the dynamics of this skew-product as a partially hy-
perbolic diffeomorphism (with a central part given by the fiber maps) on a maximal
invariant transitive set is not any easier. This is because the transitive set contains
periodic points with different (contracting and expanding) behavior in the central
direction and the dynamics intermingles these two types of hyperbolicity. Thus,
new methods have to be developed.

In this paper we continue the analysis in [10, 5, 7] where a quite simple, but
very rich, model family of skew-products F as above is introduced. We study
the dynamics of the maximal invariant set Λ of F in Σ2 × [0, 1]. The set Λ is
semiconjugate to the shift map in Σ2, that is, there is a continuous onto map
Π: Λ → Σ2 such that Π ◦ F = σ ◦ Π. For each ξ ∈ Σ2 we consider the set
Π−1(ξ) ⊂ Λ, called the spine of ξ. This spine is nontrivial if it is not a singleton
and trivial otherwise. In this way, the set Σ2 splits into two disjoint invariant sets
Σnon

2 and Σtrv
2 consisting of sequences with nontrivial and trivial spines, respectively.

In some loose sense, the information about the expanding part of the dynamics
is encoded in Σnon

2 , while the set Σtrv
2 is related to the contracting behavior. The

occurrence of nontrivial spines also serves as an indicator of the nonhyperbolic
behavior in Λ. Thus the topology and dynamics of the transitive set Λ are related
to the sets Σnon

2 and Σtrv
2 . Let us explain this point in more detail.

In our setting, the fiber map f0 is concave and the fiber map f1 is affine. It
turns out that the spines of Λ are of the form {ξ} × Iξ ⊂ Λ, where ξ ∈ Σ2 and
Iξ is either a point or a nontrivial closed segment. In this context, under very
mild assumptions on f0 and f1 (see the discussion below), the set Λ is topologically
transitive (existence of a dense orbit) and is called a porcupine-like horseshoe. A
naive geometrical idea of a porcupine-like horseshoe is the following: consider a
horseshoe in the plane and select two uncountable dense subsets of it, for each
point in the first set glue a segment vertically to the plane (a nontrivial spine) and
for the second set just glue a point (a trivial spine). The precise definition is the
following.
Definition 1.1 (Porcupines). Given an one-step skew product map F : Σ2×[0, 1]→
Σ2× [0, 1], a compact maximal invariant set Λ of F in Σ2× [0, 1] is a porcupine-like
horseshoe (shortly, a porcupine) if it is topologically transitive and the subsets Σnon

2

and Σtrv
2 are both dense and uncountable in Σ2.1

If Σnon
2 = Σ2 we say that the set Λ is a completely spiny porcupine.

Let us say a few words about previous results about porcupines. Sets of such
type first appeared (without such a name) in the work [10] about the destruction of
hyperbolic sets via heterodimensional cycles. The porcupines in [10] are essentially
hyperbolic sets (they only support hyperbolic ergodic measures, [16]) and their
spectra of central Lyapunov exponents (those associated to the fiber dynamics) have
a gap separating the positive and the negative parts of the spectrum. The results
in [16] state some thermodynamical properties of these porcupines. The notion
of a porcupine was introduced in [5], where genuinely nonhyperbolic porcupines
(supporting nonhyperbolic ergodic measures) are considered.

1Porcupines can be defined in more general settings. The key ingredient is the existence of a
semiconjugation to some shift map, where the spines are the pre-images by the semiconjugation
of the sequences in the set.
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Figure 1. The fiber maps f0 and f1,t

Let us observe that a porcupine has the same flavor as the so-called bony sets,
that is, a set which are the union of the graph of a continuous function (over the
shift space) and an uncountable set of vertical segments (so-called bones) belonging
to the closure of this graph. The bones correspond to the nontrivial spines of the
porcupine, see [15].

We study a bifurcation behavior of one-parameter families of maps (Ft)t∈[0,1] of
the form

(1.1) Ft : Σ2 × R −→ Σ2 × R, (ξ, x) 7→ (σ(ξ), fξ0,t(x)),

such that for each t ∈ (0, 1) the maximal invariant set Λt of Ft in Σ2 × [0, 1] is a
porcupine. We would like to understand the scenario of creation and destruction
of spines in order to understand better one of the features (occurrence of nontrivial
spines) that distinguishes porcupines from hyperbolic sets. For that for each pa-
rameter t ∈ [0, 1] we define the subset Σtrv

2,t and Σnon
2,t of Σ2 consisting of sequences

with trivial and nontrivial spines for Ft, respectively. The goal is to understand
how the sets Σtrv

2,t and Σnon
2,t evolve with t. As a first simple, but still quite cum-

bersome, approach we study the Hausdorff dimension of the level sets Σtrv
2,t and

Σnon
2,t . This can be seen as a first step into a multifractal analysis for porcupines.

Further possibilities of finer analysis could involve an investigation of the Hausdorff
dimension of the level sets of sequences with spines of a given length or within a
given interval.

Let us give more details of the families that we will study. We consider one-
parameter families of skew-product maps as in (1.1) where f0,t = f0 is an increasing
concave C2-map independent of t with two fixed hyperbolic points f0(0) = 0 and
f0(1) = 1 and f1,t is the affine map f1,t(x) = t (1− x), see Figure 1.

We denoted this set of families by P. The maximal invariant set Λt of Ft in
Σ2 × [0, 1] is defined

Λt
def
=
⋂
i∈Z

F it
(
Σ2 × [0, 1]

)
.

A key property of the families in P is the cycle condition f1,t(1) = 0. Another
important condition is that the IFS generated by f−1

0 and f−1
1,t is minimal for every



4 L. J. DÍAZ AND T. MARCARINI

t ∈ (tc, 1), where tc ∈ (0, 1) is given by f ′0(tc) = 1. This minimality property of the
IFS is key for the transitivity of the porcupines Λt for t ∈ (tc, 1), see [7].

The dynamics for t = 0 and t = 1 correspond to two “degenerate” cases of
different nature: for t = 0 the dynamics has no spines at all, while for t = 1 there is
a completely spine porcupine. The families in P provide simple models describing
a transition from a dynamics without spines (Σtrv

2,0 = Σ2) to a completely spiny
dynamics (Σnon

2,1 = Σ2). This bifurcation phenomenon has a similar flavor as (and
its study was partially motivated by) the monotonicity of the complexity of the
dynamics in the quadratic family, see [2, 18].

One could naively guess that the dynamics of the porcupines Λt “gain complex-
ity” as the parameter t increases and approaches the completely spiny porcupine
generating new nontrivial spines2. Translating this guess to the base dynamics
would mean that the set Σnon

2,t monotonically “grows” as t approaches 1. However,
this does not happen and it will turn out that the process of the generation of non-
trivial spines is rather complicated. For instance, a nontrivial spine may disappear
after its generation and remains trivial until it revives at t = 1 (we will call such a
spine evanescent), see Theorem 6. This fact has the same flavor of the annihilation
of periodic orbits in homoclinic bifurcations in [14].

To state precisely our result we need to fix some notation and facts. Given
ξ = . . . ξ−i . . . ξ0 . . . ξi ∈ Σ2 we write

ξ
def
= ξ−.ξ+, where ξ−

def
= . . . ξ−i . . . ξ−1, ξ+ def

= ξ0 ξ1 . . . ξi . . . .

Let Σ+
2 and Σ−2 be the set of sequences ξ+ and ξ−, respectively.

In the set Σ2 consider the canonical distance d defined by

(1.2) d($, θ) = 21/2 2−n($,θ) : n($, θ) is the smallest value of |n| with $n 6= θn.

With this distance the Hausdorff dimensions of Σ2 and Σ−2 satisfy HD(Σ2) = 2 and
HD(Σ−2 ) = 1. For the definition of Hausdorff dimension see Section 7.
Theorem 1. Let (Ft)t∈[0,1] ∈ P. Then for all t ∈ (0, 1) it holds HD(Σnon

2,t ) < 2.

Since fi,t([0, 1]) ⊂ [0, 1] for every t ∈ [0, 1] and i = 0, 1, the property whether
the spine of ξ = ξ−.ξ+ is trivial or nontrivial is determined by the negative part
ξ− only: if the spine of ξ = ξ−.ξ+ is trivial (resp. nontrivial) then the same holds
for every ζ ∈ Σ2 of the form ζ = ξ−.ζ+. Thus we say that ξ− ∈ Σ−2 has a trivial
spine if, and only if, the spine of any sequence of the form ζ = ξ−.ζ+ is trivial.
Otherwise, we say that ξ− ∈ Σ−2 has a nontrivial spine.

A natural question is whether there exist sequences ξ ∈ Σ−2 having the same type
of spine (trivial or not) for every t ∈ (t0, 1) for some t0 ∈ (0, 1). As in the definitions
of Σnon

2,t ,Σ
trv
2,t ⊂ Σ2, let Σ−,non

2,t and Σ−,trv2,t be the subsets of Σ−2 of sequences with
nontrivial and with trivial spines (for Ft), respectively. Define the subsets

Σ−,non
2 (t0)

def
=

⋂
t∈(t0,1)

Σ−,non
2,t and Σ−,trv2 (t0)

def
=

⋂
t∈(t0,1)

Σ−,trv2,t

consisting of the sequences in Σ−2 whose spines for all t ∈ (t0, 1) are nontrivial and
trivial, respectively.

2The topological entropy of Ft|Λt is constant and equal to log 2 in the parameter range (0, 1].
For that note that the restriction of Ft|Λt is semiconjugate to the full shift σ : Σ2 → Σ2 and the
fiber dynamics is noncritical. This implies that no entropy is generated by the fiber dynamics and
thus the topological entropy of Ft|Λt is equal to the one of the shift, see [3, 4].
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Let B be the σ-algebra generated by the cylinders of Σ2, see Section 2.3 for
details. In the set B we consider the Bernoulli probability measures bp, p ∈ [0, 1],
where bp gives weight p to the symbol 0 and (1− p) to the symbol 1, and consider
the probability space (Σ2,B, b1/2).

By [5] the set Σtrv
2,t is a residual subset of Σ2 for all t ∈ (tc, 1), recall that tc ∈ (0, 1)

is defined by f ′0(tc) = 1. Recall also that β = f ′0(0) > 1. Theorem 2 below states
that these sets have full b1/2 measure.

Theorem 2. Let (Ft)t∈[0,1] ∈ P. Then

b1/2(Σtrv
2,t ) = 1 for every t ∈ (0, 1) and b1/2

( ⋂
t∈(0,β−1)

Σtrv
2,t

)
= 1.

The above result follows from Theorem 1 and the fact that the Bernoulli measure
b1/2 coincides with the Hausdorff measure m2 (see Proposition 2.13). A natural
question is to estimate the measures of the sets in Theorem 2 for other Bernoulli
measures. As a further consequence we obtain that the entropy of the porcupine is
“concentrated” in the trivial spines.

Denote by htop the topological entropy.

Corollary 1. Let (Ft)t∈[0,1] ∈ P. Then htop(F |Λt) = htop(σ|Σtrv
2,t

) = log 2 for every
t ∈ (0, 1).

To prove this corollary recall the comments in the footnote above and note that
htop(F |Λt) = log 2. On the other hand, Theorem 2 claims that b1/2(Σtrv

2,t ) = 1
and thus htop(σ|Σtrv

2,t
) = log 2 for every t ∈ (0, 1). Thus htop(F |Λt) = htop(σ|Σtrv

2,t
),

proving the corollary, see [1].

The following theorem implies that the transition to a completely spiny porcupine
at t = 1 happens suddenly and lots of spines are created instantaneously.

Theorem 3 (Abrupt appearance of spines). Consider any (Ft)t∈[0,1] ∈ P. Then it
holds HD(Σ−,trv2 (0)) > 0.

To prove this theorem we exhibit a subset with positive Hausdorff dimension
consisting of sequences ξ in Σ−,trv2 (0). More precisely, for each ` ∈ N, ` ≥ 2,
consider the set of words

B`
def
= {12`0`, 110}

and its associated sets of sequences EB` defined by

EB`
def
= {ξ− : ξ−1 · · · ξ−k · · · is a concatenation of words in B`} ⊂ Σ−2 .

We will see in Proposition 3.6 that HD(EB`) > 0, thus the next proposition implies
Theorem 3.

Proposition 1. Let (Ft)t∈[0,1] ∈ P. Then there is `0 such that EB` ⊂ Σ−,trv2 (0)
for every ` ≥ `0 and t ∈ (0, 1).

In this proposition `0 depends on the map f0. A key ingredient of the proof
of this proposition is the concavity of f0 which implies that finite compositions of
the maps f0 and f1,t such that f1,t appears (never/once/several times/an infinite
number of times) consecutively an even number of times preserve orientation, are
concave and thus have a unique fixed point. This holds for maps “associated” to
words in B`.
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We now consider the subset Pexp of P consisting of the families (Ft)t∈[0,1] ∈ P
such that the map f0 satisfies the additional condition:

(1.3)
λ2

β

(1− λ)

1− β−1
> 1, where 0 < λ = f ′0(1) < 1 < β = f ′0(0).

This property implies that the IFS generated by f0 and f1,t is minimal for every
t ∈ (0, 1], which in turn is the key property to show topological transitivity of the
porcupine horseshoe Λt, see [5].

We now study the set of sequences with nontrivial spines for families in Pexp.

Theorem 4. Let (Ft)t∈[0,1] ∈ Pexp. Then the following holds

(1) HD(Σ−,non
2 (0)) = 0.

(2) The set Σ−,non
2 (0) is uncountable.

(3) For every t0 ∈ (0, 1] it holds HD(Σ−,non
2 (t0)) > 0.

We next consider the problem of stabilization of nontrivial spines.

Definition 1.2 (Stable spine). The spine of ξ ∈ Σ2 is stable at t0 ∈ (0, 1] if the
map t 7→ Iξ,t is continuous at t0 (here we consider the Hausdorff distance).

Note that if the sequence ξ has a stable nontrivial spine for t0 the same holds
for all parameter t close to t0.

We observe that the stabilization of “some” trivial spines is an easy problem.
For instance, for every t0 ∈ (0, 1) there is δ(t0) (where δ(t0) → 0 as t0 → 0)
such that every sequence with a “proportion” of 1’s bigger than δ(t0) has a stable
trivial spine for every t ∈ (0, t0], see Proposition 2.6 and Corollary 2.7. A much
more interesting problem concerns the stabilization of nontrivial spines. Note that
Theorem 3 implies that there are “many spines” which are not stable at t = 1. To
state a more precise result consider the subset Σ−,stb2 of Σ−2 defined by

Σ−,stb2
def
= {ξ− ∈ Σ−2 : ξ−.ξ+ is stable a t = 1 for any choice of ξ+ ∈ Σ+

2 }.

Theorem 5. Let (Ft)t∈[0,1] ∈ Pexp. Then HD(Σ−,stb2 ) > 0.

To prove this theorem we exhibit a subset of Σ−,stb2 with positive Hausdorff
dimension. Consider the set

C
def
= {0101, 001001} = {(01)2, (001)2}

and its associated set EC of sequences in Σ−2 with HD(EC) > 0 defined by

EC
def
= {ξ− : ξ−1 · · · ξ−k · · · is a concatenation of words in C} ⊂ Σ−2 .

The following result implies Theorem 5.

Proposition 2. Let (Ft)t∈[0,1] ∈ Pexp. Then EC ⊂ Σ−,stb2 .

We close this introduction with a result proving the existence of evanescent
spines.

Definition 1.3 (Evanescent spine). The spine of ξ ∈ Σ2 is evanescent if there are
tc < t1 < t2 < 1 such that {ξ} × Iξ,t1 is nontrivial and {ξ} × Iξ,t is trivial for all
t ∈ [t2, 1).3

3Condition t1 > tc implies that the evanescent spine occurs inside a transitive set.
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The existence of evanescent spines implies that the appearance of nontrivial
spines is not a monotone process.

Theorem 6. There is a family (Ft)t∈(0,1] ∈ P with an evanescent spine.

To prove this theorem we exhibit a periodic sequence with an evanescent spine.
This result is a first step that illustrates the existence of evanescent spines and the
richness of the process of generation of spines, but it is still quite unsatisfactory.
There are many problems concerning these evanescent spines, for instance, the
question of the existence of nonperiodic evanescent spines.

This paper is organized as follows. Theorems 1 and 2 are proved in Section 2.
This section also contains some general properties of the spines and a sufficient
conditions for a sequence having a trivial spine. In Section 3 we prove Theorem 3.
This section also contains auxiliary results on the dynamics of maps associated to
sequences where the symbol 1 only appears in groups of even size. In Section 4
we prove Theorem 4 about the existence of sequences whose spines are persistently
nontrivial and estimate the Hausdorff dimension of this set of sequences. In Sec-
tion 5 we prove Theorem 5 about the “stability” of the spines at t = 1 for a large
subset (positive Hausdorff dimension) of Σ−2 . In Section 6 we present an example
of family of skew product maps with porcupines exhibiting an evanescent spine and
prove Theorem 6. Finally, in the appendix in Section 7 we recall the definition of
Hausdorff dimension and state some of its properties used throughout the paper.

2. Preponderance of trivial spines: Proofs of Theorems 1 and 2.

In this section we prove Theorems 1 and 2, see Sections 2.3 and 2.4, respec-
tively. Before proving these results we make a brief discussion about properties and
characterization of spines in Sections 2.1 and 2.2.

2.1. Properties of spines. We begging by introducing some notation and defini-
tions. We say that w = ζ1 . . . ζn ∈ {0, 1}n is a word of length |w| = n.

Definition 2.1 (Concatenations). Consider a set of wordsW = {w1, . . . , wm}. An
one-sided sequence ξ+ = (ξi)i≥0 ∈ Σ+

2 is a concatenation of words in W if there is
an increasing infinite sequence of indices (ik)k∈N with i0 = 0 such that ξik . . . ξik+1−1

is a word wik in W for every k. In this case we write ξ+ = wi0wi1 . . . wik . . . .

Given a sequence ξ− ∈ Σ−2 we define its conjugate sequence ξ̂− = (ξ̂−j ) ∈ Σ+
2 by

ξ̂−j
def
= ξ−−j−1. For a given a finite set W of words we define the following sets:

EW
def
= {ξ− ∈ Σ−2 : ξ̂− is a concatenation of words in W} ⊂ Σ−2 ,

SW
def
= {ξ = ξ−.ξ+ : ξ̂− ∈ EW } ⊂ Σ2.

(2.1)

Remark 2.2. HD(SW ) = 1 + HD(EW ).

Given a word w = ζ1 . . . ζk, ζi = 0, 1, we let

(2.2) gw,t
def
= fζ1,t ◦ · · · ◦ fζk,t, where f0,t = f0.

The geometry of the maps Ft implies that Π−1
t (ξ) is of the form (ξ, Iξ,t), where

Iξ,t is either a point or a closed nontrivial interval. By definition, we have that

Iξ,t =
{
x ∈ [0, 1] : (f−1

ξ−i,t
◦ · · · ◦ f−1

ξ−1,t
)(x) ∈ [0, 1] for every i ∈ N

}
.
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Lemma 2.3 (Characterization of spines). For every t ∈ [0, 1] and ξ = ξ−.ξ+ ∈ Σ2,
if we write ξ̂− = w1w2 . . . wn . . . as a concatenation of words it holds

Iξ,t = lim
n→∞

gw1,t ◦ · · · ◦ gwn,t([0, 1]).

Proof. By definition of a spine, x ∈ Iξ,t if, and only if, g−1
wn,t ◦ · · · ◦ g

−1
w1,t(x) ∈ [0, 1]

for every n ∈ N, proving the lemma. �

Corollary 2.4. Consider a set W = {u,w} consisting of two words. Suppose that
there is an interval [a, b] ⊂ [0, 1] and a parameter t ∈ (0, 1) such that

[a, b] ⊂ gu,t([a, b]) ∩ gw,t([a, b]).
Then [a, b] ⊂ Iξ,t for every ξ ∈ SW .

Proof. Given ξ ∈ SW write ξ̂− = uh1wn1 . . . uhjwnj . . . , with hi, ni ≥ 0. By hy-
pothesis

[a, b] ⊂ ghju,t ◦ g
nj
w,t([a, b]), for every j ∈ N.

Lemma 2.3 implies that

[a, b] ⊂ lim
r→∞

gh1
u,t ◦ g

n1
w,t ◦ · · · ◦ g

hr
u,t ◦ g

nr
w,t([a, b]) ⊂ Iξ,t,

which proves the corollary. �

A immediate consequence of the corollary above is the following.

Corollary 2.5. Let w be a word such that gw,t has a repelling fixed point. Then
the periodic sequence wZ has a nontrivial spine (i.e., IwZ,t is a nontrivial closed
interval).

2.2. A sufficient condition for trivial spines. For k ∈ {0, 1} and ξ = ξ−.ξ+ ∈
Σ2 consider the limit frequency of the entry k in ξ− given by

(2.3) Φk(ξ)
def
= φk(ξ−)

def
= lim sup

n→∞

#{i ∈ [1, n] : ξ−i = k}
n

.

Proposition 2.6 (A sufficient condition for trivial spines). Consider δ ∈ (0, 1).
Then Iξ,t is a singleton for all pair ξ, t such that Φ1(ξ) > δ and t ∈

(
0, β−

1−δ
δ

)
.

Corollary 2.7. Consider ξ ∈ Σ2 such that Φ1(ξ) > 0. Then there is tξ > 0 such
that ξ has a trivial spine for all t ∈ (0, tξ].

Intuitively, the previous results mean that the set of sequences with trivial spines
“grows” as t goes to 0+ (note that the spines of a sequences of the form 0−N.ξ+

is nontrivial for all t ∈ (0, 1]). On the other hand, there are sequences ξ with
Φ1(ξ) = 0 having trivial spines for every t ∈ (tξ, 1) for some tξ ∈ (0, 1):

Proposition 2.8. There are nonperiodic sequences ξ ∈ Σ2 with Φ1(ξ) = 0 and
numbers tξ ∈ (0, 1) such that Iξ,t is a singleton for every t ∈ (tξ, 1).

By technical reasons we need to postpone the proof of this proposition to Sec-
tion 3.2. Observe that in this proposition we just exhibit a sequence ξ− with
φ1(ξ−) = 0 with a trivial spine. Our method can be used to get more sequences
with φ1(ξ−) = 0 having trivial spines. Note that the set of these sequences is
necessarily “small”: Proposition 4.1 claims that HD({ξ− ∈ Σ−2 : φ1(ξ−) = 0}) = 0.
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2.2.1. Proof of Proposition 2.6. We need the following simple lemma.

Lemma 2.9. Let ξ = ξ−.ξ+ ∈ Σ2 and write ξ̂− = w1 . . . wr . . . as a concatenation
of words wi. Suppose that there are ρ > 1, C > 0, and an increasing subsequence
(nr)r such that∣∣∣(g−1

wnr ,t
◦ · · · ◦ g−1

w1,t

)′
(x)
∣∣∣ ≥ C ρnr , for every x ∈ Iξ,t.

Then Iξ,t is a singleton.

Proof. Note that for each r one has 1 ≥
∣∣∣(g−1

wnr ,t
◦ · · · ◦ g−1

w1,t

)
(Iξ,t)

∣∣∣ ≥ C ρnr |Iξ,t|.
Since nr →∞ this implies that |Iξ,t| = 0 and thus Iξ,t is a singleton. �

Take ξ ∈ Σ2 and δ > 0 as in Proposition 2.6. By hypothesis, for every n ∈ N
there exists m ≥ n such that

#{i ∈ [1,m] : ξ−i = 1}
m

> δ.

Recalling that f1,t = t (1− x) and β ≥ f ′0(x) > 0 if x ∈ (0, 1), we get∣∣(f−1
ξ−m,t

◦ · · · ◦ f−1
ξ−1,t

)′(x)
∣∣ ≥ t−bδ mc β−m+bδ mc, for all x ∈ Iξ,t,

where bαc stands for the entire part of α ∈ R. The proposition follows from
Lemma 2.9 taking tδ = (β)−

1−δ
δ . �

2.3. Proof of Theorem 1. Fix t ∈ (0, 1] and for x ∈ [0, 1] let

Σx,t
def
= {ξ ∈ Σ2 such that x ∈ Iξ,t}.

The following proposition is the key step of the proof of Theorem 1.

Proposition 2.10. Given t ∈ (0, 1) there is ρt < 2 such that HD(Σx,t) < ρt < 2
for every t ∈ (0, 1) and x ∈ [0, 1].

To deduce Theorem 1 from this proposition note that if Iξ,t is a nontrivial interval
then it contains some rational number x ∈ (0, 1). Therefore

Σnon
2,t ⊂

⋃
x∈Q∩(0,1)

Σx,t.

Since this union is countable one has that (see Proposition 7.2)

HD(Σnon
2,t ) ≤ sup

x∈Q∩(0,1)

HD(Σx,t) ≤ ρt < 2,

proving the theorem.

Proof of Proposition 2.10. Fix t ∈ (0, 1). Note that fn0 (f2
1,t([0, 1])) → 1 as n → ∞

and that fn1,t(f2
0 ([0, 1])) converges to the (attracting) fixed point t

1+t of f1,t as
n→∞. Therefore there is large Nt ∈ N (Nt →∞ as t→ 1) such that

(2.4)
(
fNt−2

0 ◦ f2
1,t([0, 1])

) ⋂ (
fNt−2

1,t ◦ f2
0 ([0, 1])

)
= ∅.

Given x ∈ (0, 1) and K ∈ N define the set

ΣKx,t
def
= {w ∈ {0, 1}KNt such that x ∈ gw,t([0, 1])}.

We now give an upper bound (independent of x) of the cardinality of ΣKx,t.

Lemma 2.11. For every x ∈ (0, 1) it holds # ΣKx,t ≤ (2Nt − 1)K .
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Proof. Consider w ∈ ΣKx,t and write w = w1w2 where |w1| = (K − 1)Nt and
|w2| = Nt. Note that

x ∈ gw1,t ◦ gw2,t([0, 1]) ⊂ gw1,t([0, 1]).

Therefore w1 ∈ ΣK−1
x,t .

By (2.4), if g−1
w1,t(x) ∈ fNt−2

0 ◦ f2
1,t([0, 1]) then g−1

w1,t(x) /∈ fNt−2
1,t ◦ f2

0 ([0, 1]). This
implies that there is at least one element u ∈ {0, 1}Nt such that g−1

u,t◦g−1
w1,t(x) /∈ [0, 1].

Thus, necessarily, w 6= w1u. Arguing recursively this implies that

# ΣKx,t ≤ # ΣK−1
x,t (2Nt − 1) ≤ (2Nt − 1)K ,

proving the lemma. �

Recall the definition of the metric d($, θ) = 2−n($,θ) in (1.2). Consider the
cylinders of size m+ 1 defined by

C(i0, i1, . . . , im; k0, k1 . . . , km)
def
= {θ ∈ Σ2 such that θi` = k`, 0 ≤ ` ≤ m}.

Lemma 2.12. The set Σx,t has a covering UK by cylinders of diameter 2−KNt

with (at most) 2KNt+1(2Nt − 1)K elements.

Proof. Take ξ = ξ−.ξ+ ∈ Σx,t and write ξ̂− = ζ1 . . . ζr . . . , ζi ∈ {0, 1}. Note that
ζ1 . . . ζKNt ∈ ΣKx,t for every K. Lemma 2.11 implies that Σx,t has a covering UK by
cylinders of diameter 2−KNt with at most 2KNt+1(2Nt − 1)K elements (to see why
this is so just note that for a fixed negative tail ζ1 . . . ζKNt of a cylinder there are
at most 2KNt+1 possibilities for the positive part). �

Let UK be a covering of Σx,t as in Lemma 2.12. Then for any s ∈ R

(2.5) ms(UK) ≤ 2KNt+1 (2Nt − 1)K
(
2−KNt

)s
.

See Section 7 for the standard definitions of the measures ms(Σx,t), ms,ε(Σx,t), and
ms(U). We have that

ms,ε(Σx,t) = inf{ms(U) : U is a covering of Σx,t with diam(U) < ε}.

Thus if 2−KNt < ε then ms,ε(Σx,t) ≤ ms(UK). Hence equation (2.5) implies that

ms(Σx,t) = lim
ε→0+

ms,ε(Σx,t) ≤ lim
K→+∞

2KNt+1 (2Nt − 1)K (2−KNt)s =

= lim
K→+∞

2
(

2Nt (2Nt − 1) (2−sNt)
)K

.

Hence, by definition, HD(Σx,t) is upper bounded by the number s ∈ R satisfying

2Nt (2Nt − 1) (2−sNt) = 1.

Therefore

HD(Σx,t) ≤ 1 +
log(2Nt − 1)

Nt log 2
= ρt < 2,

which ends the proof of the proposition. �
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2.4. Proof of Theorem 2. Let B be the σ-algebra generated by the cylinders
C(i0, . . . , im; k0, . . . , km). Denote by b1/2 the Bernoulli probability in (Σ2,B) given
by

b1/2

(
C(i0, . . . , im; k0, . . . , km)

) def
= 2−(m+1).

Next proposition is probably well known, we sketch its proof for completeness.

Proposition 2.13. m2 = b1/2.

Proof. Note that any pair of cylinders C and C ′ with the same size satisfiesm2(C ) =
m2(C ′): just note that associated to any finite covering U = (Ui) of C there is a
covering U ′ = (U ′i) of C ′ with the same number of elements and “comparable” di-
ameters. This implies that these cylinders (and thus all cylinders of the same size
as C) have the same measure m2. Thus any cylinder C of size m+ 1 satisfies

m2(C) = 2−(m+1) = b1/2(C),

proving the proposition. �

By Proposition 2.13, Theorem 2 is a consequence of the following lemma:

Lemma 2.14. Let t ∈ (0, 1), then m2(Σtrv
2,t ) = 1 and m2

(⋂
t∈(0,β−1) Σtrv

2,t

)
= 1.

Proof. By Theorem 1, HD(Σnon
2,t ) < 2 and thus m2(Σnon

2,t ) = 0. Hence, by Proposi-
tion 2.13,

1 = m2(Σ2) = m2(Σnon
2,t ) +m2(Σtrv

2,t ) = m2(Σtrv
2,t ),

proving the first part of the lemma.
To prove the second part take the characteristic function χ[1] of the cylinder

C(0; 1) = {ξ ∈ Σ2 : ξ0 = 1} and recall the definition of the frequency map Φk in
(2.3),

Φk(ξ) = lim sup
n→∞

#{i ∈ [1, n] : ξ−i = k}
n

= lim sup
n→∞

∑n−1
j=0 χ[1]

(
σ−j(ξ)

)
n

.

Since σ is b1/2-ergodic, the Birkhoff Ergodic Theorem implies that there is a set
Σ̂2 satisfying b1/2(Σ̂2) = 1 such that for every ξ ∈ Σ̂2 it holds

Φ1(ξ) =

∫
χ[1] db1/2 =

1

2
.

Take a strictly increasing sequence (αn)n∈N of real numbers with limn→∞ αn = 1/2.
Note that for every ξ ∈ Σ̂2 and every n ∈ N one has Φ1(ξ) > αn. Proposition 2.6
now implies that Iξ,t is a singleton if ξ ∈ Σ̂2 and t ∈ (0, β−

1−αn
αn ) ⊂ (0, β−1).

Taking n → ∞, we have that Iξ,t is a singleton if ξ ∈ Σ̂2 and t ∈ (0, β−1). Thus
Σ̂2 ⊂

⋂
t∈(0,β−1) Σtrv

2,t , ending the proof of the lemma. �

The proof of Theorem 2 is now complete. �

3. Abrupt appearance of spines: proof of Theorem 3

In this section we prove Theorem 3. This proof relies on the analysis of the
dynamics of maps associated to sequences where the symbol 1 only appears in
groups of even size (11-sequences). Section 3.1 deals with this sort of sequences.
Lemma 3.3 localizes the spines of these 11-sequences. In Section 3.3 we prove
Theorem 3. Before, in Section 3.2, we prove Proposition 2.8.
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3.1. Spines of 11-sequences. A word w is a 11-word if it is of the form

w = 0m0 12n1 0m1 . . . 12nr 0mr , m0 ≥ 0 and ni,mi ≥ 1 for i = 1, . . . , r.

In this case, the map gw,t associated to w is called a 11-map and is concave.
We say that ξ− ∈ Σ−2 is an 11-sequence if ξ̂− can written as an infinite concate-

nation of 11-words. In particular, ξ− contains infinitely many 0’s.

Proposition 3.1. The spine of a periodic 11-sequence is trivial for all t ∈ (0, 1).

The subset of Σ−2 consisting of periodic 11-sequences ξ− is countable and hence
has zero Hausdorff dimension (see Proposition 7.2). Thus to prove Theorem 3
(HD(Σ−,trv2 (0)) > 0) we need to concatenate different types 11-words.

3.1.1. Proof of Proposition 3.1. We begin with the following simple lemma.

Lemma 3.2. Let t ∈ (0, 1) and w be an 11-word. Then gw,t is concave and 0 <
gw,t(0) < gw,t(1) < 1. In particular, gw,t has a unique fixed point pw,t ∈ [0, 1] that
is attracting.

Proof. Note that the composition of concave maps with positive derivatives is also
concave with positive derivative. As w is an 11-word this holds for the map gw,t.

As gw,t([0, 1]) ⊂ (0, 1), the map gw,t has at least one fixed point in [0, 1]. We
claim that every fixed point of gw,t is attracting, thus gw,t has exactly one fixed
point. Take z with gw,t(z) = z. By the mean value theorem and as gw,t(0) > 0,
there is a y ∈ (0, z) such that

g′w,t(y) =
gw,t(z)− gw,t(0)

z − 0
=
z − gw,t(0)

z
<
z

z
= 1.

Hence, by concavity, 0 < g′w,t(z) ≤ g′w,t(y) < 1 and thus z is attracting. �

By Lemma 3.2, for every 11-word w and t ∈ (0, 1) we can associate the unique
attracting fixed point pw,t of gw,t. We have the following lemma (which will be also
used in Section 3.3) that is implies the proposition. Recall the definitions of the
sets EW and SW in (2.1).

Lemma 3.3 (Localization of spines). Consider a set W = {w1, . . . , wr}, r ≥ 1,
consisting of 11-words. For each t ∈ (0, 1) let JW,t

def
= [p−W,t, p

+
W,t] where

p−W,t
def
= min{pwi,t, wi ∈W} and p+

W,t
def
= max{pwi,t, wi ∈W}.

Then Iξ,t ⊂ JW,t for every ξ ∈ SW and t ∈ (0, 1).

The lemma implies that if ξ̂− is obtained concatenating a unique 11-word w then
Iξ,t ⊂ J{w},t = {pw,t}, proving the proposition.

Proof of Lemma 3.3. We argue by contradiction, suppose that there is a point x in
[0, p−W,t)∩ Iξ,t for some ξ = ξ−.ξ+ ∈ SW and t ∈ (0, 1). Write ξ̂− = wj1 · · · wji · · · ,
where wji ∈W . Since x ∈ Iξ,t it holds

(3.1) xr
def
= g−1

wjr ,t
◦ · · · ◦ g−1

wj1 ,t
(x) ∈ [0, 1], for all r ≥ 1.

As x ≤ pwi,t for every wi ∈ W and pwi,t is the attracting fixed point of gwi,t, the
concavity of the maps gwi implies that the sequence (xr)r is decreasing and has a
limit x∞ ∈ [0, 1].
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Since f2
1,t(0) = t− t2 one has that then gwi,t(0) ≥ t− t2 for every wi ∈W . This

implies that x∞ ∈ [t− t2, x]. As x < p−W,t there is δ > 0 such that

max{g−1
wi,t(x∞), wi ∈W} < x∞ − δ.

Therefore for large r we have xr+1 = g−1
wjr+1

,t(xr) < x∞, which is a contradiction.
A similar argument gives (p+

W,t, 1] ∩ Iξ,t = ∅, proving the lemma. �

3.2. Proof of Proposition 2.8. Consider any sequence ξ = ξ−.ξ+ such that

(3.2) ξ̂− = 1101100 . . . 110i110i+111 . . . .

By definition, Φ1(ξ) = 0. We now see that Iξ,t is a singleton, proving the proposi-
tion.

For i ≥ 0 let ci
def
= 0i 110 and pc0,t be the (attracting) fixed point of gc0,t given

by Lemma 3.2. Note that pc0,t depends continuously on t and that pc0,t is close to
1− if t is close to 1−. Thus there are κ ∈ (0, 1) and t? ∈ (0, 1) such that

(3.3) f ′0(x) < κ, for every x ∈ [pc0,t, 1] and t ∈ [t?, 1].

Lemma 3.4. For all x ∈ [pci,t, 1], i ≥ 0, and t ∈ [t?, 1] it holds g′ci,t(x) < κ < 1.

Proof. Note that gc0,t is a contraction in [pc0,t, 1]. The lemma follows recalling
(3.3) and noting that gc0,t([pc0,t, 1]) ⊂ [pc0,t, 1], f0([pc0,t, 1]) ⊂ [pc0,t, 1], and gci,t =
f i0 ◦ gc0,t. �

Lemma 3.5. For every t ∈ [t?, 1) there exists nt ∈ N such that

g−1
cn,t ◦ · · · ◦ g

−1
c1,t ◦ g

−1
c0,t ◦ g

−1
c0,t(Iξ,t) ⊂ [pc0,t, 1], for every n ≥ nt.

Proof. Note that fixed t ∈ [t?, 1) there is nt ∈ N such that for every n ≥ nt and
x ∈ [0, 1] we have

gcn,t(x) = fn0 ◦ gc0,t(x) ≥ fn0 ◦ gc0,t(0) > pc0,t.

Therefore

(3.4) gcn,t
(
[0, 1]

)
⊂ [pc0,t, 1], for every n ≥ nt.

Noting that gc0,t
(
[pc0,t, 1]

)
⊂ [pc0,t, 1] and that f0 is increasing it follows

(3.5) gci,t
(
[pc0,t, 1]

)
⊂ [pc0,t, 1], for every i ≥ 0.

Equations (3.4) and (3.5) imply that for n ≥ nt one has that

g2
c0,t ◦ gc1,t ◦ · · · ◦ gcn,t

(
[0, 1]

)
⊂ g2

c0,t ◦ gc1,t ◦ · · · ◦ gcn−1,t

(
[pc0,t, 1]

)
⊂ [pc0,t, 1].

This inclusion and Lemma 2.3 imply that for every n ≥ nt it holds

Iξ,t ⊂ g2
c0,t ◦ gc1,t ◦ · · · ◦ gcn,t

(
[0, 1]

)
⊂ [pc0,t, 1],

which implies the lemma. �

Lemmas 3.4 and 3.5 imply that there is C > 0 such that for every t ∈ [t?, 1) and
n ≥ nt one has(

g−1
cn,t ◦ · · · ◦ g

−1
c1,t ◦ g

−2
c0,t

)′
(x) ≥ C κ−r, for every x ∈ Iξ,t.

By Lemma 2.9 it follows that Iξ,t is a singleton, proving the proposition. �
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3.3. Proof of Theorem 3. We begin this section with an auxiliary proposition
whose proof is given in Section 7.2.

Proposition 3.6. Consider a set consisting of two words

W = {w0 = θ1 . . . θk, w1 = ζ1 . . . ζm},
such that θi, ζi ∈ {0, 1}, k ≤ m, and θj 6= ζj for some j ≤ k. Then

1

m
≤ HD(EW ) ≤ 1

k
.

For each ` ∈ N, ` ≥ 2, consider the set of two independent 11-words

B`
def
= {e`

def
= 12`0`, v

def
= 110}

and its associated sets of sequences EB` and SB` . Note that the set B`, ` ≥ 2,
satisfies the hypothesis of Proposition 3.6.

Theorem 3.7. There is `0 such that for every ` ≥ `0, every t ∈ (0, 1), and every
ξ ∈ SB` the set Iξ,t is a singleton.

This result implies Theorem 3: by Theorem 3.7, EB` ⊂ Σ−,trv2 (0) for all ` ≥ `0
and by Proposition 3.6, HD(Σ−,trv2 (0)) ≥ HD(EB`) > 0.

3.3.1. Proof of Theorem 3.7. Given ξ = ξ−.ξ+ ∈ SB` write

(3.6) ξ̂− = eh0

` v
n1eh1

` . . . vnrehr` . . . , where hi, ni ≥ 0 for i ≥ 0.

Assume first that there is j ∈ N such that either hi = 0 for every i ≥ j or ni = 0
for every i ≥ j. Let us consider the first case (the second one is similar and thus
omitted). Note that if the spine of ξ is trivial then the spine of any σk(ξ) is also
trivial. Therefore we can assume without loss of generality j = 0. In this case ξ−
is periodic and by Proposition 3.1 the set Iξ,t is a singleton.

We now consider the case where ni, hi ≥ 1 for all i ≥ 1 (note that h0 may be 0).

Proposition 3.8. There is `0 such that for every ` ≥ `0 and for every t ∈ (0, 1)
there are constants Ct > 0 and ρt > 1 with the the following property:

Given any ξ = ξ−.ξ+ ∈ SB` write the conjugate ξ̂− of ξ− as in (3.6). If hi, ni ≥ 1
for every i ≥ 1 then for all r ≥ 1 and x ∈ Iξ,t it holds

(3.7)
(

(ghre`,t)
−1 ◦ (gnrv,t)

−1 ◦ · · · ◦ (gh1
e`,t

)−1 ◦ (gn1
v,t)
−1 ◦ (gh0

e`,t
)−1
)′

(x) ≥ Ct ρrt .

By Lemma 2.9, this proposition implies that the set Iξ,t is a singleton for all
t ∈ (0, 1) and ξ ∈ SB` , ending the proof of Theorem 3.7.

Proof of Proposition 3.8. It is enough to see that there are C ′t > 0 and ρt > 1 with(
(ghre`,t)

−1 ◦ (gnrv,t)
−1 ◦ · · · ◦ (gh1

e`,t
)−1 ◦ (gn1

v,t)
−1
)′

(x) ≥ C ′t ρrt

for all r ≥ 1 and x ∈ Iσ−h̄0 (ξ),t, where h̄0 = 3h0 `.
We need some preliminary constructions. Consider the attracting fixed points

pv,t and pe`,t of the maps gv,t and ge`,t. Note that for t close to 0 these maps are
contractions, while for t close to 1 this is not anymore the case. Define t1 by

(3.8) g′v,t1(0) = 1, t1 = β−1/2.

The choice of t1 implies that

(3.9) g′v,t(x) ∈ (0, 1) for all t ∈ (0, t1) and x ∈ [0, 1].
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The definition of t1 also implies that for t ≥ t1 there is (exactly) one point qv,t ∈
[0, 1] (depending continuously on t) with

g′v,t(qv,t) = 1, qv,t1 = 0.

For t ∈ [0, t1] let qv,t
def
= 0. The points qv,t depend continuously on t.

For t ∈ (0, 1] consider the fixed point at
def
= t/(1 + t) of f1,t and note that

gv,t(at) = f2
1,t ◦ f0(at) > f2

1 (at) = at.

This fact and the concavity of gv,t immediately imply that

(3.10) pv,t > at for all t ∈ (0, 1].

Remark 3.9. Consider an 11-word c, the concave map gc,t (Lemma 3.2) and its
fixed point pc,t. The calculation above implies that pc,t > at for every t ∈ (0, 1].

Choice of `0. To define `0 we first define auxiliary constants k0 andR. The concavity
of gv,t and (3.10) imply that qv,t < pv,t and at < pv,t, respectively. This implies
that the number k0 below is well defined,

(3.11) k0
def
= min{k ≥ 0 such that g−kv,t (qv,t) < at for all t ∈ [t1, 1]}.

Lemma 3.10. Let R def
= max{g′v,t(at), t ∈ [t1, 1]}. Then

(3.12) Rk0 ≥ max{(gnv,t)′(x) : x ∈ [at, pv,t], n ∈ N, and t ∈ [t1, 1]} ≥ 1.

Proof. We first see that Rk0 ≥ 1. This is obvious if k0 = 0. If k0 ≥ 1 then at < qv,t
for some t ∈ [t1, 1]. The concavity of gv,t implies that 1 = g′v,t(qv,t) < g′v,t(at) ≤ R.
Thus Rk0 ≥ 1 proving the assertion. To prove the lemma tt remains to check the
first inequality in (3.12).

By the concavity of gnv,t (recall Lemma 3.2),

(gnv,t)
′(at) ≥ (gnv,t)

′(x) for every x ∈ [at, pv,t] and t ∈ [t1, 1].

This implies that

max{(gnv,t)′(x) : x ∈ [at, pv,t], n ∈ N, t ∈ [0, 1]} =

= max{(gnv,t)′(at) : n ∈ N, t ∈ [t1, 1]}.

Thus it is enough to to see that

Rk0 ≥ max{(gnv,t)′(at) : n ∈ N, t ∈ [t1, 1]}.

For each t ∈ [t1, 1] define kt as the first k with g−kv,t (qv,t) < at. Note that kt ≤ k0

and gjv,t(at) ≤ qv,t for all 0 ≤ j ≤ kt − 1.

Claim 3.11. It holds (gnv,t)
′(at) ≤ (gktv,t)

′(at) for all n ≥ 0 and t ∈ [t1, 1].

Proof. Take first n ≥ kt. Note that from (gktv,t)(at) > qv,t and the definition of qv,t
it follows that (gn−ktv,t )′(gktv,t(at)) < 1. Hence

(gnv,t)
′(at) = (gn−ktv,t )′(gktv,t(at)) (gktv,t)

′(at) < (gktv,t)
′(at).

For the case 0 ≤ n < kt note that (gjv,t)(at) ≤ qv,t for every 0 ≤ j ≤ kt−1. Thus

(gv,t)
′(gjv,t(at)) ≥ 1 for every 0 ≤ j ≤ kt − 1.
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This implies that

(gktv,t)
′(at) = g′v,t(g

kt−1
v,t (at)) · · · g′v,t(gnv,t(at)) (gnv,t)

′(at) ≥ (gnv,t)
′(at),

concluding the proof of the claim. �

We are now ready to end the proof of the lemma. If k0 = 0 then kt = 0 and
Rk0 = 1. In this case at > qv,t for all t ∈ [t1, 1] and thus (gnv,t)

′(at) ≤ g′v,t(at) ≤
1 = R0. If k0 ≥ 1, as Rk0 ≥ 1 (and thus R ≥ 1) and kt ≤ k0 one has

Rk0 ≥ Rkt ≥ (gktv,t)
′(at).

The last inequality follows from the definition of R and the concavity of gv,t. This
ends the proof of the lemma. �

We define `0 as follows,

(3.13) `0
def
= min{` ≥ 2 such that (f `0)′(x) < (2R)−(k0+1) for all x ∈ [at1 , 1]}.

This number is well defined: just note that f ′0(1) < 1 and limn→∞ fn0 (x) = 1 for
every x ∈ [at1 , 1].

Lemma 3.12. For every ` ≥ `0 and t ∈ [t1, 1) one has

(f `0)′(pv,t) < (2R)−(k0+1) < 1.

Proof. As pv,t > at ≥ at1 (see (3.10)), from the definition of `0, R > 1, and t ≥ t1
we have

(3.14) 1 > (2R)−(k0+1) > (f `00 )′(pv,t) = f ′0(f `0−1
0 (pv,t)) · · · f ′0(pv,t).

As f ′0(f `0−1
0 (pv,t)) < f ′0(f `0−2

0 (pv,t)) < · · · < f ′0(pv,t) we have that

f ′0(f `0−1
0 (pv,t)) < 1 for all t ∈ [t1, 1].

The concavity of f0 now implies that f ′0(f `00 (pv,t)) < 1 and thus

(f `−`00 )′(f `00 (pv,t)) < 1 for all t ∈ [t1, 1].

Now using (3.14) we immediately get that for all t ∈ [t1, 1] it holds

(f `)′(pv,t) = (f `−`00 )′(f `00 (pv,t)) (f `00 )′(pv,t) < (f `00 )′(pv,t) < (2R)−(k0+1),

proving the lemma. �

End of the proof of Proposition 3.8. We now see that the expansion in (3.7) in the
proposition holds for `0. We fix ` ≥ `0 and, for simplicity, write e = e`. Given a
sequence ξ = ξ−.ξ+ ∈ SB` write

ξ̂− = eh0vn1eh1 . . . vnrehr . . . , where h0 ≥ 0 and hi, ni ≥ 1 for i ≥ 1.

For r ≥ 1 define n̄1
def
= n1, h̄1

def
= n1 + h1 and for r ≥ 2 we let

n̄r
def
= n1 +

∑
2≤i≤r

(hi−1 + ni) and h̄r
def
=
∑

1≤i≤r

(ni + hi).

Given any j ∈ N we can write

j = jr + n̄r with 0 ≤ jr < hr if j ∈ [n̄r, h̄r),

j = jr + h̄r with 0 ≤ jr < nr+1 if j ∈ [h̄r, n̄r+1).
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Consider the segment Iσ−3`h0 (ξ),t of the spine of σ−3`h0(ξ). Let I0,t
def
= Iσ−3`h0 (ξ),t

and for j ≥ 1 let Ij,t
def
= Iσ−j−3`h0 (ξ),t. Note that by definition,

Ij,t = g−jre,t ◦ g
−nr
v,t ◦ · · · ◦ g

−h1
e,t ◦ g

−n1
v,t (I0,t), if j ∈ [n̄r, h̄r],

Ij,t = g−jrv,t ◦ g
−hr
e,t · · · ◦ g

−h1
e,t ◦ g

−n1
v,t (I0,t), if j ∈ [h̄r, n̄r+1].

Remark 3.13. By Lemma 3.3, the set Ij,t is contained in the closed interval J{e,v},t
bounded by the fixed points pe,t and pv,t of ge,t and gv,t, respectively.

We need to consider two cases according to the value of t ∈ (0, 1).

Case 1: t < t1 = β−1/2. In this case gv,t is a contraction (recall (3.9)). We
claim that ge,t is also a contraction. Note that for any x ∈ [0, 1] it holds

g′e,t(x) ≤ g′e,t(0) = (f2 `
1,t ◦ f `0)′(0) = t2 `(f `0)′(0) = t2 `β` < t2 `1 β` = 1.

Hence in this case g−1
v,t and g−1

e,t are expanding in [0, 1] and thus (3.7) holds.

Case 2: t ≥ t1 = β−1/2. We consider two subcases according to the relative
positions of pe,t and pv,t.
Case 2.1: pv,t < pe,t. By Remark 3.13, Ij,t ⊂ [pv,t, pe,t]. To get (3.7) it is
enough to check that ge,t and gv,t are uniform contractions in [pv,t, pe,t]. To get
the contraction of ge,t note that the concavity of ge,t implies that ge,t(pv,t) > pv,t.
Thus

g′e,t(pv,t) = (f2 `
1,t ◦ f `0)′(pv,t) ≤ (f `0)′(pv,t) < 1,

where the last inequality follows from t ∈ [t1, 1) and Lemma 3.12. The concavity
of ge,t implies that g′e,t(x) < 1 for all x ∈ [pv,t, pe,t].

The contraction for gv,t follows noting that

g′v,t(x) ≤ g′v,t(pv,t) < 1 for all x ∈ [pv,t, pe,t].

This completes the proof in this case.
Case 2.2: pe,t ≤ pv,t. The expansion in (3.7) is a consequence of the following
lemma.

Lemma 3.14. Let x ∈ I0,t ⊂ [pe,t, pv,t], t ≥ t1. Then, for every j ≥ 1, one has(
(g
hj
e,t)
−1 ◦ (g

nj
v,t)
−1 ◦ . . . (gh1

e,t)
−1 ◦ (gn1

v,t)
−1
)′

(x) ≥ 2j .

Proof. We first estimate the derivatives of the maps ghie,t. By Remark 3.9 and since
at (the fixed point of f1,t) is increasing with t we have

[pe,t, pv,t] ⊂ [at, 1] ⊂ [at1 , 1].

The definition of ge,t = f2 `
1,t ◦ f `0 and Lemma 3.12 imply that

(3.15) g′e,t(x) ≤ (f `0)′(x) < (2R)−(k0+1), for all x ∈ [pe,t, pv,t].

Recall that, by Remark 3.13, Ir,t ⊂ [pe,t, pv,t]. This implies that if x ∈ I2 i−1,t for
some i ∈ N, then g−me,t (x) ∈ [pe,t, pv,t] for every 0 ≤ m ≤ hi. The concavity of ge,t
and (3.15) imply that

(3.16) (ghie,t)
′(x) ≤ (g′e,t)

hi(x) < (2R)−hi (k0+1), for all x ∈ I2 i−1,t and i ∈ N.

This provides an upper bound for the derivatives of the maps ghie,t.
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To estimate the complete product of the derivatives in the lemma consider

min
[pe,t,pv,t]

(g−niv,t )′(x) =

(
max

[pe,t,pv,t]
(gniv,t)

′(x)

)−1

≥ R−k0 , ,

where the inequality follows from Lemma 3.10. This inequality, (3.15), and R ≥ 1
imply that for every x ∈ I0,t and every j ∈ N it holds(

(g
hj
e,t)
−1 ◦ (g

nj
v,t)
−1 ◦ . . . (gh1

e,t)
−1 ◦ (gn1

v,t)
−1
)′

(x) ≥

≥ (2R)hj(k0+1)R−k0 . . . (2R)h1(k0+1)R−k0 ≥

≥ 2hj+···+h1 R(hj+···+h1)(k0+1)−j k0 ≥ 2j ,

where the last inequality follows from hi ≥ 1 and thus h1 + · · · + hj ≥ j. This
proves the lemma. �

The proof of Proposition 3.8 is now complete. �

4. Persistence of nontrivial spines: Proof of Theorem 4

In this section we prove Theorem 4 about the existence of sequences whose
spines are persistently nontrivial and estimate the Hausdorff dimension of this set
of sequences.

4.1. Proof of item (1) of Theorem 4: HD(Σ−,non
2 (0)) = 0. Recall that by

Corollary 2.7 we have

Σ−,non
2 (0) ⊂ {ξ− ∈ Σ−2 : φ1(ξ−) = 0}.

Thus it is enough to prove the following:

Proposition 4.1. HD
(
{ξ− ∈ Σ−2 : φ1(ξ−) = 0}

)
= 0.

Proof. Take ε < 0 and let

an(ε)
def
= #

{
(ξ−1 . . . ξ−n) ∈ {0, 1}n :

ξ−1 + · · ·+ ξ−n
n

< ε

}
Recall that byc denotes the entire part of y ∈ R and note that

(4.1) an(ε) =
∑

0≤j≤bε nc

(
n

j

)
.

Define
δ(ε)

def
= HD

(
{ξ− ∈ Σ−2 : φ1(ξ−) < ε}

)
.

By the definition of Hausdorff dimension, the number δ(ε) is given by the condition

lim
n→∞

an(ε)

2n r
=


∞, if r < δ(ε),

0, if r > δ(ε).
(4.2)

In what follows, we will consider small ε ∈ Q and large numbers n ∈ N with ε n ∈ N.

Lemma 4.2. For every small ε > 0 and large n ∈ N with ε n ∈ N it holds

an(ε) ≤ 2n

e (1− ε)(1−ε)n εε n
.

Proof. We need the following estimates.
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Claim 4.3. For every n ≥ 1 we have

e
(n
e

)n
≤ n! ≤ n e

(n
e

)n
.

Proof. Clearly, this inequality holds for n = 1. We proceed inductively, assume
that the inequalities hold for n. Note first that for ε ≥ 0 it holds

ε

1 + ε
≤ log(1 + ε) ≤ ε =⇒ eε ≤ (1 + ε)1+ε ≤ e(1+ε) ε.

Therefore
1

e
(1 + ε)

1
ε ≤ 1 ≤ 1

e
(1 + ε)

1
ε+1.

This implies that for every n ≥ 1 it holds (take 1/n = ε)

e

(
n+ 1

e

)n+1

e
(n
e

)n =
n+ 1

e

(
n+ 1

n

)n
≤ (n+ 1)

1

e

(
1 +

1

n

)1/ 1
n

≤ n+ 1 =

=
(n+ 1)!

n!
≤ (n+ 1)

1

e

(
1 +

1

n

)1+1/ 1
n

=
n+ 1

e

(
n+ 1

n

)n+1

=

=

(n+ 1) e

(
n+ 1

e

)n+1

n e
(n
e

)n .

This inequalities and the induction hypothesis for n imply that

e

(
n+ 1

e

)n+1

≤ n!

e

(
n+ 1

e

)n+1

e
(n
e

)n ≤ (n+ 1)!.

A similar argument proves the other inequality in the claim, ending the proof of
the claim. �

To get an upper bound for an(ε) note that for k ∈ N with k ≤ (n+ 1)/3 one has

(4.3)
∑

0≤j≤k

(
n

j

)
<

(
n

k

) (
1 +

1

2
+ · · ·+ 1

2k
+ · · ·

)
= 2

(
n

k

)
.

This inequality follows arguing recursively and noting that for j ≤ k it holds(
n

j

)
(

n

j − 1

) =
n− j + 1

j
≥ 2.

Recalling (4.1) and that ε n ∈ N and using (4.3) and Claim 4.3 we have that

an(ε) =
∑

0≤j≤ε n

(
n

j

)
< 2

(
n

εn

)
=

2n!

(ε n)!
(
n− ε n

)
!
≤

≤
2n e

(n
e

)n
e
(ε n
e

)ε n
e

(
(1− ε)n

e

)(1−ε)n =
2n

e (1− ε)(1−ε)n εε n
,
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proving the lemma. �

Given r, ε > 0 define the map

(4.4) R(r, ε)
def
= (1− ε)1−ε εε 2r

and define r0(ε) implicitly by the condition R(r0(ε), ε) = 1, that is,

r0(ε)
def
= − (1− ε) log(1− ε) + ε log ε

log 2
, lim

ε→0
r0(ε) = 0.

Note that with this choice R(r, ε) > 1 if r > r0(ε).

Lemma 4.4. For every small rational ε > 0 it holds δ(ε) ≤ r0(ε).

As r0(ε)→ 0 as ε→ 0 and δ(ε) ≥ HD(Σ−,non
2 (0)) this implies the proposition.

Proof of Lemma 4.4. By equation (4.2) it is enough to prove that for every r >
r0(ε) it holds

lim
nk→∞

ank(ε)

2nk r
= 0,

where nk is an increasing sequence of natural numbers with ε nk ∈ N and nk →∞.
For notational simplicity let us omit in what follows the subscript k.

In order to calculate the limit above let

(4.5) L(n)
def
=

(
2n

e

)1/n

, lim
n→∞

L(n) = 1.

With the notation in equations (4.4) and (4.5) and using Lemma 4.2 we have

an(ε)

2n r
≤ 2n

e (1− ε)(1−ε)nεε n 2r n
=

(
L(n)

R(r, ε)

)n
.

Fix r > r0(ε). As R(r, ε) > 1, the second part of (4.5) implies that for every n
large enough it holds L(n) < κ < R(r, ε) for some κ. Thus

L(n)

R(r, ε)
< κ < 1 =⇒ lim

n→∞

(
L(n)

R(r, ε)

)n
→ 0.

Hence limn→∞
an(ε)

2n r
= 0 for all r > r0(ε) and thus δ(ε) ≤ r0(ε). �

The proof of Proposition 4.1 is now complete. �

4.2. Proof of item (2) of Theorem 4: Σ−,non
2 (0) is uncountable. Recall first

that we are assuming that λ < β λ < 1 < β. This implies that there are decreasing
sequence of parameters (tn)n∈N with tn → 0+ and increasing sequences of natural
numbers (kn)n∈N and (rn)n∈N such that

tn > β−kn > β−(kn+1) > (β λ)rn+1.

The previous equation implies that

(4.6) tn > β−kn > β−(kn+1) > β−(kn+rn+1) > β−(kn+rn+2) > λrn+1.

For small γ ∈ (0, 1), consider the fundamental domains of f0 in [0, 1] given by

D0
γ

def
= [f−1

0 (γ), γ] and D1
γ

def
= [1− γ, f0(1− γ)]

and define ι(γ) > 0 as the first natural number with

f
ι(γ)
0

(
D0
γ

)
∩D1

γ 6= ∅.
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It is not difficult to check (for details see [9, lemma 2.1]) that there is a decreasing
sequence (γn)n∈N such that ι(γn) = n− 1 and

(4.7) f
ι(γn)+1
0 (D0

γn) = fn0 (D0
γn) = D1

γn .

Fix large N ∈ N, denote by vn the word vn
def
= 0n1, and consider the sequence

sn
def
= kn + rn +N, sn, kn as in (4.6).

Define now the following subset ΓN of Σ−2 ,

ΓN
def
=
{
ξ− ∈ Σ−2 : ξ̂− = vs1+i1vs2+i2 . . . vsj+ij . . . ij ∈ {0, 1}

}
.

By definition the set ΓN is uncountable. Thus the proposition below implies item (2)
of Theorem 4.

Proposition 4.5. If N is large enough then ΓN ⊂ Σ−,non
2 (0).

Proof. For simplicity let us omit the subscript N and write γ = γN and Γ = ΓN .
Define for n ∈ N the sets

En = En(γ)
def
=

rn⋃
i=0

f i0(D1
γ) = [1− γ, frn+1

0 (1− γ)].

Note that if m < n then rm ≤ rn and thus Em ⊂ En. We need the following key
lemma:

Lemma 4.6. For every n ∈ N and every t ∈ [tn, 1]

En ⊂
(
fkn+rn+N

0 ◦ f1,t(En)
)
∩
(
fkn+rn+N+1

0 ◦ f1,t(En)
)
.

Proof. Let us assume (for simplicity) that f0 is affine in [0, γ] and [1− γ, 1],

f0(x) = β x and f0(1− x) = 1− λx, for every x ∈ [0, γ].

The proof in the general case is analogous. In this case,

En = [1− γ, 1− λrn+1γ].

By definition of N we have fN0
(
f−1

0 (γ)
)

= fN0 (β−1 γ) = 1− γ, thus

f
−(kn+rn+N)
0 (En) = f

−(kn+rn+N)
0

(
[1− γ, 1− λrn+1 γ]

)
= [β−(kn+rn+1) γ, β−kn γ].

Similarly,
f
−(kn+rn+N+1)
0 (En) = [β−(kn+rn+2) γ, β−kn−1 γ].

This implies that

f−1
1,t ◦ f

−(kn+rn+N)
0 (En) = [1− t−1 β−kn γ, 1− t−1 β−(kn+rn+1) γ],

f−1
1,t ◦ f

−(kn+rn+N+1)
0 (En) = [1− t−1 β−kn−1 γ, 1− t−1 β−(kn+rn+2) γ].

(4.8)

Note that for t ∈ [tn, 1] the inequalities in (4.6) imply

t ≥ tn > β−kn > β−(kn+1) > β−(kn+rn+1) > β−(kn+rn+2) > λrn+1.

These inequalities immediately imply the following inclusions for every t ∈ [tn, 1],

[1− t−1 β−kn γ, 1− t−1 β−(kn+rn+1) γ] ⊂ [1− γ, 1− λrn+1 γ] = En,

[1− t−1 β−kn−1 γ, 1− t−1 β−(kn+rn+2) γ] ⊂ [1− γ, 1− λrn+1 γ] = En.
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Using the identities in (4.8) and the inclusions above we get

f−1
1,t ◦ f

−(kn+rn+N)
0 (En) ⊂ En and f−1

1,t ◦ f
−(kn+rn+N+1)
0 (En) ⊂ En.

These inclusions imply the lemma. �

As tn → 0+ and En is a nontrivial interval, the following lemma implies the
proposition:

Lemma 4.7. Consider ξ = ξ−.ξ+, where ξ− ∈ Γ and ξ̂− = vs1+i1 . . . vsj+ij . . . ,
ij ∈ {0, 1}. Then for any t ∈ (tn, 1), tn as in (4.6), it holds

gvs1+i1
,t ◦ · · · ◦ gvsn−1+in−1

,t(En) ⊂ Iξ,t

Proof. Applying Lemma 4.6 to gvsn ,t (in = 0) and gvsn+1,t (in = 1), where

gvsn ,t = fkn+rn+N
0 ◦ f1,t and gvsn+1,t = fkn+rn+N+1

0 ◦ f1,t,

and the nested intervals En+k, k ≥ 0, En ⊂ En+k, one has that

(4.9) En ⊂ En+k ⊂ gvsn+k
,t(En+k) and En ⊂ En+k ⊂ gvsn+k+1,t(En+k).

This implies that

En ⊂ gvsn+in ,t
(En) ⊂ gvsn+in ,t

(En+1) ⊂ gvsn+in ,t
◦ gvsn+1+in+1

,t(En+1).

Arguing recursively, we get that

En ⊂ gvsn+in ,t
(En) ⊂ gvsn+in ,t

◦ · · · ◦ gvsn+k+in+k
,t(En+k).

Therefore
En ⊂ lim

k→∞
gvsn+in ,t

◦ · · · ◦ gvsn+k+in+k
,t([0, 1]).

In particular,

(4.10) gvs1+i1 ,t
◦ · · · ◦ gvsn−1+in−1

,t(En) ⊂ lim
k→∞

gvs1+i1 ,t
◦ · · · ◦ gvsn+k+in+k

,t([0, 1]).

Lemma 2.3 implies that gvs1+i1
,t ◦ · · · ◦ gvsn−1+in−1

,t(En) ⊂ Iξ,t, ending the proof of
the lemma. �

The proof of the proposition is now complete. �

4.3. Proof of item (3) of Theorem 4: HD(Σ−,non
2 (t0)) > 0. Fix small t̄0 > 0

and consider the sequences (tn), (kn), and (rn) in (4.2). Lemma 4.6 holds for all
t ≥ tn. As t̄0 > tn0 for some n0, the following holds for all t ≥ t̄0 and n ≥ n0,

(4.11) En ⊂
(
fkn+rn+N

0 ◦ f1,t(En)
)
∩
(
fkn+rn+N+1

0 ◦ f1,t(En)
)
.

Consider set A consisting of the words

A
def
= {u = 0kn0+rn0+N 1, w = 0kn0+rn0+N+1 1}

and its associated set of backward sequences EA. By Proposition 3.6, HD(EA) > 0.
Thus item (3) of Theorem 4 follows from the lemma below.

Lemma 4.8. EA ⊂ Σ−,non
2 (t0).

Proof. Take ξ− ∈ EA and any sequence ξ of the form ξ = (ξ−, ξ+). By (4.11)

En ⊂ gu,t(En) and En ⊂ gw,t(En), for all t ∈ [t0, 1).

By Corollary 2.4 the interval En is contained in Iξ,t, proving the lemma. �
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5. Stabilization of spines. Proof of Theorem 5

In Section 3 we described a large subset of Σ2 whose spines are abruptly created
at t = 1. In this section, we prove Theorem 5 that is a result in the opposite
direction: there is also a subset of Σ2 with Hausdorff dimension bigger than one
consisting of sequences whose spines depend continuously on the parameter t for
t = 1. In particular, these nontrivial spines are created before t = 1.

We now go to the details of the proof of Theorem 5. Consider the set

C
def
= {u def

= 0101, s
def
= 001001},

its associated maps gu,t and gs,t, and the set EC ⊂ Σ−2 . By Proposition 3.6,
0 < HD(EC).

Consider the set

Σ−,stb2
def
= {ξ− ∈ Σ−2 : ξ−.ξ+ is stable a t = 1 for any choice of ξ+ ∈ Σ+

2 }.

Theorem 5.1. EC ⊂ Σ−,stb2 .

This result implies that 0 < HD(EC) ≤ HD(Σ−,stb2 ), proving Theorem 5

Proof of Theorem 5.1. Note first that condition (1.3) implies that f ′0(0) f ′0(1) =
β λ < 1. We begin with a simple claim that follows by a straightforward calculation
that we omit.

Claim 5.2. The points 0 and 1 are hyperbolic attracting fixed points of gu,1 and
gs,1.

For j = u, s and t ∈ [0, 1] close to 1, denote by p0
j,t the continuation for gj,t of

the hyperbolic fixed point 0 of gj,1. Similarly, p1
j,t is the continuation of 1 for gj,t.

Consider the sets of words consisting of sub-words of u and s

U def
= {0, 01, 010, 0101} and S def

= {0, 00, 001, 0010, 00100, 001001}.

Lemma 5.3. There exists t̄ ∈ (0, 1) such that

p0
u,t, p

0
s,t, p

1
u,t, p

1
s,t ∈ [0, 1], for every t ∈ [t̄, 1].

Moreover,
gū,t(p

i
u,t) ∈ [0, 1], for every ū ∈ U and i = 0, 1

and
gs̄,t(p

i
s,t) ∈ [0, 1] for every s̄ ∈ S and i = 0, 1.

Proof. The second part of the lemma follows from the first part noting that pij,t ∈
[0, 1] for i = 0, 1 and j = s, u, and fi,t([0, 1]) ⊂ [0, 1], i = 0, 1.

We now prove the first part of the lemma for the continuations p0
u,t and p1

u,t.
By Claim 5.2 there is small δ > 0 such that (gu,1)′(x) < 1 for every x ∈ Iδ

def
=

[−δ, δ] ∪ [1− δ, 1 + δ] and

gu,1(−δ) > −δ, gu,1(δ) < δ, gu,1(1− δ) > 1− δ, gu,1(1 + δ) < 1 + δ.

Note that gu,t(0), gu,t(1) ∈ (0, 1) for every t ∈ (0, 1). This fact, the continuous
dependence on t of gu,t, and g′u,t(x) < 1 for x ∈ Iδ for t close to 1 imply that there
exist tu ∈ (0, 1) and small δ > 0 such that for every t ∈ [tu, 1] we have

gu,t(δ) < δ , gu,t(x) > x, for all x ∈ [−δ, 0),

gu,t(1− δ) > 1− δ , gu,t(x) < x, for all x ∈ (1, 1 + δ].
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These inequalities imply that p0
u,t ∈ (0, δ) and p1

u,t ∈ (1− δ, 1) for all t ∈ [tu, 1),
proving the lemma for the continuations p1

u,t and p0
u,t.

Arguing similarly, we get ts such that p0
s,t ∈ (0, δ) and p1

s,t ∈ (1 − δ, 1) for all
t ∈ [ts, 1). The lemma follows taking t̄ = max{ts, tu}. �

Let t̄ as in Lemma 5.3 and for each t ∈ [t̄, 1] define

p0
t

def
= max{p0

u,t, p
0
s,t} and p1

t
def
= min{p1

u,t, p
1
s,t}.

Note that p0
t < p1

t .

Proposition 5.4. There is t̂ ∈ [t̄, 1) such that [p0
t , p

1
t ] ⊂ Iξ,t for all ξ = ξ−.ξ+ with

ξ− ∈ EC and t ∈ [t̂, 1].

This proposition implies Theorem 5.1. To see why this is so, fix small ε > 0. As
the points p0

t and p1
t depends continuously on t and p0

1 = 0 and p1
1 = 1, there is

tε ∈ [t̄, 1) such that:

p0
t <

ε

2
< 1− ε

2
< p1

t for every t ∈ [tε, 1].

Proposition 5.4 implies that 1− ε <
∣∣[p0

t , p
1
t ]
∣∣ ≤ |Iξ,t|, which implies the theorem.

Proof of Proposition 5.4. Given ξ− ∈ EC consider its conjugate

ξ̂− = uh1 sn1 uh2 sn2 . . . , where hi, ni ≥ 0 for i ≥ 1.

By the characterization of the spines in Lemma 2.3,

Iξ,t = lim
r→∞

gh1
u,t ◦ g

n1
s,t ◦ · · · ◦ g

hr
u,t ◦ g

nr
s,t

(
[0, 1]

)
.

Therefore to prove the proposition it is enough to see that

gh1
u,t ◦ g

n1
s,t ◦ · · · ◦ g

hr
u,t ◦ g

nr
s,t(0) ≤ p0

t < p1
t ≤ g

h1
u,t ◦ g

n1
s,t ◦ · · · ◦ g

hr
u,t ◦ g

nr
s,t(1).

These inequalities are consequence of the following lemma.

Lemma 5.5. There is t̂ ∈ [t̄, 1) such that for every t ∈ [t̂, 1] the following holds:

• ghju,t ◦ g
nj
s,t(x) ∈ [p1

t , 1] for every x ∈ [p1
t , 1] and

• ghju,t ◦ g
nj
s,t(x) ∈ [0, p0

t ] for every x ∈ [0, p0
t ].

Proof. We prove the first item of the lemma, the second one follows analogously.
For each t ∈ [t̄, 1] and i = s, u consider the subsets of [0, 1] defined by

Fi,t
def
= {r ∈ [0, 1] : gi,t(r) = r and r is not an attractor}

and select the subset of parameters

L
def
= {t ∈ [t̄, 1] :

(
Fu,t ∪ Fs,t

)
∩
(
[0, p0

t ] ∪ [p1
t , 1]

)
= ∅}.

Claim 5.6. There is t̂ ∈ [t̄, 1) such that [t̂, 1] ⊂ L.

Proof. Note that for t = 1 one has

0 = p0
1 = p0

u,1 = p0
s,1 and 1 = p1

1 = p1
u,1 = p1

s,1

and these points are hyperbolic attractors of gu,1 and gs,1. Thus there is small ε > 0
such that for t close to 1, t < 1, the only fixed point of gu,t in [1−ε, 1+ε] (resp. gs,t)
is p1

u,t (resp. p1
s,t) which is the continuation of 1 and is attracting. Similarly, the

only fixed point of gu,t (resp. gs,t) in [−ε, ε] is p0
u,t (resp. p0

s,t) which is attracting.
This completes the proof of the claim. �
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To prove the lemma let us assume that p1
t = p1

u,t (the case p1
t = p1

s,t is analogous).
As p1

s,t ≥ p1
u,t, by the definition of L, if t ∈ L the map gs,t has no repelling points

in [p1
u,t, p

1
s,t]. Thus one has

(5.1) gks,t(p
1
u,t) ≥ p1

u,t for every k ≥ 0.

As that gs,t and gu,t preserve the orientation we have that for for every x ∈ [p1
t , 1]

it holds
g
hj
u,t ◦ g

nj
s,t(x) ≥ ghju,t ◦ g

nj
s,t(p

1
u,t) ≥ g

hj
u,t(p

1
u,t) = p1

u,t.

This ends the proof of the lemma. �

The proof of the proposition is now complete. �

The proof of Theorem 5.1 is now completed. �

6. Proof of Theorem 6: Porcupines with evanescent spines

In this section we study the persistence of nontrivial spines after their generation.
We prove Theorem 6 claiming the existence of fiber maps f0 such that the porcu-
pines associated to the corresponding one-parameter families of skew-product maps
have evanescent spines: there are a sequence ξ ∈ Σ2 and parameters 0 < t1 < t2 < 1
such that Iξ,t1 is a nontrivial interval and Iξ,t is a singleton for every t ∈ [t2, 1).

We first construct an auxiliary family of porcupines with an evanescent spine
where the fiber map f0 is piecewise affine. Thereafter we will modify this construc-
tion to obtain a map f̂0 that is C∞.

6.1. An evanescent spine: a piecewise affine model. Consider the skew-
product maps Ft defined as in (1.1) whose fiber maps are

f1,t(x) = t (1− x), f0,t(x) = f0(x) =


5

2
x, if x ≤ 1

4
,

1

2
+
x

2
, if

1

4
< x ≤ 1.

Note that for t > 1/4 one has f ′0(x) < 1 for every x > t > 1/4. This implies that
for t > 1/4 the set Λt is transitive4.

Proposition 6.1. Consider the family (Ft)t∈[0,1] above. Then the spine of $ = 10
Z

is nontrivial for t = 1
2 and is trivial for t ∈ ( 2

3 , 1).

Proof. To see that the spine of $ = 10
Z is nontrivial for t = 1

2 note that the
restriction of g10, 12

to [0, 1/4) is of the form g10, 12
(x) = 1

2

(
1− 5

2 x
)
. Thus 2

9 <
1
4 is

a fixed point of g10, 12
. As g′

10, 12
( 2

9 ) = − 5
4 , this point is repelling. By Lemma 2.5 the

spine I$, 12 is nontrivial.

We now see that the spine of $ = 10
Z is trivial for every t ∈ ( 2

3 , 1). Note that
the restriction of g10,t to [0, 1/4) is of the form g10,t(x) = t

(
1− 5

2 x
)
. A direct

calculation gives that for x ∈ (0, 1
4 ) and t > 2/3 it holds

g10,t(x) > t

(
3

8

)
> x.

4In this nondifferentiable case the parameter t = 1/4 plays the role of the parameter tc in the
differentiable case (f ′0(tc) = 1), arguing as in [8] one gets the transitivity of Λt.
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t < 2
5

1
4

t = 2
5

1
4

2
5
< t < 2

3

1
4

t = 2
3

1
4

t < 2
3

1
4

Figure 2. The maps g2
10,t

Thus the fixed points of g10,t are in (1/4, 1]. As g10,t(x) is a contraction in (1/4, 1]
(the derivative is −t/2) this fixed point is unique and equal to q = t

2+t .
We argue by contradiction assuming that the spine of$ is nontrivial. In this case

g10,t necessarily has a periodic point q′ < q of period two. Thus g2
10,t has at least

3 fixed points q′ < q < g10,t(q
′). Observe also that g2

10,t(0) > 0 and g2
10,t(1) < 1.

These conditions imply that the derivative of g2
10,t has at least five different values.

These maps are depicted in Figure 6.1
On the other hand, by definition of g10,t, there are closed intervals I1, . . . , I4

such that [0, 1] = I1 ∪ I2 ∪ I3 ∪ I4 and g2
10,t is affine in each interval Ij . Thus the

derivative of g2
10,t has (at most) four different values, getting a contradiction.

The proof of the proposition is now complete. �

We close this subsection with a remark about the affine model. Recall that 2
9 is

the fixed expanding point of g10, 12
and that for t > 2/3, t

2+t is the attracting fixed
point for g10,t. Given t > 2

3 consider the “orbits”

O 2
9 ,

1
2

=

{
2

9
, f0

(
2

9

)}
and O t

2+t ,t
=

{
t

2 + t
, f0

(
t

2 + t

)}
.

Claim 6.2. There is small ε > 0 such that the ε-neighborhood Vε of 1
4 is disjoint

from O 2
9 ,

1
2
∪O t

2+t ,t
for every t ∈ [ 2

3 + ε, 1).

Proof. Note that 1
4 /∈ O 2

9 ,
1
2
and for small ε > 0 and t ∈ [ 2

3 + ε, 1) one has t
2+t >

1
4 .

As the fixed point t
2+t of g10,t increases with t and f0(x) > x for every x ∈ (0, 1),

the ε-neighborhood Vε of 1
4 is disjoint from O 2

9 ,
1
2
∪O t

2+t ,t
for every t ∈ [ 2

3 +ε, 1). �

6.2. An evanescent spine: general case. To construct evanescent spines in the
general differentiable case we modify f0 in an small neighborhood of the nondiffer-
entiability point x = 1/4 and denote by f̂0 the resulting map. We let f̂1,t = f1,t

and write ĝu,t for the corresponding compositions. We denote the skew product
map associated to f̂0 and f̂1,t by F̂t.

Consider the set Vε in Claim 6.2 and any C∞ concave map f̂0 whose restriction
to [0, 1] − Vε coincides with f0 and such that f̂ ′0( 1

4 ) = 1. Theorem 6 follows from
the next proposition.

Proposition 6.3. Consider the skew-product family (F̂t)t∈[0,1]. The spine of $ =

10
Z is nontrivial for t = 1

2 and is trivial for every t ∈
[

2
3 + ε, 1

)
.

Proof. Since O 2
9 ,

1
2
∩ Vε = ∅ one has that ĝ10, 12

( 2
9 ) = 2

9 and ĝ′
10, 12

( 2
9 ) = − 5

4 . Thus
2
9

is an expanding fixed point for ĝ10, 12
. By Lemma 2.5 the set I$, 12 is not a singleton.

This proves the first part of the proposition.
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Analogously, we see that t
2+t is an attracting fixed point for g10,t for t ∈ [ 2

3 +ε, 1).
We now see that I$,t = { t

2+t} for every t ∈ [ 2
3 + ε, 1). This follows as in the

piecewise affine case arguing by contradiction. If I$,t 6= { t
2+t} then ĝ10,t has at least

one periodic point q′ of period two that not is attracting. This implies that ĝ2
10,t

has three fixed points, q′ < q < g2
10,t(q

′). Since that ĝ2
10,t(0) > 0 and ĝ2

10,t(1) < 1

this implies that ĝ2
10,t changes its concavity at least four times in [0, 1].

On the other hand, by construction, the map ĝ2
10,t changes the concavity at most

three times in [0, 1]. This gives a contradiction.
The proof of the proposition is now complete. �

7. Appendix: Hausdorff dimension

In this section we state some properties of the Hausdorff measure and dimension
that we used throughout the paper.

7.1. Hausdorff dimension and Hausdorff s-measures. Let (M,d) be a com-
pact metric space and K a subset of M . The diameter of a covering U = (Uj)j∈J
of K is defined by

diam(U)
def
= sup{diam(Uj), j ∈ J},

where diam(U) denotes the diameter of the set U .
The s-measure of a finite covering U = (Uj)j∈J of K is defined by

ms(U)
def
=
∑
j∈J

(
diam(Uj)

)s
.

For each pair s, ε > 0 the (s, ε)-measure of K is defined by

ms,ε(K)
def
= inf{ms(U) : U a finite covering of K with diam(U) < ε}.

Note that ms,ε(K) decreases with ε. The Hausdorff s-measure of K is defined by

ms(K)
def
= lim

ε→0+
ms,ε(K).

The map ms(K) is decreasing with s and there is a value HD(K), called the Haus-
dorff Dimension of K, such that

HD(K)
def
= inf{s ∈ R : ms(K) = 0} = sup{s ∈ R : ms(K) =∞}.

For further details see [12]. The Hausdorff Measure ofK is the numbermHD(K)(K).

Remark 7.1. The definitions of HD(K) and ms(K) depend on the metric con-
sidered in the set K. However, the Hausdorff dimension of a set is the same for
equivalent metrics and isometric sets have the same dimensions (see [12], p. 32-33
for details).

Another classical result is the following, see [11, page 1041].

Proposition 7.2. Let K =
⋃
n∈NKn. Then HD(K) = supn∈N{HD(Kn)}. In

particular, every countable set has zero Hausdorff dimension.
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7.2. Proof of Proposition 3.6. Define the “conjugate” set of EW by E′W =
{w0, w1}N. Note that HD(E′W ) = HD(EW ). Thus to prove the proposition is
enough to see that 1

m ≤ HD(E′W ) ≤ 1
k .

Note that the definition of W implies that for any sequence ξ ∈ E′W there is a
unique sequence wi(ξ) of words in W = {w0, w1} with ξ = w1(ξ)w2(ξ) . . . wi(ξ) . . . .

Given ξ, η ∈ E′W with ξ = w1(ξ)w2(ξ) . . . and η = w1(η)w2(η) . . . we let

ρ(ξ, η)
def
= min{n : wn(ξ) 6= wn(η)}

and define the metric d1 by

d1(ξ, η)
def
= 21/2 2−ρ(ξ,η).

Consider the “substitution” map

h : (Σ−2 , d)→ (E′W , d1), h(. . . ξ−k . . . ξ−1)
def
= wξ−1

. . . wξ−k . . . .

By construction, the map h is an isometry. This implies that HD(E′W , d1) =
HD(Σ−2 , d) = 1, see Remark 7.1.

Recall that w0 = θ1 . . . θk and w1 = ζ1 . . . ζm and let s be the first j with θj 6= ζj .
Recall that the number n(ξ, η) in the definition of the metric d is the first j with
ξj 6= ηj . As k ≤ m we have that for every ξ, η ∈ E′W , η 6= ξ, it holds(

ρ(ξ, η)− 1
)
k + s ≤ n(ξ, η) ≤

(
ρ(ξ, η)− 1

)
m+ s.

Therefore
2−ρ(ξ,η)m+m−s ≤ 2−n(ξ,η) ≤ 2−ρ(ξ,η) k+k−s.

Rewriting these inequalities using the distances d1 and d we get

2m−s d1(ξ, η)m ≤ d(ξ, η) ≤ 2k−s d1(ξ, η)k.

Using the definition of Hausdorff dimension one immediately gets
1

m
=

1

m
HD(E′W , d1) ≤ HD(E′W , d) ≤ 1

k
HD(E′W , d) =

1

k
,

ending the proof of the proposition. �
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