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Abstract

A diffeomorphism f has a heterodimensional cycle if there are (transitive) hyperbolic sets
Λ and Σ having different indices (dimension of the unstable bundle) such that the unstable
manifold of Λ meets the stable one of Σ and vice-versa. This cycle has co-index one if
index (Λ) = index (Σ) ± 1. This cycle is robust if, for every g close to f , the continuations
of Λ and Σ for g have a heterodimensional cycle.

We prove that any co-index one heterodimensional cycle associated to a pair of hyperbolic
saddles generates C1-robust heterodimensioal cycles. Therefore, in dimension three, every
heterodimensional cycle generates robust cycles.

We also derive some consequences from this result for C1-generic dynamics (in any di-
mension). Two of such consequences are the following. For tame diffeomorphisms (generic
diffeomorphisms with finitely many chain recurrence classes) there is the following dichotomy:
either the system is hyperbolic or it has a robust heterodimensional cycle. Moreover, any
chain recurrence class containing saddles having different indices has a robust cycle.

keywords: Axiom A, chain recurrence class, cycle, dominated splitting, heterodimensional
cycle, homoclinic class, hyperbolicity, shadowing property.
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1 Introduction

1.1 Motivations and main result

Spoiling Smale’s dream that the theory of hyperbolicity could describe an open and dense set
of dynamical systems, Abraham and Smale [AS] constructed in 1970, by the first time, open
sets in the space of C1-diffeomorphisms whose elements do not satisfy the Axiom A property.
In contrast, generically, all periodic points of diffeomorphisms are hyperbolic. Recall that a
diffeomorphism f satisfies the Axiom A if the hyperbolic structures on its hyperbolic points
are compatible and fit together coherently: the non-wandering set Ω(f) of f is hyperbolic and
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de Bourgogne during the stays while prepearing this paper. We also thank helpful comments of N. Gourmelon.

1



coincides with the closure of its periodic points. In this case, by the spectral decomposition
theorem (see [Ne2]), the non-wandering set of f is the union of finitely many pairwise disjoint
hyperbolic basic sets, Ω(f) = Λ1 ∪ · · · ∪ Λm, called the basic pieces of Ω(f).

However, [AS] shows that this global hyperbolic structure is too rigid to be generic: there
is a C1-open set U of non-Axiom A diffeomorphisms defined on a manifold of dimension four
(the product of a two torus T

2 and a two sphere S
2) such that every diffeomorphism in U has

two hyperbolic sets Γ and Σ whose indices (dimension of the unstable bundle) are different and
which are related by a C1-robust heterodimensional cycle. These cycles are defined as follows.

Definition 1.1 (Robust heterodimensional cycles). A diffeomorphism f has a heterodimen-
sional cycle associated to the (transitive) hyperbolic sets Γ and Σ of f if:

1. the indices (dimension of the unstable bundle) of the sets Γ and Σ are different;

2. the stable manifold of Γ meets the unstable manifold of Σ and the same holds for the stable
manifold of Σ and the unstable manifold of Γ.

The heterodimensional cycle of f associated to the sets Γ and Σ above is C1-robust if there is
a C1-neighborhood U of f such that every diffeomorphism g ∈ U has a heterodimensional cycle
associated to the hyperbolic sets Γg and Σg, where Γg and Σg are the continuations of Γ and
Σ for g.

Clearly, heterodimensional cycles can only occur in dimensions greater than or equal to
three. However, Newhouse constructed in [Ne1] C

2-open sets of non-Axiom A surface diffeomor-
phisms. This construction relies on the notion of C2-robust homoclinic tangency associated to
a hyperbolic set.

After the Abraham-Smale construction numerous examples of C1-robustly non-Axiom A
diffeomorphisms were constructed by several authors. First, [Si] strengths the ideas in [AS] to
get robustly non-Axiom A diffeomorphisms in the three dimensional torus. Later, [Sh, Ma1,
BD1] gave examples of a special type of C1-robustly non-Axiom A diffeomorphisms, the so-
called robustly non-hyperbolic transitive diffeomorphisms: these diffeomorphisms are transitive
(existence of a dense orbit in the whole manifold) and have hyperbolic saddles with different
indices. Transitivity implies that the non-wandering set is the whole manifold. The existence of
saddles having different indices now prevents the Axiom A property. Otherwise, by transitivity,
the whole ambient manifold should be a hyperbolic transitive set, therefore all the saddles should
have the same index, which is a contradiction.

The examples of robustly non-Axiom A diffeomorphisms in [AS, Si, BD1] rely on the con-
struction of robust heterodimensional cycles (although this terminology is not used there), while
the constructions in [Sh, Ma1] do not involve explicitly robust cycles. However, see Remark 2, it
follows from our main result that in all known examples of C1-robustly non-Axiom A diffeomor-
phisms those having C1-robust heterodimensional cycles form a dense and open subset. Thus it
seems natural to ask how generally robust heterodimensional cycles appear for diffeomorphisms
far from hyperbolic ones:

Question 1. Let M be closed manifold. Does it exist a C1-open and dense subset O ⊂ Diff1(M)
such that every f ∈ O either verifies the Axiom A and the no-cycles condition or has a C1-robust
heterodimensional cycle?

2



Note that a positive answer to this question implies the C1-density of hyperbolic surface
diffeomorphisms. See the discussion in Section 1.3 about the Smale density conjecture. We
will see that Theorem 2 gives a partial positive answer to this question for the so-called tame
diffeomorphisms (diffeomorphisms finitely many homoclinic classes, see the precise definition in
Section 1.2).

The examples by Abraham-Smale of non-Axiom A diffeomorphisms involves a hyperbolic
set Γ whose unstable manifold has dimension strictly greater than the dimension of its unstable
bundle. Note that a normally hyperbolic extension of transitive Anosov diffeomorphisms on a
torus T

2 gives an example of this configuration.
The construction in [BD1] gives a slightly different mechanism for constructing non-Axiom A

diffeomorphisms and robust heterodimensional cycles, based on the notion of blender. Roughly
speaking, a blender is a hyperbolic set whose embedding in the ambient manifold verifies some
specific geometric properties, whose effect is that, as in the Abraham-Smale example, the unsta-
ble manifold of a blender looks like a manifold of higher dimension. We review the construction
and main properties of blenders in Section 4.1.3. See also [BDV2, Chapter 6.1] for a discussion
of this notion.

One of the goals of this paper is to show that blenders (and as a consequence robust het-
erodimensional cycles) appear in a natural way in the unfolding of heterodimensional cycles
associated to two saddles.

Definition 1.2 (Heterodimensional cycle and co-index one cycle). A diffeomorphism f has a
heterodimensional cycle associated to two hyperbolic periodic saddles P and Q of f if the saddles
P and Q have different indices, the stable manifold of the orbit of P meets the unstable manifold
of the orbit of Q, and the same holds for the stable manifold of the orbit of Q and the unstable
manifold of the orbit of P .

A co-index one cycle is a heterodimensional cycle associated to saddles P and Q whose
indices p and q satisfy of q = p± 1.

Q
W s(P )

W u(P )

W s(Q)

W u(Q)

P

Figure 1: A heterodimensional cycle

Note that, by Kupka-Smale’s theorem, heterodimensional cycles associated to saddles occur
in the complement of a residual set of diffeomorphisms, thus they never are robust. Therefore
robust cycles should involve at least one non-trivial hyperbolic set.

The study of heterodimensional cycles was initiated in [NP] in the context of bifurcation
theory. Thereafter a systematic analysis of co-index one cycles was done in the series of papers
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[DR1, DU, D́ı1, D́ı2, BD1, DR2, DR3, BDPR], where heterodimensional cycles are studied from
the point of view of bifurcation theory as well as a mechanism generating robustly non-hyperbolic
transitive sets and robust cycles. These results lead to the following question:

Question 2. Let f be a diffeomorphism with a heterodimensional cycle (associated to a pair
of saddles). Does every C1-neighborhood of f contain diffeomorphisms with C1-robust heterodi-
mensional cycles?

Our main result gives a positive answer to this question in the case of co-index one cycles.

Theorem 1. Let f be a C1-diffeomorphism having a co-index one cycle associated to a pair of
saddles. Then there are diffeomorphisms arbitrarily C1-close to f having robust (heterodimen-
sional) co-index one cycles.

Let f be a diffeomorphism defined on a manifold of dimension 3 with a heterodimensional
cycle related to saddles P and Q. In this case, either index(P ) = 1 and index(Q) = 2 or
vice-versa, so such heterodimensional cycles are co-index one cycles. Therefore, we have

Corollary 1. Every diffeomorphism f defined on a 3-manifold with a heterodimensional cycle
associated to a pair of saddles belongs to the C1-closure of the set of diffeomorphisms having
C1-robust heterodimensional cycles.

Remark 1. In [Ne3], Newhouse proved that the unfolding of any homoclinic tangency of a C2-
surface diffeomorphisms generates C2-robust tangencies associated to hyperbolic sets. Theorem 1
can be viewed as a version of this result for heterodimensional cycles in the C1-topology.

Remark 2. The approximation by C1-robust cycles holds for all known examples of C1-robustly
non-Axiom A diffeomorphisms. The diffeomorphisms in [AS, Si] exhibit robust cycles by con-
struction. The diffeomorphisms in [Sh, Ma1, BD1] are robustly non-hyperbolic and robustly
transitive. By [BDPR], open and densely, these diffeomorphisms have saddles of different con-
secutive indices. The transitivity and the Connecting Lemma in [Ha] (see also Lemmas 5.6
and 6.5) allow us to create cycles associated to these saddles, obtaining co-index one cycles.
Theorem 1 now implies the assertion.

Let us pose two questions related to the theorem and the corollary above. Consider a
diffeomorphism f with a co-index one cycle associated to a pair of saddles. Theorem 1 gives
diffeomorphisms g arbitrarily C1-close to f with C1-robust cycles associated to hyperbolic sets.
However, our proof does not give any relation between these hyperbolic sets and the initial
saddles in the cycle. Thus a natural question is the following:

Question 3. Let f be a diffeomorphism with a co-index one cycle associated to saddles P and
Q. Can the diffeomorphism f be C1-approximated by diffeomorphisms g with a robust cycle
associated to hyperbolic sets containing the continuations Pg and Qg of P and Q?

Another natural question concerns the degree of differentiability required in Theorem 1:

Question 4. Let f be a Cr-diffeomorphism, r > 1, with a co-index one cycle. Can the diffeo-
morphism f be Cr-approximated by diffeomorphisms with robust heterodimensional cycles?
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The results in [DR2] give a partial (positive) answer to Question 4 for some special heterodi-
mensional cycles. Clearly, Questions 3 and 4 can be formulated for heterodimensional cycles of
co-index greater than 1.

Concerning Question 2, a natural strategy for solving it is to see that any diffeomorphism with
a heterodimensional cycle can be approximated by diffeomorphisms with co-index one cycles.
However, while the arguments in the proof of Theorem 1 are semi-local (involving only the
dynamics in a neighborhood of the two periodic saddles and of two heteroclinic orbits defining
the cycle), Gourmelon convinced us that the higher co-index case exhibits some additional
difficulties, requiring a global analysis of the dynamics. On the other hand, the approximation
of heterodimensional cycles (not necessarily of co-index one type) by co-index one cycles is true
for robust cycles:

Corollary 2. Every diffeomorphism with a C1-robust heterodimensional cycle is C1-approxi-
mated by diffeomorphisms with C1-robust co-index one cycles.

The proof of this corollary (see Section 6.6) follows from Theorem 1, the properties of ho-
moclinic classes (see the precise definition in Section 1.2) of C1-generic diffeomorphisms1 in
[CMP, BC, ABCDW], and the Connecting Lemma ([Ha]).

In view of Corollary 2, Question 1 now is equivalent to the following one:

Question 5 (Question 1 reformulated). Can any C1-robustly non-Axiom A diffeomorphism be
C1-approximated by diffeomorphisms with co-index one cycles?

In fact, this question is a stronger version of the following conjecture:

Conjecture 1 (Palis, [Pa]). Every diffeomorphism in Diff1(M) can be C1-approximated ei-
ther by an Axiom A diffeomorphism or by a diffeomorphism with a homoclinic tangency or a
heterodimensional cycle.

This conjecture was proved for surface diffeomorphisms by Pujals and Sambarino in [PS]
(note that for surface diffeomorphism heterodimensional cycles can be omitted). We will discuss
this conjecture, the previous questions, and our results in Section 1.3.

1.2 Consequences of Theorem 1

In this section, we deduce some consequences from our main result. In particular, we give some
partial positive answers to Question 1. We begin by recalling some definitions and results.

The homoclinic class of a saddle P of a diffeomorphism f , denoted by H(P, f), is the
transitive f -invariant compact set defined as the closure of the transverse intersections between
the invariant manifolds (stable and unstable) of the orbit of the saddle P . This set coincides
with the closure of the set of saddles homoclinically related with P (i.e., the saddles whose stable
and unstable manifolds transversely meet the unstable and the stable manifolds of P ).

The chain recurrent set of a diffeomorphism f , denoted by R(f), is the set of points x
such that, for every ε > 0, there is a closed ε-pseudo orbit joining x to itself: there is a finite
sequence x = x0, x1, . . . , xn = x such that d(f(xi), xi+1) < ε. By definition, the chain recurrent
set is closed and contains the set of periodic points. Two points x and y are in the same chain
recurrence class if, for every ε > 0, there are ε-pseudo orbits going from x to y and vice-versa.

1By C1-generic diffeomorphisms we mean diffeomorphisms forming a residual subset of Diff1(M).
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By [BC, Corollaire 1.2], there is a residual set R1 of Diff1(M) of diffeomorphisms whose
chain recurrence sets coincide with the closure of their hyperbolic periodic points. Moreover,
for every f ∈ R1, any chain recurrence class containing a periodic point P coincides with the
homoclinic class of P , see [BC, Remarque 1.10]. Furthermore, by [BC, Corollaire 1.13], any
isolated chain recurrence class C(f) of a diffeomorphism f ∈ R1 is robustly isolated. This means
that there are neighborhoods U of f in Diff1(M) and O of the chain recurrence class C(f) in M
such that, for every g ∈ U , the intersection R(g)∩O is a unique chain recurrence class of g. For
the precise statement of the C1-generic properties of homoclinic and chain recurrence classes we
use in this paper see conditions (G1)–(G5) in Section 6.1.

We say that a diffeomorphism is tame if every chain recurrence class of it is robustly isolated.
Thus tame diffeomorphisms have finitely many chain recurrence classes and the number of such
classes is locally constant. We denote the set of tame diffeomorphisms by T ⊂ Diff1(M); this
set is C1-open. Furthermore, for generic tame diffeomorphisms, chain recurrence classes are
homoclinic classes.2

Theorem 2 (Hyperbolicity versus robust cycles). There is an open and dense subset O of the
set T of tame diffeomorphisms such that every f ∈ O is either hyperbolic (Axiom A and the
no-cycles condition) or it has a C1-robust heterodimensional cycle.

Recall that an Axiom A diffeomorphism f has a cycle if there are basic sets Λi1 , . . . ,Λin of
the spectral decomposition of the non-wandering set of f such that W u(Λik) ∩W s(Λik+1

) 6= ∅,
for all k = 1, . . . , n, where in+1 = i1. We prove Theorem 2 in Section 6.2.

We also have the following local formulation of the theorem above (see Section 6.3 for the
details of the proof).

Corollary 3. There is a residual subset R of Diff1(M) such that for every diffeomorphism
f ∈ R and every isolated chain recurrence class C(f) of f there are two possibilities: either C(f)
is hyperbolic or it has a robust heterodimensional cycle.

[ABCDW] claims that, for C1-generic diffeomorphisms, the set of indices of the (hyperbolic)
periodic points in a chain recurrence class (in fact, such classes are homoclinic ones) form an
interval in N. This result and the transitivity of chain recurrence classes with periodic points
(for generic diffeomorphisms) imply that if a chain recurrence class has two saddles having
different indices then one can obtain (after an arbitrarily small perturbation) a co-index one
cycle. Theorem 1 now implies (see Section 6.4):

Theorem 3. There is a residual subset R of Diff1(M) such that any f ∈ R having a chain
recurrence class with periodic saddles of different indices has a robust heterodimensional cycle.

A diffeomorphism f satisfies the shadowing property if for any δ > 0 there is ε > 0 such that
any finite ε-pseudo-orbit of f is δ-shadowed by a true orbit: if (xi)

n
i=0 is a δ-pseudo-orbit there

is x such that d(f i(x), xi) < ε for all i = 0, . . . , n. A consequence of the existence of C1-robust
co-index one cycles in terms of the shadowing property is the following:

2According to [CMP], there is residual subset R0 of Diff1(M) such that, for every f ∈ R0, any pair of homoclinic
classes of f are either disjoint or coincide. Thus, for f ∈ R0, one can consider the number (in N ∪ {+∞}) of
(different) homoclinic classes of f . This number is locally constant in R0, see [Ab]. A diffeomorphism f ∈ R0 is
tame if this number is finite and we say that it is wild if otherwise.
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Theorem 4. Let f be a diffeomorphism with a co-index 1 cycle. Then there is an open set
U of Diff1(M) whose closure contains f consisting of diffeomorphism which do not satisfy the
shadowing property.

This theorem is motivated by Remark 2 and the following result in [AD] (in fact, the proof
of Theorem 4 follows using the arguments there): among the C1-robustly non-hyperbolic and
robustly transitive diffeomorphisms those which do not satisfy the shadowing property form an
open and dense subset. The proof of Theorem 4 is in Section 6.5.

1.3 Discussion: C1-Robust homoclinic tangencies and heterodimensional cy-

cles

The main difference between Question 5 and Conjecture 1 above is that the conjecture involves,
besides heterodimensional cycles, homoclinic tangencies. Let us make a small digression about
the role of homoclinic tangencies for C1-generic diffeomorphisms. Following Definition 1.1, a
diffeomorphism f has a C1-robust homoclinic tangency if there is a C1-neighbourhood U of f
such that every g ∈ U has a hyperbolic set Λg whose unstable and stable manifolds have non-
transverse intersections (here we do not impose continuous dependence on the diffeomorphisms
g of the hyperbolic sets Λg).

First, there are not known examples of surface diffeomorphisms with C1-robust homoclinic
tangencies. On the other hand, most of examples of C1-persistent tangencies (in dimension
three or higher) yields robust heterodimensional cycles and involves the notion of blender, see
[BD2, BD3, DNP]. Finally, [As] constructs C1-diffeomorphisms with robust homoclinic tangen-
cies considering deformations of the product of a Plykin attractor and a hyperbolic dynamics
of saddle type. It is not known if the construction in [As] yields heterodimensional cycles.
Thus a key question is to decide whether there are diffeomorphisms with C1-robust homoclinic
tangencies far from the ones having heterodimensional cycles. Since surface diffeomorphisms
cannot display heterodimensional cycles, the simplest version of this question is about the exis-
tence of C1-robust tangencies for surface diffeomorphisms. This last problem is closely related
to Smale’s conjecture of C1-density of hyperbolic dynamics for surface diffeomorphisms (this
conjecture remains open), see [Sm2]

3.
Recall that in [Ne1] Newhouse constructed surface diffeomorphisms having C2-robust ho-

moclinic tangencies. Later, [Ne3] stated that, in the C2-topology, homoclinic tangencies of a
surface diffeomorphism yields C2-robust tangencies. See also [Ro, PV] for generalizations to
higher dimensions of this result. These results relies on the construction of thick hyperbolic sets
(see [PT]).

In [Ur], Ures showed that the arguments in the Newhouse’s construction cannot be carried
out to the C1-topology. Moreover, Moreira recently presented evidences showing that hyperbolic
sets of C1-diffeomorphisms cannot exhibit robust tangencies, [Mo]. We interpret these results
as indications that homoclinic tangencies of surface diffeomorphisms cannot be C1-persistent.
Thus robust heterodimensional cycles seems to be a key ingredient in the generation of C1-robust
non-hyperbolic dynamics. This suggests that the answers to Questions 1 and 5 should be both
positive.

3For a discussion on the current state of the Smale’s density conjecture we refer to [ABCD]. Briefly, there
are two sort of obstacles to the C1-density of hyperbolic dynamics: (i) persistence of infinitely many hyperbolic
homoclinic classes and (ii) existence of a single homoclinic class with a robust homoclinic tangency. The discussion
here is related to the second obstacle.
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We close this discussion noting that the topological dimension property of blenders (the
dimension of the unstable manifold of the blender is greater than its index) is a C1-robust
property. This property plays a role similar to the thick hyperbolic sets in the construction of
C1-robust heterodimensional cycles.

2 Plan of the proof of Theorem 1

In this section, we outline the proof of Theorem 1 and emphasize its main ingredients.

2.1 Cycles with real central eigenvalues

We begin by considering a special sort of heterodimensional cycles, called cycles with real central
eigenvalues.

Consider a diffeomorphism f with a co-index one cycle associated to saddles P and Q, say
of periods π(P ) and π(Q) and of indices u and u + 1. We say that a contracting eigenvalue
λ of Dfπ(P )(P ) and an expanding eigenvalue β of Dfπ(Q)(Q) are a pair of central eigenvalues
of the cycle if |λ| ≥ |σ| for every contracting eigenvalue of Dfπ(P )(P ) and |β| ≤ |η| for every
expanding eigenvalue of Dfπ(Q)(Q). The cycle has real central eigenvalues if there is only
one pair of central eigenvalues: there are a contracting real eigenvalue λ of Dfπ(P )(P ) and an
expanding real eigenvalue β of Dfπ(Q)(Q) such that λ and β have multiplicity one, |λ| > |σ| for
every contracting eigenvalue σ of Dfπ(P )(P ), and |β| < |η| for every expanding eigenvalue η of
Dfπ(Q)(Q), see Definition 3.1.

Next theorem states the approximation of diffeomorphism with co-index one cycles by dif-
feomorphisms having cycles with real central eigenvalues:

Theorem 5.1 Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Then every C1-neighborhood U of f contains a diffeomorphism g with a co-index one
cycle with real central eigenvalues. Moreover, this cycle can be taken associated to saddles P ′

g

and Q′
g homoclinically related to the continuations Pg and Qg of P and Q.

This theorem is proved in Section 5, it implies that it is enough to prove Theorem 1 for
cycles with real central eigenvalues:

Theorem 2.1. Let f be a diffeomorphism with a co-index one cycle having real central eigenval-
ues. Then there are diffeomorphisms arbitrarily C1-close to f with C1-robust heterodimensional
cycles.

To prove Theorem 2.1, we need the notion of strong homoclinic intersection associated to
a saddle-node or a flip periodic point. Let f be a diffeomorphism and S a periodic point of f
of period π(S). We say that S is a saddle-node (resp. a flip) of f if the derivative Dfπ(S)(S)
has an eigenvalue equal to 1 (resp. −1) and all others have modulus different from one. Then
the tangent space TSM splits into three Dfπ(S)-invariant directions TSM = Ess(S) ⊕ Ec(S) ⊕
Euu(S), where Ess(S) and Euu(S) are the strong stable and strong unstable bundles and Ec(S)
is the one-dimensional center bundle (associated to the eigenvalue of modulus one). In our
case, the strong stable and strong unstable bundles are both non-trivial. The strong stable
manifold W ss(S) of S is the unique fπ(S)-invariant manifold tangent to Ess(S) having the
same dimension as Ess(S). This manifold is well and uniquely defined, see [HPS]. The strong
unstable manifold of S, W uu(S), is defined similarly considering the bundle Euu(S). We say
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that a saddle-node or a flip S has a strong homoclinic intersection if there is some point X 6= S
with X ∈W ss(S)∩W uu(S). The point X is a strong homoclinic point of S. Strong homoclinic
intersections for saddles having a partially hyperbolic splitting Ess ⊕ Ec ⊕ Euu are defined in
the same way.

Theorem 2.1 follows from the following two results (the proofs are in Sections 3 and 4)

Theorem 3.3. Let f be a diffeomorphism with a co-index one cycle with real central eigen-
values. Then there are diffeomorphisms arbitrarily C1-close to f having strong homoclinic in-
tersections associated to saddle-nodes or to flips.

Theorem 4.1. Let f be a diffeomorphism with a strong homoclinic intersection associated to
a saddle-node or to a flip. Then every C1-neighborhood U of f contains diffeomorphisms with
C1-robust heterodimensional cycles.

2.2 Ingredients of the proofs of Theorems 3.3 and 4.1

Sketch the proof of Theorem 3.3: We first perturb the diffeomorphism f having the cycle
to get a new cycle whose relevant dynamics is as simple as possible (this corresponds to the
notion of simple cycle, see Definition 3.5). This is done in Section 3.1, let us explain the main
ingredients of this construction.

Consider a diffeomorphism f with a co-index one cycle with real central eigenvalues as-
sociated to saddles P and Q, say of indices u and u + 1. We first select heteroclinic points
X ∈ W s(P ) ∩W u(Q) and Y ∈ W u(P ) ∩W s(Q). After a perturbation, we can assume that
the heteroclinic intersection at X ∈ W s(P ) ∩ W u(Q) is transverse (note that dimW s(P ) +
dimW u(Q) = (n− u) + (u+ 1) = n+ 1, where n is the dimension of the ambient) and that the
heteroclinic intersection at Y ∈W u(P )∩W s(Q) is quasi-transverse, i.e., TYW

u(P )⊕TYW
s(Q).

Using the heteroclinic points X and Y and following [BDPR, Section 3.1], we consider a pair
of transition maps (corresponding to iterations of the diffeomorphism), the first one TPQ goes
from a neighborhood of P to a neighborhood of Q following the orbit of the heteroclinic point
Y , and the second one TQP goes from a neighborhood of Q to a neighborhood of P following
the orbit of X. These transitions are depicted in Figure 2.

Y

X

Q

P

TPQ

TQP

Figure 2: Transitions

We next focus on the dynamics in a small neighborhood of the cycle, that is, a neighborhood
of the orbits of the saddles P and Q and of the selected heteroclinic points X and Y above.
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A relevant part of the dynamics in this neighborhood (shortly, the dynamics of the cycle) is
obtained by considering (suitable) compositions of the transition maps TPQ and TQP above and
the restrictions of the diffeomorphism to neighborhoods of the saddles P and Q. The goal is to
turn this semi-local dynamics of the cycle as simple as possible (in fact, composition of affine
maps). For that we perform the following local and small C1-perturbations:

• Linearization. Using the C1-topology, we linearize (after a perturbation) the dynamics of
f in a neighborhood of the cycle: the restrictions of fπ(P ) and fπ(Q) to neighborhoods of
P and Q are both linear and the transition maps are affine maps.

• Preservation of dominance. Using that the cycle has real central eigenvalues, one can
assume (after a perturbation) that the dynamics of the cycle is dominated. More precisely,
there is a locally constant dominating splitting Ess ⊕ Ec ⊕ Euu which is preserved by the
transitions and such that the dimension of Ec is 1. One has that Es(P ) = Ess(P )+Ec(P ),
and Eu(Q) = Euu(Q) + Ec(Q).

In Proposition 3.6, we obtain (after a small C1-perturbation) cycles in simplified form (sat-
isfying the linearization and preservation of dominance properties above). The analysis of the
dynamics of these cycles is essentially one-dimensional (reduction to the central direction) and
depends on the central eigenvalues of P and Q. The proof of Theorem 3.3 now goes as follows:

• We consider the unfolding of simple cycles preserving their affine structures (associated
to the dominated splittings). This leads to a time re-scaling of simple cycles and their
unfoldings, called model maps and model unfolding maps (see Section 3.2). The model
unfolding families Fλ,β,t depend on three parameters: the parameters λ and β correspond
to the central eigenvalues of the cycle and the parameter t corresponds to its unfolding. A
key fact is that to each unfolding of a simple cycle preserving its affine structure corresponds
a model unfolding family (and vice-versa).

• By construction, the model family keeps invariant the co-dimension one foliation gener-
ated by the sum of the strong stable and the strong unstable bundles of the dominated
splitting. We consider the quotient of the dynamics of the model family by this foliation,
obtaining a three-parameter family of systems of iterated functions defined on an interval
(see Section 3.3). Proposition 3.9 gives a dictionary which translates properties from the
one dimensional maps to the model families. Later, we will translate these properties of
the model families to the true diffeomorphisms. The key word of the dictionary is that
periodic points of the one-dimensional maps having two different periodic itineraries cor-
respond to saddles of the model family with strong homoclinic intersections (i.e., there is a
saddle whose strong stable manifold tangent to Ess and strong unstable manifold tangent
to Euu meet quasi-transversely).

• In Section 3.4, using Proposition 3.9 and analyzing the dynamics of the system of one-
dimensional iterated functions, we translate some properties of the one-dimensional dy-
namics to the model family. The key property guarantees the existence of strong homo-
clinic intersections associated to periodic points. In Propositions 3.16 and 3.17 we get a
sequence of parameters (tn), tn → 0, such that for each tn the corresponding model map
Fλ,β,tn has a periodic point An with a strong homoclinic intersection. The sequence of
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periods (π(An)) of the saddles An go to to infinity and the modulus of the central eigen-

value of DF
π(An)
λ,β,tn

(An) (corresponding to the central bundle) is uniformly bounded. One
has that the same properties (existence of strong homoclinic intersections and uniformly
bounded central eigenvalues) hold for a sequence of diffeomorphisms gn converging to f in
the C1-topology (see Proposition 3.4).

• We conclude the proof of Theorem 3.3 by noting that a saddle (with arbitrarily large period
and whose central eigenvalue has modulus uniformly bounded) having a strong homoclinic
intersection, can be turned, by a small C1-perturbation, into a saddle-node or flip with a
strong homoclinic intersection.

This ends the outline of the proof of Theorem 3.3

Sketch the proof of Theorem 4.1: Theorem 4.1 is proved in Section 4. The proof of this
theorem follows from the results in [BD1, BDV1], which provide C1-robust cycles via the con-
struction of blenders. We first consider in Section 4.1 strong homoclinic intersections associated
to saddle-nodes. In Section 4.2, we reduce the case of strong homoclinic points associated to
flips to the saddle-node case.

The proof for saddle-node has two main steps. We first introduce (see Section 4.1.1) the
affine saddle-node cycles: a translation of the notion of simple cycle to the context of strong
homoclinic intersections associated to saddle-nodes. We next see that strong homoclinic inter-
sections generate affine saddle-node cycles. These constructions are similar to the construction
of simple cycles in Section 3.1.

Thereafter, by applying a series of local perturbations to an affine saddle-node cycle, we get
a blender, see Section 4.1.2. Finally, in Section 4.1.3, we review the notion of blender and deduce
the generation of C1-robust cycles from the existence of such blenders.

2.3 Cycles with non-real central eigenvalues. Ingredients of Theorem 5.1

Let us now explain the main steps of the proof of Theorem 5.1 (see Section 5). Suppose that f
has a co-index one cycle associated to saddles P and Q. Assume that the index of Q is greater
than the index of P . We prove that there is g arbitrarily C1-close to f having a cycle with real
central eigenvalues associated to new saddles homoclinically related with P and Q.

We first need a definition. A saddle A of period π(A) of a diffeomorphism f has real eigen-
values if the eigenvalues of Dfπ(A)(A) are real and different in modulus and have multiplicity
one. By [BDP], there is a residual subset of Diff1(M) of diffeomorphisms f such that, for every
non-trivial homoclinic class H(P, f) of f , the saddles of H(P, f) whose eigenvalues are real form
a dense subset of H(P, f).

Using the previous result and the transitivity of a homoclinic class, one proves the following:
Consider a diffeomorphism f with a co-index one cycle associated to saddles P and Q such
that the homoclinic class of P is non-trivial. Then there is a new heterodimensional cycle
associated to Q and to some saddle P ′ in the homoclinic class of P having at least one real
central eigenvalue (the one corresponding to P ′). See Theorem 5.3 in Section 5.1. In particular,
this theorem implies that if the homoclinic classes of P and Q are both non-trivial, one can
generate a new cycle associated to saddles (in the homoclinic classes of P and Q) with real
eigenvalues. In this way, one gets a cycle with real central eigenvalues.
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In view of Theorem 5.3, to prove Theorem 5.1 it is enough to see that given any diffeomor-
phism with a co-index one cycle there are two possibilities: either the cycle has real central
eigenvalues (in this case there is nothing to do) or the diffeomorphism is approximated by dif-
feomorphisms with co-index one cycles associated to a pair of saddles whose homoclinic classes
are both non-trivial.

Consider a diffeomorphism f with a co-index one cycle as above and a pair of central eigen-
values λ and β of the cycle (λ is a contracting eigenvalue of Dfπ(P )(P ) and β is an expanding
eigenvalue of Dfπ(Q)(Q)). After a perturbation, we can assume that these central eigenvalues
have multiplicity one and the only eigenvalues of the same modulus as λ and β are λ̄ and β̄
(assuming that they are non-real). There are three cases: (i) the central eigenvalues λ and
β are both non-real, (ii) there is exactly one non-real central eigenvalue, and (iii) the central
eigenvalues are both real, this is the case of central real eigenvalues. Thus it remains to consider
cases (i) and (ii).

First, one proves that if a saddle in the cycle, say the saddle Q, has a pair of conjugate
non-real central eigenvalues then there are diffeomorphisms g close to f with cycles associated
to P and Q such that the homoclinic class H(P, g) of P is non-trivial, see Proposition 5.7 in
Section 5.2. The proof of this result is relatively easy and only involves linearizations and the
assumption that the non-real central eigenvalue of the saddle Q has irrational argument. These
assumptions are obtained after perturbations.

The previous result (Proposition 5.7) implies that if both saddles in the cycle have non-real
central eigenvalues, we can assume, after a perturbation, that the homoclinic classes of both
saddles P and Q are non-trivial. Hence, applying Theorem 5.3, one gets co-index one cycles
with real central eigenvalues, see Lemma 5.9 in Section 5.3.

Finally, in Section 5.4 we study the remainder case, when only one central eigenvalue of the
cycle is non-real (say the central eigenvalue of P ). Thus, by Proposition 5.7, we can assume
that the homoclinic class of Q is non-trivial. Hence the stable manifold of Q accumulates to the
heteroclinic intersection of W u(P ) ∩W s(Q). The cycle configuration also implies that stable
manifold of P also accumulates to the heteroclinic intersection. These two facts allow us to
perform a perturbation, destroying the initial cycle, which simultaneously generates transverse
homoclinic points of P as well as a new quasi-transverse intersection between W u(P ) andW s(Q),
see Lemma 5.10. Thus we get a new cycle associated to two saddles with non-trivial homoclinic
classes. Once more, using Theorem 5.3, we get co-index one cycles with real central eigenvalues.

This concludes the outline of the proof of Theorem 5.1: every diffeomorphism with a co-index
one cycle is C1-approximated by diffeomorphisms with cycles with real eigenvalues.

Standing notation: Throughout this paper we use the following notations.

• Given a periodic point P of a diffeomorphism f we denote by π(P ) the period of P .

• If P is hyperbolic, there is defined its continuation for every diffeomorphisms g close to f .
We denote such a continuation by Pg.

• The perturbations we consider are always arbitrarily small. Thus the sentence there is a
C1-perturbation g of f such that means there is g arbitrarily C1-close to f such that.
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3 Co-index one cycles with real central eigenvalues

The goal of this section is to prove Theorem 3.3. We begin this section with two definitions.

Definition 3.1 (Central eigenvalues of a co-index one cycle). Let f be a diffeomorphism with a
co-index one cycle associated to the saddles P and Q (of periods π(P ) and π(Q)). Let λ1, . . . , λn

be the eigenvalues of Dfπ(P )(P ) enumerated with multiplicity, where |λi| ≤ |λi+1| (n is the
dimension of the ambient manifold). Similarly, β1, . . . , βn, |βi| ≤ |βi+1|, are the eigenvalues
of Dfπ(Q)(Q). Suppose that the stable manifolds of P and Q have dimensions s + 1 and s,
respectively.

• An eigenvalue λi of Dfπ(P )(P ) is a central eigenvalue of the cycle (associated to P ) if
|λi| = |λs+1| < 1. Similarly, an eigenvalue βj of Dfπ(Q)(Q) is a central eigenvalue of the
cycle associated to Q if |βj | = |βs+1| > 1.

• The central eigenvalue of the cycle associated to P (resp., Q) is real if |λs+1| > |λs| (resp.,
|βs+1| < |βs+2|). In this case, we write λs+1 = λc (resp., βs+1 = βc).

• The cycle has real central eigenvalues if the central eigenvalues associated to P and Q are
both real.

Consider a diffeomorphism f with a co-index one cycle with real central eigenvalues. The
following properties hold:

• There is a (unique) Df -invariant dominated splitting4 defined on the union of the orbits
OP of P and OQ of Q,

TAM = Ess
A ⊕ Ec

A ⊕ Euu
A , A ∈ OP ∪ OQ.

such that dimEss
A = s, dimEc

A = 1, and dimEuu
A = u, where u is the index of P .

• The central eigenvalues λc and βc of the cycle are the eigenvalues of Dfπ(P )(P ) and
Dfπ(Q)(Q) corresponding to the (central) bundle Ec, respectively.

• If A ∈ OP then Es
A = Ess

A ⊕ Ec
A and if A ∈ OQ then Eu

A = Ec
A ⊕ Euu

A .

We say that the splitting Ess ⊕ Ec ⊕ Euu is the partially hyperbolic splitting of the cycle.

Definition 3.2 (Strong homoclinic intersections). Let P be a periodic point of period π(P ) of
a diffeomorphism f such that there is a Df -invariant partially hyperbolic splitting defined over
the orbit OP of P ,

TO(P )M = Ess ⊕ Ec ⊕ Euu,

4A Df-invariant splitting E⊕F of TM over an f -invariant set Λ is dominated if the fibers of the bundles have
constant dimension and there are a metric || · || and a natural number n ∈ N such that

||Df
n(x)E|| · ||Df

−n(x)F || <
1

2
, for all x ∈ Λ.

For splittings with three bundles E ⊕F ⊕G, domination means that the splittings (E ⊕F )⊕G and E ⊕ (F ⊕G)
are both dominated. A dominated splitting is partially hyperbolic if at least one of the bundles is uniformly
hyperbolic. We consider partially hyperbolic splittings E ⊕ F ⊕ G such that E is uniformly contracting and G is
uniformly expanding.
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such that Ec has dimension one, every eigenvalue λ of Dfπ(P )(P ) corresponding to Ess satisfies
|λ| < 1, and every eigenvalue β of Dfπ(P )(P ) corresponding to Euu satisfies |β| > 1 (i.e., Ess

is uniformly contracting and Euu is uniformly expanding).
Let W ss(P, f) be the orbit of the unique fπ(P )-invariant manifold tangent to Ess(P ). Simi-

larly, W uu(P, f) is the orbit of the unique fπ(P )-invariant manifold tangent to Euu(P )5

The periodic point P has a strong homoclinic intersection if there is X ∈ W ss(P, f) ∩
W uu(P, f), where X 6= P . We say that the point X is a strong homoclinic point of P . The
point X is quasi-transverse if TXW

ss(P, f) + TXW
uu(P, f) = TXW

ss(P, f) ⊕ TXW
uu(P, f).

In this definition, the partial hyperbolicity implies that if λc is the eigenvalue of Dfπ(P )(P )
corresponding to Ec then |λ| < |λc| < |β|, for every eigenvalue λ corresponding to Ess and any
eigenvalue β corresponding to Euu. Note that if the the periodic point P is hyperbolic then
its index is either dim(Euu) or dim(Euu) + 1. In the first case, W u(P, f) = W uu(P, f) and
W ss(P, f) ⊂W s(P, f). In the second one, W s(P, f) = W ss(P, f) and W uu(P, f) ⊂W u(P, f).

As Ec has dimension one, if the periodic point P is not hyperbolic, either λc = 1 or λc = −1.
In the first case, we say that P is a saddle-node, in the second one P is a flip.

The goal of this section is to prove:

Theorem 3.3. Let f be a diffeomorphism with a co-index one cycle with real central eigenvalues.
Then there are diffeomorphisms arbitrarily C1-close to f having strong homoclinic intersections
associated to saddle-nodes or to flips.

The proof of this theorem has two steps. The first step (which is the main one) is the
proposition below:

Proposition 3.4. Let f be a diffeomorphism having a co-index one cycle with real central
eigenvalues. Then there are a constant C > 1 and a sequence fn of diffeomorphisms, fn → f
(in the C1-topology), such that every fn has a periodic point An such that:

• The orbit of An has a partially hyperbolic splitting Ess ⊕ Ec ⊕ Euu, where Ec is one-
dimensional, Ess is uniformly contracting, and Euu is uniformly expanding.

• The sequence of periods π(An) of An satisfies π(An) → ∞ as n→ ∞.

• The central eigenvalue λc(An) of Df
π(An)
n corresponding to Ec satisfies |λc(An)| ∈ [1/C,C].

• The periodic point An has a quasi-transverse strong homoclinic intersection.

After proving Proposition 3.4, for large n, one performs a C1-perturbation of the diffeomor-
phism fn along the orbit of An in order to transform An into a saddle-node or a flip. This
perturbation preserves the strong homoclinic intersection. This perturbation roughly is a com-
position with a homothety of radius (|λc(An)|)1/π(An) along the orbit of An.

In this way, one gets a central eigenvalue of modulus one. Note that the sequence (|λc(An)|)
is bounded and π(An) → ∞, thus (|λc(An)|)1/π(An) → 1 as n → ∞. Hence the size of the
perturbation can be taken arbitrarily small. This gives a sequence of diffeomorphisms gn → f (in
the C1-topology), such that every gn has a periodic saddle-node or flip with a strong homoclinic
intersection. This concludes the proof of Theorem 3.3.

To prove Proposition 3.4 we need the following preparatory ingredients and results:

5The existence and uniqueness of W ss(P, f) and W uu(P, f) follows from [HPS]. These manifolds are the strong

stable and strong unstable manifolds of P .
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• Simple cycles (see Section 3.1). We prove in Proposition 3.6 that, after a perturbation,
every co-index one cycle with real central eigenvalues has local coordinates where the
dynamics of the cycle is affine and partially hyperbolic (with one-dimensional central di-
rection). Hence simple cycles have an affine structure associated to its partially hyperbolic
splitting. We consider the unfolding of simple cycles preserving such an affine structure.

• Model unfolding families (see Section 3.2). We construct three-parameter families of affine
maps defined on cubes of R

n satisfying the following key property: for every unfolding
of a simple cycle preserving its affine structure there is a model unfolding family which
describes such an unfolding of the cycle (and vice-versa). See Remark 3.7.

• One-dimensional reductions (see Section 3.3). The model families preserve a co-dimension
one bundle (corresponding to the sum of the strong stable and the strong unstable bun-
dles). Then one can consider the one-dimensional quotient dynamics describing the central
dynamics. This leads to systems of iterated functions defined on the central direction. In
Section 3.4, for these one-dimensional reductions, we obtain periodic points with two dif-
ferent periodic itineraries.

• From one-dimensional reductions to model unfolding families. We finish the proof of Propo-
sition 3.4 in Section 3.5. We see how the existence (for the one-dimensional reductions) of
periodic points with two different itineraries is translated to the existence of periodic points
with quasi-transverse strong homoclinic intersections for the model unfolding family.

3.1 Simple cycles

In this section, we consider a diffeomorphism f with a co-index one cycle with real central
eigenvalues. We obtain, after a C1-perturbation, a new co-index one cycle (associated to the
same initial saddles, thus with real central eigenvalues) and local coordinates at these saddles
such that the dynamics in a neighborhood of the cycle is affine. Let us explain this point more
precisely. We first describe simple cycles in non-technical and non-formal terms. For that we
begin by introducing some notations.

Consider a cycle associated to saddles P and Q, say with index (P ) + 1 = index (Q). We
fix small neighborhoods UP and UQ of the orbits of P and Q and heteroclinic points X ∈
W s(P, f)∩W u(Q, f) and Y ∈W u(P, f) ∩W s(Q, f). After a perturbation, we can assume that
the intersection between W s(P, f) and W u(Q, f) at X is transverse and that the intersection
between W u(P, f) and W s(Q, f) at Y is quasi-transverse. Then there are neighborhoods UX of
X and UY of Y and natural numbers n and m such that

fn(UX) ⊂ UP , f−n(UX) ⊂ UQ, fm(UY ) ⊂ UQ, and f−m(UY ) ⊂ UP .

We say that

• the set V = UP ∪ UQ ∪
(

∪n
i=−nf

i(UX)
)

∪
(

∪m
i=−mf

i(UY )
)

is a neighborhood of the cycle,

• 2n and 2m are transition times from UQ to UP and from UP to UQ, respectively, and

• the maps T1 = f2 m and T2 = f2 n are transition maps from UP to UQ and from UQ to UP

(these maps are defined on small neighborhoods ŨY of f−n(Y ) and ŨX of f−m(X)), see
Figure 3.
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Our goal is to prove that, after a C1-perturbation, we can choose the neighborhoods UP ,
UQ, UX , and UY and the numbers n and m such that there are local coordinates at P and Q
such that (in these coordinates),

• fπ(P ) and fπ(Q) are linear maps, and

• the transitions T1 = f2m : ŨY → UQ and T2 = f2n : ŨX → UP are affine maps.

If the conditions above are satisfied, we say that the cycle is a simple cycle. The precise (some-
what technical) definition is given below. The elements in the definition are depicted in Figure 3.

Definition 3.5 (Simple cycle). A co-index one cycle of a diffeomorphism f associated to periodic
saddles P and Q is simple if it satisfies conditions (S1)–(S4) below.

S1) The cycle has real central eigenvalues.

S2) There are local charts UP and UQ centered at P and Q where the expressions of fπ(P )

and fπ(Q) are linear. Moreover, there is a partially hyperbolic splitting Ess ⊕ Ec ⊕ Euu,
defined over the orbits of P and Q, which in these local charts is of the form

Ess = R
s × {(0, 0u)}, Ec = {0s} × R × {0u}, Euu = {(0s, 0)} × R

u,

where s and u are the dimensions of W s(Q, f) and W u(P, f), respectively.

We extend the splitting Ess⊕Ec⊕Euu to the neighborhood UP ∪UQ as constant bundles.

S3) There is a quasi-transverse heteroclinic point YP ∈W s(Q, f) ∩W u(P, f) in the chart UP ,

dim(TYP
W s(Q, f) + TYP

W u(P, f)) = n− 1,

such that (in these local coordinates):

1. The point YP is of the form YP = (0s, 0, au), where au ∈ R
u. Moreover, there is a

neighborhood Cs(YP ) of YP in W s(Q, f) ∩ UP contained in R
s × {(0, au)}.

2. There is ℓ > 0 such that YQ = f ℓ(YP ) belongs to the chart UQ around Q and
YQ = (as, 0, 0u), where as ∈ R

s. Moreover, there is a neighborhood Cu(YQ) of YQ in
W u(P, f) ∩ UQ contained in {(as, 0)} × R

u.

3. There is a neighborhood UYP
of YP , UYP

⊂ UP , such that f ℓ(UYP
) ⊂ UQ and

T1 = f ℓ : UYP
→ f ℓ(UYP

)

is an affine map preserving the splitting Ess ⊕ Ec ⊕ Euu. Moreover, the map T1 is
uniformly contracting in the Ess direction, uniformly expanding in the Euu direction,
and an isometry in the central direction Ec.

S4) There is a point XQ ∈ UQ in the transverse intersection W u(Q, f) ⋔ W s(P, f) such that
(in these local coordinates):

1. The point XQ is of the form XQ = (0s, bQ, 0
u), with bQ > 0. Moreover, there is ε > 0

such that the segment I = {0s} × [bQ − ε, bQ + ε] × {0u} containing XQ is contained
in W u(Q, f) ⋔ W s(P, f).
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2. There is r > 0 such that XP = f r(XQ) is in the chart UP and XP = (0s, bP , 0
u),

where bP < 0. Moreover, the curve J = f r(I) satisfies

J = f r(I) = {0s} × [bP − ε, bP + ε] × {0u} ⊂ UP .

3. There is a neighborhood UXQ
of XQ, UXQ

⊂ UQ, such that f r(UXQ
) ⊂ UP and

T2 = f r : UXQ
→ f r(UXQ

)

is an affine map preserving the splitting Ess ⊕ Ec ⊕ Euu. Moreover, the map T2 is
uniformly contracting in the Ess direction, uniformly expanding in the Euu direction,
and an isometry in the central direction Ec.

We call the affine maps T1 and T2 the transitions of the simple heterodimensional cycle.

This definition means the dynamics in a neighborhood of a simple cycle is given by linear
maps (the dynamics nearby the saddles), by affine maps (the dynamics corresponding to the
transitions), and by suitable compositions of these maps.

YP

XP

YQ

XQ

Ess

Ess

Euu Euu

Ec
Ec

UYP
UXQ

Q

I J

P

T1

T2

Figure 3: Elements of a simple cycle

Proposition 3.6. Let f be a diffeomorphisms having a co-index one cycle with real central
eigenvalues associated to the saddles P and Q. Then any C1-neighborhood U of f contains
diffeomorphisms g with simple cycles associated to P and Q.

Proof: This proposition is almost the same as [BDPR, Lemma 3.2], the only novelty here is
that we require the transition maps T1 and T2 to be isometries in the central direction. So we
just prove this step and refer to [BDPR, Lemma 3.2] for details.

Using [BDPR, Lemma 3.2], we can assume (after a perturbation) that there are defined maps
T1 and T2 preserving the partially hyperbolic splitting Ess ⊕ Ec ⊕ Euu. Let A and B be the
derivatives of fπ(P ) at P and of fπ(Q) at Q in the local charts. Note that one can replace T1 by
Am1 ◦ T1 ◦ B

m2 , for any positive m1 and m2. This corresponds to replace the quasi-transverse
heteroclinic points YP and YQ by f−m1 π(P )(YP ) and fm2 π(Q)(YQ), respectively, thus replacing
the transition time ℓ by a larger number.

We can choose m1 and m2 arbitrarily large in such a way the modulus of the derivative of T1

in the central direction remains (upper and lower) bounded. Now, after a C1-perturbation of f in
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a small neighborhood of the segment of orbit YP , f(YP ), . . . , f ℓ(YP ) = YQ (a small multiplication
in the central direction), we can assume that the modulus of the derivative of T1 in the central
direction is exactly one. Thus, after a new perturbation, we have that the action of T1 in the
central direction is an isometry.

The proof for the transition T2 is completely similar.
Finally, the expansion (resp., contraction) of T1 and T2 in the Euu (resp., Ess) follows

observing that A and B are expanding (resp., contracting) in these directions, so it is enough to
take large ℓ and r (i.e., to increase m1 and m2 above). This completes the sketch of the proof
of the proposition. 2

3.2 Model unfolding families

By Proposition 3.6, every co-index one cycle with real central eigenvalues is approximated by
simple cycles. The key property is that the dynamics in a neighborhood of these cycles is
affine. We now focus on simple cycles and describe the dynamics of nice perturbations of them:
the unfolding of simple cycles preserving their affine structures. This leads us to consider 3-
parameter families of model unfolding maps F±,±

λ,β,t, where the parameters λ ∈ (0, 1) and β ∈
(1,∞) correspond to the central eigenvalues of the cycle and the parameter t ∈ R corresponds
to the unfolding of the cycle. The parameters ± describe the orientation of the transitions T1

and T2 of the simple cycle in the central direction.

We now define model unfolding families. Consider two copies ∆P and ∆Q of the unitary
cube [−1, 1]s × [−1, 1] × [−1, 1]u and sub-cubes ΣP ⊂ ∆P and ΣQ ⊂ ∆Q, defined as follows.
Consider small δ > 0 and points bQ ∈ (0, 1) and au

P ∈ (Ru \ {0u}) such that

[bQ − δ, bQ + δ] ⊂ (0, 1) and [au
P − δ, au

P + δ]u ⊂ (−1, 1)u \ {0u},

where [au
P − δ, au

P + δ]u is the u-cube of edges of length 2 δ centered at au
P (we use this notation

from now on). Then

• ΣP is the cube [−1, 1]s × [−δ, δ] × [au
P − δ, au

P + δ]u contained in ∆P ;

• ΣQ is the cube [−1, 1]s × [bQ − δ, bQ + δ] × [−1, 1]u contained in ∆Q.

We also fix linear maps

• As, Bs, T s
1 , T

s
2 : R

s → R
s, which are contractions (i.e., their norms are strictly less than

one);

• Au, Bu, T u
1 , T

u
2 : R

u → R
u, which are expansions (i.e., their inverse maps are contractions).

We now define a family of maps on the disjoint union ∆P
∐

∆Q (the resulting maps will be the
model ones) as follows:

1. Given λ ∈ (0, 1) and β > 1, consider the linear maps

Aλ,Bβ, T̃
+
1 , T̃ −

1 , T̃ +
2 , T̃ −

2 : R
n → R

n, n = s+ u+ 1,

defined by

• Aλ(xs, xc, xu) = (As(xs), λ xc, Au(xu));

18



• Bβ(xs, xc, xu) = (Bs(xs), β xc, Bu(xu));

• T̃ ±
i (xs, xc, xu) = (T s

i (xs),±xc, T u
i (xu)); i = 1, 2.

2. Fix bP ∈ (−1, 0) with [bP − δ, bP + δ] ⊂ (−1, 0) and let T ±
2 be the affine map defined by

T ±
2 (xs, xc, xu) = T̃ ±

2 (xs, xc, xu) + (0s,−bQ + bP , 0
u).

Note that T ±
2 (0s, bQ, 0

u) = (0s, bP , 0
u).

3. Take as
Q ∈ R

s \{0s} such that [as
Q − δ, as

Q + δ]s ⊂ [−1, 1]s \{0s} (as above, [as
Q − δ, as

Q + δ]s

is the s-cube of edges of length 2 δ centered at as
Q). For small t ∈ R, let T ±

1,t be the affine
map defined by

T ±
1,t(x

s, xc, xu) = T̃ ±
1 (xs, xc, xu) + (as

Q, t,−T
u
1 (au

P )).

Note that, for t = 0, T ±
1 = T ±

1,0 and T ±
1,t(0

s, 0, au
P ) = (as

Q, t, 0
u).

The map T ±
1,t is a perturbation of T ±

1 obtained considering a translation of size t in the
central direction.

Bβ Aλ

au
p

∆Q

∆P
ΣQ

ΣP

T ±
1,t

T ±
2

R
u

R
u

R R

Figure 4: Model maps

Given λ ∈ (0, 1), β > 1, and small t ∈ R, we consider the map F±,±
λ,β,t defined on a subset

SQ,P,t of ∆Q
∐

∆P ,

F±,±
λ,β,t : SQ,P,t → ∆Q

∐

∆P ,

obtained as follows:

• if x ∈ ∆P \ ΣP and Aλ(x) ∈ ∆P , then F±,±
λ,β,t(x) = Aλ(x) ∈ ∆P ;

• if x ∈ ∆Q \ ΣQ and Bβ(x) ∈ ∆Q, then F±,±
λ,β,t(x) = Bβ(x) ∈ ∆Q;

• if x ∈ ΣP and T ±
1,t(x) ∈ ∆Q, then F±,±

λ,β,t(x) = T ±
1,t(x) ∈ ∆Q;

• if x ∈ ΣQ and T ±
2 (x) ∈ ∆P , then F±,±

λ,β,t(x) = T ±
2 (x) ∈ ∆P .
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The set SQ,P,t is the maximal subset of ∆Q
∐

∆P where F±,±
λ,β,t can be defined according to the

rules above. Note that the map F±,±
λ,β,t is bi-valuated in some points.

For a fixed λ ∈ (0, 1) and β > 1, we say that F±,±
λ,β,0 is a model map and the 3-parameter

family F±,±
λ,β,t is a model unfolding family. The maps T ±

1 and T ±
2 are the transitions of the model

family. Finally, T ±
1,t is the unfolding map.

Standing notation: Here F+,+
λ,β,t means that we consider the maps T +

1,t and T +
2 , for F−,+

λ,β,t we

choose T −
1,t and T +

2 , for F+,−
λ,β,t we take T +

1,t and T −
2 , and F−,−

λ,β,t means that we consider T −
1,t and

T −
2 . As the role of ± is rather unessential in this section, for notational simplicity, we will omit

these scripts. The first script ±, relative to T ±
1,t, will play an important role in Section 3.4. The

effect of these scripts only affect the orientation of central dynamics: for the choices (++) and
(−−) provide isometries preserving the orientation (the identity), and the choices (+−) and
(−+) give isometries reversing the orientation (minus the identity).

Remark 3.7 (Model unfolding families and simple cycles).

• We denote by P the point (0s, 0, 0u) ∈ ∆P and by Q the point (0s, 0, 0u) ∈ ∆Q. These
points are saddles of Fλ,β,t of indices u and u + 1, respectively. The map Fλ,β,0 has a
co-index one cycle with real central eigenvalues associated to P and Q: it is enough to
note that:

(0s, 0, au
P ), (as

Q, 0, 0
u) ∈W u(P,Fλ,β,0) ∩W

s(Q,Fλ,β,0)

and
(0s, bQ, 0

u), (0s, bP , 0
u) ∈W s(P,Fλ,β,0) ∩W

u(Q,Fλ,β,0).

Also note that the intersections at (0s, 0, au
P ) and (as

Q, 0, 0
u) are quasi-transverse and the

intersections at (0s, bQ, 0
u) and (0s, bP , 0

u) are transverse.

• Observe that if f is a diffeomorphism with a simple cycle then there is a model map Fλ,β,0

such that the dynamics of f in a neighborhood of the cycle is, after a finite time re-scaling,
the one of Fλ,β,0. More precisely, there are a model map Fλ,β,0, local coordinates around
the saddles P and Q in the cycle, and heteroclinic points XP ,XQ, YP and YQ such that:

i) The point XP corresponds to the point (0s, 0, au
P ) of the model, XQ corresponds to

(as
Q, 0, 0

u), YP corresponds to (0s, bP , 0
u), and YQ corresponds to (0s, bq, 0

u).

ii) The transitions T1 and T2 of the simple cycle are the transitions T1 and T2 of the
model map.

iii) Suppose that the central eigenvalues of the simple cycle are λ and β. Assume first that
these eigenvalues are both positive. Then the dynamics of fπ(P ) in a neighborhood of
the saddle P is the one of the model map in the cube ∆P , for some linear map Aλ (for
appropriate As and Au). Similarly, the dynamics of fπ(Q) in a neighborhood of Q is
the one of the model map in the cube ∆Q, for some linear map Bβ (for appropriate Bs

and Bu). If the central eigenvalue λ is negative, we consider f2 π(P ) and the dynamics
is given by some Aλ2. Analogously, if β < −1, we consider f2π(Q) and the dynamics
is given by some Bβ2.

In this case, we say that Fλ,β,0 is a model map for the simple cycle of f . If λ < 0 (resp.
β < 0) we replace λ by λ2 (resp. β2).
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• Suppose that the diffeomorphism f has a simple cycle and that Fλ,β,0 is a model map
of it. Then, for every λ′ and β′ close to λ and β and for every t close to 0, there is a
diffeomorphism g, which is C1-close to f , such that the dynamics of g in a neighborhood
of the cycle of f (up to the same re-scaling as the one of f) is given by Fλ′,β′,t.

The main result about model families is the following:

Proposition 3.8. Let F±,±
λ,β,0 be a model map. Then there are a constant C > 0 and sequences

λn → λ, βn → β, and tn → 0, such that, for every n, the map

Fn = F±,±
λn,βn,tn

has a periodic point An of period mn, mn → ∞, such that

• the central eigenvalue λc(An) of DFmn
n (An) satisfies 1/C < |λc(An)| < C,

• the periodic point An has a quasi-transverse strong homoclinic intersection.

In view of the previous comments, this proposition implies Proposition 3.4.
We will prove Proposition 3.8 in Section 3.4. The proof involves a one-dimensional reduction

associated to model families. Note that every model unfolding family Fλ,β,t preserves the foliation
Fsu generated by the hyperplane Ess ⊕ Euu (indeed the model family preserves any foliation
tangent to Ess, or to Ec, or to Euu, or tangent to the sum of any pair of these bundles). This
fact allows us to consider the quotient dynamics of Fλ,β,t by the leaves of Fsu, which defines a
one-dimensional dynamics. The study of this one-dimensional reduction and its dynamics is the
goal of the next section.

3.3 One-dimensional dynamics associated to model families

Let IP and IQ be two copies of [−1, 1]. Denote by P and Q, respectively, the point 0 in the
segments IP and IQ. For any λ ∈ (0, 1), β > 1, consider the linear maps

fλ : IP → R, fλ(x) = λx and gβ : IQ → R, gβ(x) = β x.

Consider bQ ∈ (0, 1), bP ∈ (−1, 0), and δ > 0 as in Section 3.2. Denote by JQ the segment
[bQ − δ, bQ + δ] in IQ and by JP the segment [−δ,+δ] in IP . Finally, consider the isometries θ±2
and θ±1,t defined by

θ±2 : JQ → IP , θ±2 (bQ + x) = ±x+ bP

and
θ±1,t : JP → IQ, θ±1,t(x) = ±x+ t.

Given a model unfolding family F±,±
λ,β,t, the family of maps (gn

β ◦ θ±1,t ◦ f
m
λ ◦ θ±2 )n,m≥0 is the

one-dimensional family associated to F±,±
λ,β,t. Note that each map (gn

β ◦ θ±1,t ◦ f
m
λ ◦ θ±2 ) is defined

on a sub-interval (this interval may be empty) of JQ.
The goal of this section is to prove the following proposition:

Proposition 3.9. Let F±,±
λ,β,t be a model unfolding family. Then there is N > 0 with the following

property: For every pair of natural numbers n and m, n,m ≥ N , any parameter t, and any point
a ∈ JQ satisfying

gn
β ◦ θ±1,t ◦ f

m
λ ◦ θ±2 (a) = a
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Figure 5: One-dimensional families

there is a periodic point Am,n ∈ ΣQ of F±,±
λ,β,t of period m+ n+ 2 of the form

Am,n = (as, a, au)

such that:

• The central eigenvalue λc(Am,n) of D(F±,±
λ,β,t)

m+n+2(Am,n) is ±λm βn (where ± is the prod-

uct of the signals associated to the maps θ±1,t and θ±2 ).

• Suppose, in addition, that there are m′, n′ ∈ N larger than N such that (m′, n′) 6= (m,n)
and

gn′

β ◦ θ±1,t ◦ f
m′

λ ◦ θ±2 (a) = a.

Then there is a point B, B 6= Am,n, B ∈ W uu(Am,n, F
±,±
λ,β,t) ∩W

ss(Am,n, F
±,±
λ,β,t) (i.e., the

periodic point Am,n has a strong homoclinic intersection). Moreover, this intersection is
quasi-transverse.

By Proposition 3.9, to prove Proposition 3.8 (thus Proposition 3.4) it is enough to see that
given any simple cycle and a model unfolding family F±,±

λ,β,t of it, there are a point a ∈ JQ and
sequences of parameters tk → 0, of eigenvalues λk → λ and βk → β, and of natural numbers
nk,mk, n

′
k,m

′
k → ∞, (mk, nk) 6= (m′

k, n
′
k), such that

gnk

βk
◦ θ±1,tk

◦ fmk

λk
◦ θ±2 (a) = a and g

n′

k

βk
◦ θ±1,tk

◦ f
m′

k

λk
◦ θ±2 (a) = a.

We now prove Proposition 3.9

Proof: Recall that the map Fλ,β,t (we omit the superscripts ±) coincides with the linear maps
Aλ = (As, fλ, A

u) in ∆P ∩ A−1
λ (∆P ) and Bβ = (Bs, gβ , B

u) in ∆Q ∩ B−1
β (∆Q). Since As and

(Bu)−1 are contractions, there is large N such that

‖(Bu)−N‖ < δ and ‖(As)N‖ < δ,

where δ is as in the definition of the model family.
We say that a subset Cv of ∆P ∪∆Q is a vertical cylinder at the point X = (xs, x, xu) ∈ Cv

if there is some compact set Ks ⊂ [−1, 1]s such that Cv = Ks × {x} × [−1, 1]u. Similarly, a set
Ch ⊂ ∆P ∪ ∆Q is a horizontal cylinder at X ∈ Ch if there is some compact set Ku ⊂ [−1, 1]u

such that Ch = [−1, 1]s × {x} ×Ku.
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Lemma 3.10. Let a ∈ JQ such that there are m,n > N such that the point

b = gn
β ◦ θ±1,t ◦ f

m
λ ◦ θ±2 (a) ∈ IQ

is well defined. Then there are points A ∈ ΣQ and B ∈ ΣQ of the form A = (as, a, au) and
B = (bs, b, bu) and a horizontal cylinder Ch at A such that:

• The map (Fλ,β,t)
n+m+2 is defined (and continuous) on Ch, and

• (Fλ,β,t)
n+m+2(Ch) is a vertical cylinder Cv at B.

In fact, the orbit of the point A in the lemma has the following itinerary:

• A ∈ ΣQ and Fλ,β,t(A) = T2(A) ∈ ∆P ,

• F i+1
λ,β,t(A) = (Aλ)i ◦ T2(A) ∈ ∆P , for all i = 1, . . . ,m, and Fm+1

λ,β,t (A) ∈ ΣP ,

• Fm+2
λ,β,t (A) = T1,t ◦ (Aλ)m ◦ T2(A) ∈ ∆Q,

• F j+m+2
λ,β,t (A) = (Bβ)j ◦ T1,t ◦ (Aλ)m ◦ T2(A) ∈ ∆Q, for all j = 1, . . . , n.

Proof: Consider the (s+u)−disk D = [−1, 1]s ×{a}× [−1, 1]u. By the choice of N , as m > N ,
and since (T u

2 )−1, T s
2 , (Au)−1, and As are linear contractions, the map

(Fλ,β,t)
1+m = Am

λ ◦ T2

is defined on a horizontal cylinder H at some point A0 of the form A0 = (as
0, a, a

u
0) whose image

is a vertical cylinder Vm+1 of the form

Vm+1 = (Fλ,β,t)
1+m(H) = Ks

m+1 × {am+1} × [−1, 1]u,

where
am+1 = fm

λ ◦ θ2(a) and Ks
m+1 = (As)m ◦ T s

2 ([−1, 1]s).

Since m > N , one has that the set Ks
m+1 is contained in [−δ, δ]s. Therefore the intersection

V ′
m+1 = Vm+1 ∩ ΣP is of the form

V ′
m+1 = Ks

m+1 × {am+1} × [au
P − δ, au

P + δ]u.

Note that, by construction, the set (Fλ,β,t)
−(1+m)(V ′

m+1) is a horizontal cylinder H ′ ⊂ H at
some point A1 of the form (as

1, a, a
u
1 ) (in fact, we can take A0 = A1).

As T u
1 is a linear expansion, the set V ′

m+2 = T1,t(V
′
m+1) contains a set Vm+2 of the form

Vm+2 = T s
1 (Ks

m+1) × {am+2} × [−δ, δ]u, where am+2 = θ1,t(am+1).

By the choice of N and since n > N , the map (Fλ,β,t)
n = Bn

β is defined from a horizontal cylinder
Hn of the form

Hn = [−1, 1]s × {am+2} ×Ku
n ⊂ [−1, 1]s × {am+2} × [−δ, δ]u

onto a vertical cylinder at some point B = (bs, b, bu), where

b = gn
β(am+2) = gn

β (θ1,t(am+1)) = gn
β ◦ θ1,t ◦ f

m
λ ◦ θ2(a).
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Figure 6: Disks in the proof of Lemma 3.10 (projection along the R
s-direction)

Consider now the intersection

W = Hn ∩ Vm+2 = T s
1 (Ks

m+1) × {am+2} ×Ku
n .

Finally, by construction, (Fλ,β,t)
n(W ) is a vertical cylinder Cv(B) at the point B = (bs, b, bu) and

(Fλ,β,t)
−(m+2)(W ) is an horizontal cylinder Ch(A) at some point A of the form A = (as, a, au).

This concludes the proof of the lemma. 2

Scholium 3.11. Under the hypothesis of Lemma 3.10 and assuming that a = b, there is a
horizontal cylinder Ch(A) at A such that Cv(A) = (Fλ,β,t)

(n+m+2)(Ch(A)) is a vertical cylinder
at A crossing Ch(A) in a Markovian way.

We are now ready to finish the proof of Proposition 3.9. By Scholium 3.11, if a = b, then
there is a horizontal cylinder Ch(A) at A such that Cv(A) = (Fλ,β,t)

(n+m+2)(Ch(A)) is a vertical
cylinder at A crossing Ch(A) in a Markovian way. Hence (Fλ,β,t)

m+n+2 has a unique periodic
point Am,n = (as, a, au) ∈ Cv(A) ∩Cu(A).

Since the transitions maps T 1, t and T2 are isometries in the (invariant) central bundle Ec,
one has that the central eigenvalue of D(Fλ,β,t)

n+m+2(Am,n) is ±λmβn. This concludes the proof
of the first part of the corollary.

To prove the second part of the corollary, note first that the vertical disk {(as, a)}× [−1, 1]u

is contained in the unstable manifold of Am,n: by construction, Lemma 3.10 implies that
(Fλ,β,t)

−(n+m+2) maps {(as, a)} × [−1, 1]u inside itself in a (linear) contracting way. Similarly,
(Fλ,β,t)

n+m+2 maps the horizontal disk [−1, 1]s × {(a, au)} inside itself as a linear contraction.
Thus the disk [−1, 1]s × {(a, au)} is contained in the stable manifold of Am,n.

Take now the integers m′, n′ ∈ N in the second part of the corollary. The first part of the
corollary gives a periodic pointAm′,n′ of Fλ,β,t of periodm′+n′+2 of the formAm′,n′ = (ās, a, āu).
By construction, Am′,n′ 6= Am,n. As a consequence, by the comments before, the horizontal and
the vertical disks through Am′,n′ intersect transversely (in a su-hyperplane R

s × {a} × R
u) the

vertical and the horizontal disks through Am,n, respectively,

({(as, a)} × [−1, 1]u) ∩ ([−1, 1]s × {(a, āu)) 6= ∅,
({(ās, a)} × [−1, 1]u) ∩ ([−1, 1]s × {(a, au)) 6= ∅.
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Figure 7: Strong homoclinic intersections

This implies that

W uu(Am,n, Fλ,β,t) ∩W
ss(Am′,n′ , Fλ,β,t) 6= ∅, W uu(Am′,n′ , Fλ,β,t) ∩W

ss(Am,n, Fλ,β,t) 6= ∅.

Thus there is a cycle between the strong stable and unstable manifolds of Am′,n′ and Am,n.
Moreover, these strong manifolds meet quasi-transversely. The λ-lemma now gives a point X 6=
Am,n in W uu(Am,n, Fλ,β,t) ∩W

ss(Am,n, Fλ,β,t). Moreover, this intersection is quasi-transverse.
See Figure 7. The proof of Proposition 3.9 is now complete. 2

3.4 Periodic points for one-dimensional maps associated to model families

In this section, we consider one-parameter families of maps of the form

gn
β ◦ θ±1,t ◦ f

m
λ ◦ θ±2 , n,m ≥ 0.

We prove that given an initial system (gn
β ◦θ±1,0 ◦f

m
λ ◦θ±2 )n,m≥0 there are λ′ and β′ close to λ and

β, t close to 0, and large n,m, n′,m′, (m,n) 6= (m′, n′), such that the maps gn
β′ ◦ θ

±
1,t ◦ f

m
λ′ ◦ θ

±
2

and gn′

β′ ◦ θ
±
1,t ◦ f

m′

λ′ ◦ θ±2 have a common fixed point a. Considering these maps as associated
one-dimensional maps of model unfolding families, one gets the assumptions of Proposition 3.9
(after some perturbation).

3.4.1 The orientation preserving case

In the section, we prove Proposition 3.8 when λ > 0, β > 0 and the transition T1 preserves the
orientation of the central bundle.

Lemma 3.12. For any ε > 0 and K > 0, there are β0 ∈ (β − ε, β + ε), λ0 ∈ (λ − ε, λ + ε),
t ∈ (0, ε), and natural numbers n,m, n′ larger than K such that:

1. n < n′,

2. λm+1
0 bP + t = β−n

0 bQ, and

3. λm
0 bP + t = β−n′

0 bQ.
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Proof: We first claim that there are β1 arbitrarily close to β and n,m arbitrarily large such
that

λm (1 − λ) |bP | = β−n
1 bQ.

To prove this claim, one first takes β2 close to β such that log λ
log β2

is irrational. This allows us to
choose n,m arbitrarily large such that

λm (1 − λ) |bP |

β−n
2 bQ

is arbitrarily close to 1. A small modification of β2 gives the announced β1.

Next, we fix n′ > n such that β
−(n′−n)
3 is very small for all β3 close to β1. This allows to

choose β0 in a small neighborhood of β1 such that

λm (1 − λ) |bP | = β−n
0 (1 − β

−(n′−n)
0 ) bQ.

Take
t = β−n

0 bQ + λm+1 |bP | and λ0 = λ,

This choice of t immediately gives equality (2) in the lemma:

β−n
0 bQ = t− λm+1 |bP | = t+ λm+1 bP .

Similarly, the choices of n′ and t give

β−n′

0 bQ = β−n
0 bQ + λm+1 |bP | − λm |bP | = t+ λm bP .

This completes the proof of the lemma. 2

Lemma 3.12 can be written in terms of the one-dimensional maps associated to the model
unfolding maps F+,±

λ,β,t (where T1,t preserves the orientation).

Corollary 3.13. For any ε > 0 and K > 0, there are β0 ∈ (β − ε, β + ε), λ0 ∈ (λ − ε, λ + ε),
t ∈ (0, ε), and natural numbers n,m, n′ larger than K such that

• gn
β ◦ θ+

1,t ◦ f
m+1
λ ◦ θ±2 (bQ) = bQ,

• gn′

β ◦ θ±1,t ◦ f
m
λ ◦ θ±2 (bQ) = bQ, where n′ > n.

Proof: Note that θ±2 (bQ) = bP and θ+
1,t(x) = x + t. Thus the first equality in the corollary is

equivalent to

bQ = gn
β ◦ θ+

1,t ◦ f
m+1
λ ◦ θ±2 (bQ) = β−n (λm+1 bp + t), βn bQ = λm+1 bp + t.

This identity is exactly (2) in Lemma 3.12. The second identity in the corollary follows from
(3) and (1) in Lemma 3.12 arguing in the same way. 2
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3.4.2 The orientation reversing case

In the section, we prove Proposition 3.8 when λ > 0, β > 0, and the transition T1 reverses the
orientation of the central bundle. The proof follows essentially as the one in the orientation
preserving case. The main difficulty in this case is to get a result similar to Lemma 3.12.

Lemma 3.14. For any ε > 0 and K > 0, there are β0 ∈ (β − ε, β + ε), λ0 ∈ (λ− ε, λ+ ε), and
natural numbers n,m, n′,m′ larger than K such that:

1. n < n′ and m < m′,

2. λm
0 |bP | = β−n

0 bQ, and

3. λm′

0 |bP | = β−n′

0 bQ.

Proof: We first take a > 1 close to 1 (in particular, log a is much smaller than | log λ| and log β)
such that

r (log a) = log

(

bQ
|bP |

)

, for some r ∈ N.

We replace λ and β by some λ0 and β0, arbitrarily close to λ and β, of the form

log λ0 = −h log a and log β0 = k log a, h, k ∈ N.

We claim that one can take h, k ∈ N being relatively prime integers. Otherwise (i.e., if for this

choice of a, h and k are not relatively prime numbers), we replace a by a
1

k , h by hk + 1 and k

by k2. In this case, hk + 1 and k2 are relatively prime. Clearly, log a
1

k divides log
(

bQ

|bP |

)

, β0 is

not modified, and the new λ0 is close to λ (if k is big enough).
As h and k are relatively prime numbers, there are m0 and n0 with −m0 h + n0 k = 1. By

the definition of h and k, this choice of m0 and n0 gives λm0

0 βn0

0 = a. Hence, since log
(

bQ

|bP |

)

=

r log a, taking n = r n0 and m = rm0, one gets

λm
0 βn

0 =
bQ
|bP |

.

This gives (2) in the lemma.
To get (3) in the lemma, note that the ratio log λ0

log β0
is rational by construction, thus there are

n1,m1 > 0 such λm1

0 βn1

0 = 1. Taking m′ = m+m1 and n′ = n+ n1 one gets (3). Note that, by
construction, n′ > n and m′ > m. This completes the proof of the lemma. 2

As in the orientation preserving case, Lemma 3.14 can be formulated in terms of the one-
dimensional maps associated to the family F−,±

λ,β,t.

Corollary 3.15. For any ε > 0 and K > 0, there are β0 ∈ (β− ε, β+ ε) and λ0 ∈ (λ− ε, λ+ ε),
and natural numbers n,m, n′,m′ larger than K such that:

• n < n′ and m < m′,

• gn
β ◦ θ−1,0 ◦ f

m
λ ◦ θ±2 (bQ) = bQ,

• gn′

β ◦ θ−1,0 ◦ f
m′

λ ◦ θ±2 (bQ) = bQ.
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3.5 Strong homoclinic intersections for model unfolding maps

In this section, we prove Proposition 3.8. As in the previous section, there are two cases (the
preserving and reversing orientation cases).

3.5.1 The transition T1,t preserves the orientation of the central bundle

When the transition T1,t preserves the orientation, using Corollary 3.13 and Proposition 3.9, we
get strong homoclinic intersections associated to periodic points of the model unfolding family:

Proposition 3.16. For every model unfolding family (F+,±
λ,β,t) there is a constant C > 1 satisfying

the following property:
For any ε > 0 and K > 0, there are β0 ∈ (β − ε, β + ε), λ0 ∈ (λ − ε, λ + ε), t ∈ (0, ε), and

natural numbers n,m larger than K, such that F+,±
λ0,β0,t has a periodic point Am+1,n, of period

m+ n+ 3, such that

• the central eigenvalue λc(Am+1,n) of Am+1,n satisfies |λc(Am+1,n)| ∈ [1/C,C],

• the periodic point Am+1,n has a quasi-transverse strong homoclinic intersection.

Proof: Proposition 3.9 and Corollary 3.13 give λ0, β0, and t such that F+,±
λ0,β0,t has a periodic

point Am+1,n (of period n +m+ 3) with a quasi-transverse strong homoclinic intersection and
whose central eigenvalue has modulus |λm+1

0 βn
0 |.

Thus it remains to choose the constant C (bounding the modulus of the central eigenvalue).
By Lemma 3.12, there is n′ > n such that

λm+1
0 bP + t = β−n

0 bQ and λm
0 bP + t = β−n′

0 bQ.

As a consequence, one has

λm
0 (λ0 − 1) bP = β−n

0 (1 − βn−n′

0 ) bQ, λm
0 βn

0 =
(1 − βn−n′

0 ) bQ
(1 − λ0) |bP |

.

Hence, as n′ > n,
(

1 − β−1
0

1 − λ0

)

bQ
|bP |

≤ λm
0 βn

0 <

(

1

1 − λ0

)

bQ
|bP |

.

Since λ0, β0 are close to λ, β, it is enough to choose a constant C satisfying

C ≥
2

λ
max

{(

1

1 − λ

)

bQ
|bP |

,

(

1 − λ

1 − β−1

)

|bP |

bQ

}

.

This concludes the proof of the proposition. 2

3.5.2 The transition T1,t reverses the orientation of the central bundle

If T1,t reverses the orientation, using Corollary 3.15 and Proposition 3.9, we get a quasi-transverse
strong homoclinic intersections associated to saddles of the model unfolding family for t = 0
(note that in this case, the parameter t is not modified):
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Proposition 3.17. For every model unfolding family (F−,±
λ,β,t) there is a constant C > 1 satisfying

the following property:
For any ε > 0 and K > 0, there are β0 ∈ (β − ε, β + ε), λ0 ∈ (λ − ε, λ + ε), and natural

numbers n,m larger than K, such that F−,±
λ0,β0,0 has a periodic point Am+1,n, of period m+n+3,

such that

• the central eigenvalue λc(Am+1,n) of Am+1,n satisfies |λc(Am+1,n)| ∈ [1/C,C],

• the periodic point Am+1,n has a strong homoclinic intersection.

The proof of this proposition follows exactly as the one of Proposition 3.16, thus it is omitted.

3.5.3 End of the proof of Proposition 3.4. Proof of Theorem 3.3

Proposition 3.16 implies immediately Proposition 3.4 when the transition T1,t preserves the
orientation of the central bundle. Finally, Proposition 3.17 implies Proposition 3.4 when the
transition T1,t reverses the central orientation. Thus the proof of Proposition 3.4 is now complete.

Recall that in the introduction of this section, we derived Theorem 3.3 from Proposition 3.4.
This completes the proof of Theorem 3.3.

4 Robust cycles at strong homoclinic intersections

The goal of this section is to prove the following result:

Theorem 4.1. Let f be a diffeomorphism with a quasi-transverse strong homoclinic intersection
associated to a saddle-node or to a flip. Then every C1-neighborhood U of f contains an open
set of diffeomorphisms with C1-robust heterodimensional cycles.

The main step of the proof of this theorem is to see that any diffeomorphisms with a quasi-
transverse strong homoclinic intersection associated to a saddle-node or to a flip can be approx-
imated by diffeomorphisms exhibiting blenders, see Lemma 4.4. We first analyze the case when
the strong homoclinic intersection is associated to a saddle-node. The flip case is derived from
this case (see Section 4.2).

4.1 Proof of Theorem 4.1: the saddle-node case

In this section, we will sketch the proof of Theorem 4.1 for strong homoclinic intersections
associated to saddle-nodes. This is a rather folkloric result in partially hyperbolic dynamics.

4.1.1 Affine saddle-node cycles

Consider a diffeomorphism f having a quasi-transverse strong homoclinic intersection Y asso-
ciated to a saddle-node P . First, as in the case of co-index one cycles, we perform a series of
C1-perturbations to the diffeomorphism f in order to linearize the dynamics in neighborhoods of
the saddle-node P and of the homoclinic orbit of Y . This first part of the construction (A1–A3)
is similar to the one for co-index one cycles in Section 3.1. Let us describe a bit more precisely
this construction.
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A1) By a C1-perturbation of f , we can assume that there is a local chart [−1, 1]s+1+u at the
saddle-node P such that the expression of fπ(P ) is of the form

fπ(P ) = (As, id,Au) : R
s × R × R

u → R
s × R × R

u,

where As and Au are linear maps with ‖As‖ < 1 and ‖(Au)−1‖ < 1. (This step corresponds
to the first part of (S2)).

A2) Consider the closure ΛY of the orbit of the homoclinic point Y (i.e., the union of the orbits
of P and Y ). By the previous item and since the intersection of W uu(P, f) and W ss(P, f)
at Y is quasi-transverse, one has that f is partially hyperbolic in the set ΛY , having a
partially hyperbolic splitting of the form

TΛY
M = Ess ⊕ Ec ⊕ Euu,

where the central bundle Ec is one-dimensional, dimEss = s, and dimEuu = u. This
splitting can be extended to a small neighborhood of ΛY . (This step corresponds to the
second part of (S2)).

A3) Using the local coordinates above, we define local strong unstable and strong stable
manifolds of P by

W uu
loc (P, f) = {(0s, 0)} × [−1, 1]u and W ss

loc(P, f) = [−1, 1]s × {(0, 0u)}.

Then there are points W = (0s, 0, wu) and Z = (zs, 0, 0u) in the orbit of Y and m0 > 0,
such that W ∈ W uu

loc (P, f), Z ∈ W ss
loc(P, f), and fm0(W ) = Z. Moreover, for every

i ∈ {1, . . . ,m0 − 1}, f i(W ) does not belong to the local chart.

After shrinking the local chart and replacing W by some negative iterate of it and Z by
some positive iterate of it (so that m0 is replaced by a larger number), we can perform a
perturbation of f along the segment of orbit f(W ), f2(W ), . . . , fm0−1(W ) in such a way
the expression of fm0 in a neighborhood of W (in the local coordinates) is of the form

fm0(xs, x, xu) = (Ks(xs) + zs,±x,Ku(xu − wu)),

where Ks and Ku are linear maps with ‖Ks‖ < 1 and ‖(Ku)−1‖ < 1. (This step corre-
sponds to (S3)).

A4) By construction, the stable-unstable hyperplane Πsu = R
s × {0} × R

u is locally invariant
by fπ(P ) in a neighbourhood of P and by fm0 in a neighborhood of W . Hence there is
an iterate of f whose restriction to the hyperplane Πsu has a Smale linear horseshoe Σ0

containing P , W , and Z. Moreover, after replacing the homoclinic pointW by a homoclinic
point corresponding to an even iterate of it by fm0 (if necessary), we can assume that (in
a neighborhood of W ) fm0 is the identity in the central direction:

fm0(xs, x, xu) = (Ks(xs) + zs, x,Ku(xu − wu)).

A5) Since the horseshoe Σ0 contains infinitely many strong homoclinic intersections of P , there
is a strong homoclinic point G of P , G = (gs, 0, 0u) ∈W ss

loc(P, f), whose f -orbit is disjoint
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from the one of W . We also consider a point H = (0s, 0, hu) = f−m(G) ∈ W uu
loc (P, f), for

some big m ∈ N.

More precisely, after changing linearly the coordinates around P , shrinking the local chart,
and replacing (if necessary) Z and G by some forward iterates of them and W and H by
some backwards iterates of them, there are natural numbers n2 and n3, f

n2(W ) = Z and
fn3(H) = G, a cube C = [−1, 1]s+1+u, and three horizontal sub-cubes C1, C2, and C3 of
the form

Ci = [−1, 1]s+1 × Cu
i , i ∈ {1, 2, 3},

where Cu
1 , Cu

2 , and Cu
3 are disjoint u-disks contained in [−1, 1]u, such that:

• the cube C1 contains the points P , Z, and G, the cube C2 contains W , and the cube
C3 contains H;

• fπ(P )(C1) is a vertical sub-cube of C which crosses C1, C2, and C3 in a Markovian
way;

• f i(C2) is disjoint from C for every i = 1, . . . , n2−1, and fn2(C2) is a vertical sub-cube
Cs

2 × [−1, 1]1+u of C containing Z;

• the expression of the restriction of fn2 to C2 in these local coordinates is

fn2(xs, xc, xu) = (T s(xs) + zs, xc, T u(xu − wu)),

where T s and T u are linear maps with ‖T s‖ < 1 and ‖(T u)−1‖ < 1;

• there is n3 such that f i(C3) is disjoint from C for every i = 1, . . . , n3−1, and fn3(C3)
is a vertical sub-cube of Cs

2 × [−1, 1]1+u C containing G;

• the expression of the restriction of fn3 to C3 in these local coordinates is affine,

fn3(xs, xc, xu) = (Ls(xs) + gs, xc, Lu(xu − hu)),

where Ls and Lu are linear maps with ‖Ls‖ < 1 and ‖(Lu)−1‖ < 1;

• the orbit of G is disjoint from C2 and the orbit of Z is disjoint from C3.

A6) Consider the map F : C1 ∪ C2 ∪ C3 → C whose restrictions to C1, C2 and C3 are fπ(P ),
fn2, and fn3, respectively. We write F = (F su, id) (i.e., we write the central coordinate
in the last position). Observe that F su is a linear horseshoe map conjugate to a complete
shift of three symbols.
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4.1.2 Local perturbations

We now consider a local C1-perturbation fϕ of f such that its associated map Fϕ defined on
the cubes C1, C2 and C3 (defined exactly as F ) is of the form

Fϕ = (F su, ϕ),

where ϕ : [−1, 1] → [−1, 1] is a Morse-Smale map C1-close to the identity having exactly two
fixed points close to 0, the repelling point 0 and the attracting point −δ (small δ > 0), these
points have eigenvalues close to one. In this way, we get a diffeomorphism fϕ having a pair of
twin horseshoe (of indices u and u+ 1) as depicted in Figure 10. More precisely, the following
properties hold:

• The point Pδ = (0s,−δ, 0u) is a periodic saddle of period π(P ) and index u of Fϕ. The
points Zδ = (zs,−δ, 0u) and Gδ = (gs,−δ, 0u) are strong homoclinic intersections of Pδ.
Similarly, P is a periodic saddle of period π(P ) and index u + 1 of Fϕ and the points Z
and G are strong homoclinic intersections of P .

• The restriction of Fϕ to the hyperplane [−1, 1]s × {0} × [−1, 1]u is the linear horseshoe
map F su. Consider the cube

C(δ) = [−1, 1]s × [−δ/2, δ/2] × [−1, 1]u.

Then the maximal invariant set Γ of Fϕ in C(δ) is a hyperbolic basic set of index u+ 1.

We now modify f in fn2−1(C2) and fn3−1(C3) to get a two-parameter family of diffeomor-
phisms ft,r (see Figure 10) such that:

• the restriction of fn2

t,r to C2 is fn2

t,r (xs, x, xu) = fn2(xs, x, xu) + (0, t, 0);

• the restriction of fn3

t,r to C3 is fn3

t,r (xs, x, xu) = fn3(xs, x, xu) + (0, r, 0).

For small t and r, denote by Ft,r the map defined on C1 ∪ C2 ∪ C3 as follows:

• Ft,r(x
s, x, xu) = Fϕ(xs, x, xu), if (xs, x, xu) ∈ C1,
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• Ft,r(x
s, x, xu) = fn2

t,r (xs, x, xu) = Fϕ(xs, x, xu) + (0, t, 0), if (xs, x, xu) ∈ C2, and

• Ft,r(x
s, x, xu) = fn3

t,r (xs, x, xu) = Fϕ(xs, x, xu) + (0, r, 0), if (xs, x, xu) ∈ C3.

Remark 4.2. For every small t and r, the maps ft,r and Ft,r satisfy the following properties:

1. The perturbation ft,r do not modify the orbits of the periodic points Pδ and P of fϕ.

2. The vertical disk {(gs,−δ + r)} × [−1, 1]u is contained in the unstable manifold of Pδ (of
dimension u) of Ft,r.

3. For i = 1, 2, 3, consider the cubes Ci(δ) = Ci∩C(δ). Denote by Λt,r the maximal invariant
set of Ft,r in C1(δ) ∪ C2(δ). Since this set does not depend on r we just write Λt = Λt,r.

• For t = 0, Λ0 is a basic set of Fϕ of index (u + 1) contained in Γ (the maximal
invariant set of Fϕ in C(δ)). Hence, Λt is a hyperbolic basic set of Ft,r of index
(u+ 1), which is the continuation of Λ0.

• The map Ft,r has a unique fixed point Qt,r in C2(δ). Since this point does not depend
on r we write Qt = Qt,r. Note that Qt = (qs, qt, q

u), where qt < 0 if and only if t > 0,
see Figure 10.

4.1.3 End of the proof of Theorem 4.1 (saddle-node case)

Next proposition implies Theorem 4.1 when the strong homoclinic intersection is associated to
a saddle-node:

Proposition 4.3. For every small t > 0 and r such that −δ + r ∈ (qt, 0), the diffeomorphism
ft,r has a robust heterodimensional cycle associated to the hyperbolic set Λt (of index u+ 1) and
the hyperbolic saddle Pδ (of index u).

Proof: First, note that Ft,r coincides with ϕ on {0s} × [−1, 1] × {0u}. By definition of ϕ, this
implies that W s(Pδ , ft,r) meets transversely W u(P, ft,r) ⊂ W u(Λt, ft,r) along the center curve
{0s} × (−δ, 0) × {0u} bounded by the periodic points P and Pδ (see Figure 10). Note that this
intersection is robust.
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To get a (robust) heterodimensional cycle associated to Pδ and Λt, it remains to prove that
W u(Pδ , ft,r) meets W s(Λt, ft,r) in a robust way. Observe that this property cannot be obtained
from a transversality argument: the sum of the dimensions of these manifolds is s+u < s+u+1
(the dimension of the ambient manifold). We will use here that, for any small t > 0, the set
Λt is a blender and the unstable manifold of Pδ transversely meets the characteristic region of
the blender (see [BDV2, Chapter 6.2] for a discussion of the notion of blender). Let us explain
this point more precisely. We begin by recalling the meaning of blender. A simple argument in
[BDV1] proves the following:

Lemma 4.4 (The lemma in page 717 in [BDV1]). For every small t > 0 and every ρ1 and ρ2

with qt < ρ1 < ρ2 < 0 there is a backward iterate by Ft,r of the local stable manifold of P which
meets transversely the vertical strip {xs} × (ρ1, ρ2) × [−1, 1]u, for any xs ∈ [−1, 1].

Let Λt be the maximal invariant set Λt of Ft,r in the cube C(δ). This set is hyperbolic and
has index (u+ 1). Observe that the local stable manifold of P is contained in W s

loc(Λt, Ft,r). An
immediate consequence of Lemma 4.4 now is the following:

Corollary 4.5. For every small t > 0, the stable manifold of Λt intersects any vertical disk
{(xs, x)} × [−1, 1]u with xs ∈ [−1, 1]s and x ∈ [qt, 0].

Keeping in mind these results we prove Proposition 4.3. We first see that Ft,r has a het-
erodimensional cycle associated to the hyperbolic set Λt and Pδ. By item 2 in Remark 4.2, the
vertical disk {(gs,−δ+ r)}× [−1, 1]u is contained in the unstable manifold of Pδ for Ft,r. Since,
by hypothesis, −δ + r ∈ (qt, 0), Corollary 4.5 gives a heterodimensional cycle associated to Λt

and Pδ for every ft,r.
Let us now explain why this heterodimensional cycle is robust. This follows from the proof

of [BD1, Lemma 1.11] (in fact, the proof of Lemma 4.4 is a simplified version of the arguments
in [BD1]). We will outline this proof in the next paragraphs.

For every diffeomorphisms h which is C1-close to ft,r, one considers almost vertical strips S,
that is, (u+ 1)-disks such that:

• they are tangent to a small cone field around the center-unstable direction Ec⊕Eu and are
foliated by u-disks tangent to a small unstable cone field around the unstable direction;

• they cross the cube C(δ) from the bottom to the top.

The central width w(S) of an almost vertical strip S is (roughly) defined as follows: w(S) is the
minimum size of a curve tangent to the central direction going from one vertical boundary of
the strip S to the other vertical boundary of the strip (the vertical boundary of S is the part of
the boundary of S tangent to the unstable cone field).

Finally, if the vertical strip S is in between the local stable manifolds of the continuations
of the saddles P and Qt, we say that the strip is in the characteristic region of the blender.

Given a map ψ close to f , considering the restrictions of ψπ(p) and ψn2 to the cubes C1(δ)
and C2(δ), one gets a map Ψ which is C1-close to Ft,r. One proves the following,

There is κ > 1 such that, for every vertical strip S in the characteristic region, either the image
by Ψ of S intersects the local stable manifold of the continuation of P or it contains a vertical
strip S ′ in the characteristic region whose central-width satisfies w(S ′) > κw(S).
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As the central widths of the vertical strips in the characteristic region are uniformly bounded
from above, there is some iterate by Ψ of the initial strip S which meets the local stable manifold
of the continuation of P . This completes the outline of the proof. For further details and precise
definitions, see the proof of [BD1, Lemma 1.11]6. 2

4.2 Proof of Theorem 4.1: the flip case

The first step of this case is analogous to the saddle-node one: the goal is to get an affine flip
cycle after a perturbation of a flip point with a strong homoclinic intersection. These flip cycles
generate saddle-node cycles:

Remark 4.6. In the case that the diffeomorphism f has a flip with a strong homoclinic intersec-
tion, one can perform perturbations similar to the ones in Section 4.1.1. The only difference is
that, in the flip case, in item (A1) one has (−id) in the central direction instead of the identity.
As a consequence, the resulting associated map F in item (A6) is now of the form (F su,−id).

Using the horseshoe Σ0 in item (A5) and considering periodic points of even period in this
horseshoe, one immediately gets (after an arbitrarily small perturbation) a saddle-node with a
strong homoclinic intersection.

The flip case follows now from the saddle-node case in the previous section. The proof of
Theorem 4.1 is now complete.

5 Cycles with non-real central eigenvalues

The aim of this section is to prove the following theorem:

Theorem 5.1. Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Then every C1-neighborhood U of f contains a diffeomorphism g with a co-index one
cycle with real central eigenvalues. Moreover, the new cycle can be taken associated to saddles
P ′

g and Q′
g homoclinically related to the continuations Pg and Qg of P and Q.

This result concludes the proof of Theorem 1: every co-index one cycle generates (by a
C1-perturbations) cycles with real central eigenvalues, Theorem 2.1 now gives robust heterodi-
mensional cycles.

The organization of this section is the following. In Section 5.1, we see that every co-index
one cycle associated to a pair of saddles with non-trivial homoclinic classes generates cycles
with real central eigenvalues, (see Theorem 5.3). In Section 5.2, we see that if f has a co-index
one cycle associated to a pair of saddles P and Q such that the central eigenvalue of the cycle
associated to P is non-real, one can assume (after a perturbation) that the homoclinic class of
Q is non-trivial (see Proposition 5.7). Using these preparatory results, in Section 5.3 we prove
Theorem 5.1 for cycles whose central eigenvalues are all non-real. Finally, in Section 5.4, we
consider cycles having only one real eigenvalue.

6Indeed, this robust intersection between vertical strips and a local stable manifold of a hyperbolic set is called
distinctive property of blenders in [BDV2].
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5.1 Cycles associated to saddles with non-trivial homoclinic classes

We begin this section with a definition.

Definition 5.2 (Periodic points with real multipliers). Let f be a diffeomorphism and P a
periodic point of f . We say that P has real multipliers if every eigenvalue λ of Dfπ(P )(P ) is
real and has multiplicity one and every eigenvalue σ of Dfπ(P )(P ) with σ 6= λ satisfies |λ| 6= |σ|.

Theorem 5.3. Let f be a diffeomorphism with a co-index one cycle associated to periodic points
P and Q. Suppose that the homoclinic class of P is non-trivial. Then every C1-neighborhood U
of f contains a diffeomorphism g ∈ U having a hyperbolic periodic point P ′

g such that:

• there is a co-index one cycle associated to P ′
g and the continuation Qg of Q;

• the saddle P ′
g has real multipliers and is homoclinically related to Pg.

The main step for proving Theorem 5.3 is the following:

Proposition 5.4. Let K be a non-trivial hyperbolic basic set of a diffeomorphism f . Assume
that f has a heterodimensional cycle associated to a pair of periodic points P and Q, where
P ∈ K. Then every C1-neighborhood U of f contains a diffeomorphism g such that:

• The continuation Kg of K contains a periodic point P ′
g with real multipliers and homo-

clinically related to Pg.

• The diffeomorphism g has a heterodimensional cycle associated to the continuations Pg

and Qg.

Proof: Consider the set Σ of periodic points of K. As K is a basic set, the periodic orbits in Σ
are homoclinically related. With the notation in [BDP, Section 1.4], the derivative of f induces
on Σ a periodic linear system with transitions. [BDP, Lemmas 4.16 and 1.9] now imply that, for
any ε > 0, there are a periodic orbit γ = {Y, . . . , fπ(Y )−1(Y )} of K and an ε-perturbation A of
the derivative Df (considered as a linear cocycle) along γ (i.e., ‖Df(f j(Y )) − A(f j(Y ))‖ < ε,
for every 0 ≤ j ≤ π(Y ) − 1) such that the eigenvalues of the linear map

A(γ) = A(fπ(Y )−1(Y )) ◦ · · · ◦ A(Y ),

are all real and different in modulus and have multiplicity one. We need the following lemma:

Lemma 5.5 (Franks’ Lemma, [Fr], [Ma2]). Consider a C1-diffeomorphism f and an f -invariant
finite set Σ. Let A be an ε-perturbation of the derivative Df of f along Σ. Then, for every
neighborhood V of Σ, there is a diffeomorphism g C1-ε-close to f such that

• g(x) = f(x), if x ∈ Σ or if x 6∈ V ,

• Dg(x) = A(x), for all x ∈ Σ.

This lemma allows us to consider a C1-perturbation g of f , supported on an arbitrarily small
neighborhood V of the orbit γ of Y , such that (i) g is equal to f outside V and over the orbit
γ and (ii) Dg(X) = A(X), for every X ∈ γ. As the perturbation g of f is arbitrarily small, the
periodic point Y of g is homoclinically related to P (the orbit of P is not modified). Taking
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P ′
g = Y , one has Dgπ(P ′

g)(P ′
g) = A(γ)). Thus the periodic point P ′

g has real multipliers. For
the details of the previous construction see, for instance, [AD, Lemma 3.4] which is a just a
dynamical reformulation of [BDP, Lemmas 4.16 and 1.9].

To conclude the proof of the proposition it remains to check that the diffeomorphism g can
be taken having a cycle associated to Qg and Pg. As the initial f has a heterodimensional cycle,
there are heteroclinic points X1 ∈ W u(Q, f) ∩W s(P, f) and X2 ∈ W s(Q, f) ∩W u(P, f). Since
the neighborhood V of the orbit γ above can be chosen arbitrarily small, we can assume that it
is disjoint from the orbits of the heteroclinic points X1 and X2 (note that the distance between
the closure of the orbits of X1 and X2 and γ is strictly positive). As a consequence, X1 ∈
W u(Qg, g)∩W

s(Pg, g) and X2 ∈W s(Qg, g)∩W
u(Pg, g) (note that in the previous construction

we have Pg = P and Qg = Q). Thus the diffeomorphism g has a heterodimensional cycle
associated to Pg and Qg. 2

Proof of Theorem 5.3: Suppose that the indices of P and Q are u and u+1. Fix heteroclinic
points X1 ∈ W u(Q, f) ∩W s(P, f) and X2 ∈ W s(Q, f) ∩W u(P, f). Up to a C1-perturbation,
one may assume that the intersection at X1 is transverse.

Since the homoclinic class of P is non-trivial, it contains a non-trivial basic set K containing
P . By Proposition 5.4, we can assume (after a C1-perturbation of f) that K contains a periodic
point P ′ homoclinically related to P and whose multipliers are real. Therefore, for every g close
to f , Pg and P ′

g are homoclinically related and the multipliers of P ′
g are real. Thus to prove the

theorem it is enough to find g close to f with a cycle associated to Qg and P ′
g.

The λ-lemma and the fact that P and P ′ are homoclinically related imply that W s(P ′, f)
C1-approaches any compact disk in W s(P, f), thus W s(P ′, f) meets transversally W u(Q, f) in a
point X ′

1 close to X1. Therefore, for every g close to f , W s(P ′
g, g) meets transversally W u(Qg, g).

As P ′ and P are homoclinically related there are a sequence of points (Yi)i and a sequence
of natural numbers (mi)i such that (Yi)i converges to some point Y ∈W u(P ′, f) and (fmi(Yi))i
converges to X2 ∈ W s(Q, f) ∩W u(P, f). This implies that the saddles P ′ and Q satisfy the
hypotheses of the lemma below (taking P ′ = Af and Q = Bf ):

Lemma 5.6 (Hayashi’s Connecting Lemma, [Ha]). Let f be a C1-diffeomorphism and Af and
Bf a pair of hyperbolic saddles of f . Suppose that there are sequences of points Ti and of natural
numbers ni such that Ti accumulates to W u

loc(Af , f) and fni(Ti) accumulates to W s(Bf , f).
Then there is g arbitrarily C1-close to f such that W u(Ag, g) ∩W

s(Bg, g) 6= ∅.

This lemma implies that there is g arbitrarily close to f such that W u(P ′
g, g)∩W

s(Qg, g) 6= ∅.
Since W s(P ′

g, g) ∩W
u(Qg, g) 6= ∅, the diffeomorphism g has a co-index one cycle associated to

Qg and P ′
g. By construction, this cycle satisfies the conclusions of the theorem. 2

5.2 Non-real central eigenvalues and homoclinic intersections

In this section, we see that every diffeomorphisms having a co-index one cycle with some non-
real central eigenvalue can be approximated by a diffeomorphism with a cycle involving a saddle
whose homoclinic class is non-trivial.

Proposition 5.7. Let f be a diffeomorphism with a a co-index one cycle associated to saddles
P and Q. Assume that the central eigenvalue of P is non-real. Then every C1-neighborhood of
f contains a diffeomorphism g having a co-index one cycle associated to the saddles Pg and Qg

and such that the homoclinic class of Qg is non trivial.
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Proof: For fixing the ideas, assume that the indices of P and Q are u and u+ 1, respectively.
We write, n = s+1+u, n is the dimension of the ambient manifold. First, after a perturbation,
we can assume that W s(P, f) ∩W u(Q, f) contains some transverse intersection point X and
that W s(P, f) ∩W u(Q, f) contains some quasi-transverse intersection point Y .

By a C1-perturbation in a small neighborhood of P (preserving the quasi-transverse and
transverse heteroclinic points Y and X), one can assume that there are local coordinates
[−1, 1]s−1 × [−1, 1]2 × [−1, 1]u at P such that the expression of fπ(P ) in those coordinates is
of the form

fπ(P )(xs−1, xc, xu) = (As−1(xs−1), Ac(xc), Au(xu),

where As−1 : R
s−1 → R

s−1, Ac : R
2 → R

2, and Au : R
u → R

u are linear maps with ‖As−1‖ < 1,
‖Ac‖ < 1, and ‖(Au)−1‖ < 1. Moreover, the linear map Ac is the composition of a homothety
and a rotation, that is,

Ac = a

(

cos 2π θ − sin 2π θ
sin 2π θ cos 2π θ

)

, 0 < |a| < 1, a ∈ R.

One also can assume that the angle θ ∈ [0, 1] is irrational. This step is analogous to (S2) in
Definition 3.5 of simple cycle. The next steps are analogous to (S3) and (S4).

R
2

R
u

P

∆s

∆u+1

I

(Ac)k(I)

Figure 11: Creation of homoclinic points

By a C1-perturbation of f in a neighborhood of the quasi-transverse heteroclinic point Y ,
we can assume that W s(Q, f) contains an s-disk ∆s containing a backward iterate f−i(Y ) of Y ,
for some large i > 0, of the form (in the local coordinates at P )

∆s = [−1, 1]s−1 × [−1, 1] × {0} × {yu}.

Similarly, by a C1-perturbation of f in a neighborhood of the transverse heteroclinic point
X, one can assume that W u(Q, f) contains a (u+ 1)-disk containing a forward iterate f j(X) of
X, for some large j > 0, of the form (in local coordinates)

∆u+1 = {0s−1} × I × [−1, 1]u,

where I is a segment in [−1, 1]2. Furthermore, we can assume that I is transverse to the radial
vector field x1

∂
∂x1

+ x2
∂

∂x2
.

Since the rotation angle θ of Ac is irrational, there is some k > 0 such that (Ac)k(I) intersects
transversely the segment [−1, 1] × {0}. This implies that fk π(P )(∆u+1) intersects transversely
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∆s. Since ∆s ⊂ W s(Q, f) and ∆u+1 ⊂ W u(Q, f), this gives some transverse homoclinic point
of Q. Thus the homoclinic class of Q is non-trivial. This ends the proof of the proposition. 2

Scholium 5.8. Under the notation of the proof of Proposition 5.7, it follows that the curve
γ = {0s−1} × I × {0u} contained in the transverse intersection of W s(P, f) and W u(Q, f) is
contained in the homoclinic class of Q.

Consider any Z ∈ γ, Z = (0s−1, z, 0u), z ∈ I, and any open sub-interval J of I containing
z. Since rotation θ of Ac is irrational, there are infinitely many ki > 0 such that (Ac)ki(J) ∩
[−1, 1]×{0} 6= ∅. As Au is an expansion, for any neighborhood V u(J) of J in W u(Q, f) there is
some large ki such that fki(V u(J)) intersects ∆s transversely. This gives transverse homoclinic
points of Q arbitrarily close to {0s−1}× J ×{0u}. As J can be taken arbitrarily small, one gets
transverse homoclinic points of Q arbitrarily close to Z. This completes the argument.

5.3 Cycles with non-real central eigenvalues

Next lemma implies Theorem 5.1 for cycles whose central eigenvalues are all non-real.

Lemma 5.9. Let f be a diffeomorphism having a co-index one cycle associated to saddles P and
Q. Suppose that the central eigenvalues of the cycle associated to P and Q are both non-real.
Then every C1-neighborhood U of f contains a diffeomorphism g having a having a co-index one
cycle associated to saddles P ′

g and Q′
g such that

• the saddles P ′
g and Q′

g have real multipliers, and

• P ′
g is homoclinically related to Pg and Q′

g is homoclinically related to Qg.

Note that since P ′
g and Q′

g have real multipliers, the co-index one cycle given by the lemma
has real central eigenvalues.

Proof: Applying twice Proposition 5.7 (interchanging the roles of P and Q), we get a diffeo-
morphism φ close to f with a cycle associated to the saddles Pφ and Qφ and such that the
homoclinic classes of Pφ and Qφ are both non-trivial.

Since the homoclinic class of Pφ is non-trivial, by Theorem 5.3, there is a diffeomorphism
ϕ close to φ (thus close to f) with a cycle associated to Qϕ and a periodic point P ′

ϕ which
is homoclinically related to Pϕ and has real multipliers. Note that since ϕ is close to φ, the
homoclinic class of Qϕ is non-trivial

Finally, applying again Theorem 5.3, now to P ′
ϕ and Qϕ (which has a non-trivial homoclinic

class), we get a diffeomorphism g close to ϕ (thus close to f) with a co-index one cycle associated
to P ′

g and a saddle Q′
g with real multipliers which is homoclinically related to Qg. The lemma

follows noting that, for g close to ϕ, the saddle P ′
g has real multipliers and is homoclinically

related to Pg. 2

5.4 Cycles having only one real central eigenvalue

In this section, we consider cycles having only one real central eigenvalue. We prove that these
cycles generate (by perturbations) new heterodimensional cycles associated to saddles with non-
trivial homoclinic classes.

39



Lemma 5.10. Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Suppose that cycle has only one real central eigenvalue. Then every C1-neighborhood U
of f contains diffeomorphisms g with a co-index one cycle associated to the saddles Pg and Qg

and such that the homoclinic classes of Pg and Qg are both non-trivial.

Using Theorem 5.3 and arguing as in the proof of Lemma 5.9, Lemma 5.10 implies Theo-
rem 5.1 for cycles having only one real central eigenvalue.

Proof: Let us assume, for instance, that the indices of P and Q are u and (u + 1) and that
the central eigenvalue of the cycle corresponding to P is non-real (thus the central eigenvalue
corresponding to Q is real). By Proposition 5.7, we can assume that the homoclinic class of Q is
non-trivial. Thus to prove the lemma we need to generate simultaneously homoclinic points of
P and a heterodimensional cycle (associated to the continuations of P and Q). This is done by
considering local perturbations preserving prescribed compact parts of the invariant manifolds
of P and Q. Thus we need to control some compact parts of these invariant manifolds after the
perturbations.

5.4.1 Local coordinates

The first step is to select local coordinates and consider perturbations such that the resulting
dynamics is linear or affine. This step is analogous to the definition of simple cycles (Defini-
tion 3.5): after a series of perturbations, one can assume that the cycle is in linear form in
neighborhoods of P and Q (see conditions (1)–(9) below). We next explain this construction.
The elements in our construction are depicted in Figure 12. First, for notational simplicity, let
us assume in what follows that P and Q are fixed saddles (π(P ) = π(Q) = 1).

Dynamics in a neighborhood of P . Arguing exactly as in Proposition 5.7, we fix local
coordinates [−1, 1]s−1× [−1, 1]2× [−1, 1]u at P such that after a perturbation the following holds
(item (2) follows from W s(P, f) ∩W u(Q, f) 6= ∅ and item (3) from W u(P, f) ∩W s(Q, f) 6= ∅):

1. The local expression of f is

f(xs−1, xc, xu) =
(

As−1(xs−1), Ac(xc), Au(xu)
)

,

where As−1 : R
s−1 → R

s−1, Ac : R
2 → R

2, and Au : R
u → R

u are linear maps with
‖As−1‖, ‖Ac‖, ‖(Au)−1‖ < 1 and Ac is the composition of a homothety and a rotation
of irrational angle θ.

Using these coordinates, we define the local stable and unstable manifolds of P ,

W s
loc(P, f) = [−1, 1]s−1 × [−1, 1]2 × {0u} and W u

loc(P, f) = {(0s−1, 0, 0)} × [−1, 1]u.

2. The stable manifold W s(Q, f) contains a s-disk of the form

∆s = [−1, 1]s−1 × [−1, 1] × {0} × {yu} = [−1, 1]s × {0} × {yu},

where Y = (0s, 0, 0, yu) ∈W u
loc(P, f) ∩W s(Q, f) is a heteroclinic point. Moreover, we can

assume that the disk ∆s is contained in a fundamental domain of W s(Q, f) and thus it is
disjoint from all its iterates.
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3. The unstable manifold W u(Q, f) contains the (u+ 1)-disk

∆u+1 = {0s−1} × I × [−1, 1]u,

where I is a segment in [−1, 1]2 transverse to the radial vector field. By the proof of
Scholium 5.8, the heteroclinic segment

γ = {0s−1} × I × {0u} ⊂ ∆u+1 ∩W s
loc(P, f)

is contained in the homoclinic class of Q. Thus, we can assume that disk ∆s in (2) contains
some transverse homoclinic point of Q

Y

X

Q

P

C

f r+k(Γs)

f r(Γs) = Γ̃s

γ

∆s

∆u+1

f r+k+ℓ(Γs)

f ℓ(∆s)

Γu

Γs

Υs+1

f−r(γ)

Figure 12: Heteroclinic intersections

Dynamics in a neighborhood of Q. As in the case of cycles with real central eigenvalues
in Section 3.1, after a perturbation, we can choose coordinates [−1, 1]s × [−1, 1] × [−1, 1]u at Q
such that:

4. The expression of f is of the form

f(xs, x, xu) = (Bs(xs), β x,Bu(xu)) ,

where β > 1 and Bs : R
s → R

s and Bu : R
u → R

u are linear maps with ‖Bs‖ < 1 and
‖(Bu)−1‖−1 < β.

Using these coordinates, we define the local stable and unstable manifolds of Q as above.
We also define the local center unstable manifold of Q by

W cu
loc(Q, f) = {0s} × [−1, 1] × {0u}.

41



5. Let γ be the heteroclinic segment in (3). There are (arbitrarily) large r > 0 and an interval
[a, b] ⊂ (0, 1] such that

f−r(γ) = {0s} × [a, b] × {0u} ⊂W cu
loc(Q, f).

In order to put f−r(γ) within W cu
loc(Q, f) note that, after shrinking γ and perturbing

locally the dynamics, we can assume that there is some backward iterate of γ intersecting
transversely the strong unstable foliation of Q. Thus the negative iterates of γ C1-approach
W cu

loc(Q, f). Finally, after a new perturbation, we can put some large backward iterate of
γ inside W cu

loc(Q, f).

6. In the local coordinates at Q, we can assume that the (s+ 1)-disk Υs+1 satisfies

Υs+1 = [−1, 1]s × [a, b] × {0u} ⊂W s(P, f).

Moreover, using now the coordinates at P ,

f r(Υs+1) ⊂ [−1, 1]s+1 × {0u} = W s
loc(P, f).

Note that f r(Υs+1) contains the heteroclinic curve γ. Furthermore, by shrinking the
local chart at Q, we can assume that f i(Υs+1) is disjoint from this local chart for every
i ∈ {1, . . . , r − 1}. Thus, since f r(Υs+1) ⊂ W s

loc(P, f), the whole forward orbit of Υs+1 is
disjoint from the local chart of Q.

Homoclinic and heteroclinic intersections. Consider the local coordinates at P and the
s-disk ∆s ⊂W s(Q, f) in (2) in the local chart of P . Since the rotation angle of Ac is irrational
there are infinitely many k > 0 such that f−k(∆s) (we consider iterations in the local chart of
P ) meets transversely the (u+1)-disk ∆u+1 ⊂W u(Q, f) in (3) (recall Scholium 5.8). We choose
large k and a transverse intersection point H ∈ f−k(∆s) ∩ ∆u+1. The transverse homoclinic
point H of Q can be taken arbitrarily close to γ. Thus, now in the local coordinates at Q, the
point C = f−r(H) = (0s, c, cu) is close to f−r(γ). Thus we can assume that c ∈ (a, b) (recall the
definition of r and f−r(γ) in (5)) and cu close to 0u (for that it suffices to take large k). This
construction can be summarized as follows:

7. In the local coordinates at Q, the stable manifold of Q contains the the s-disk

Γs = [−1, 1]s × {(c, cu)} ⊂W s(Q, f),

where cu is close to 0u and c ∈ (a, b) (here [a, b] is the interval in (5)). The point C =
(0s, c, cu) is a transverse homoclinic point of Q. Moreover, the disk Γs can be chose
satisfying the following properties:

(i) There is a small s-disk Γ̃s ⊂ f−k(∆s) containing H such that Γs = f−r(Γ̃s). Thus
fk+r(Γs) ⊂ ∆s. Moreover, we can assume that Γ̃s, f(Γ̃s), . . . , fk(Γ̃s) ⊂ ∆s are
contained in the local chart of P and are disjoint from W u

loc(P, f). Thus the disk
f r+i(Γs) = f i(Γ̃s) is contained in the the local chart of P and disjoint from W u

loc(P, f)
for every i = 0, 1, . . . , k.

(ii) Since f r+k(Γs) is disjoint from W u
loc(P, f) the heteroclinic point Y ∈ W u

loc(P, f) ∩
W s(Q, f) in item (2) does not belong to f r+k(Γs).
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(iii) The disk f i(Γs) is disjoint from the local chart of Q, for every i ∈ {1, . . . , r − 1}.

8. Consider the heteroclinic point Y ∈W u
loc(P, f)∩W s(Q, f), Y ∈ ∆s, in item (2). Let ℓ > 0

be the smallest integer such that

X = f ℓ(Y ) = (xs, 0, 0u) ∈ [−1, 1]s × {(0, 0u)} = W s
loc(Q, f).

By shrinking the local chart at Q, we can assume that f i(∆s) does not intersect this chart
for every 0 ≤ i ≤ ℓ − 1. Since ∆s ⊂ W s

loc(Q, f) and contains Y , we can assume that
f ℓ(∆s) ⊂W s

loc(Q, f). Note that X ∈ f ℓ(∆s) and thus X ∈W s
loc(Q, f).

9. There is a u-disk Γu ⊂W u(P, f) in the local chart of Q containing X of the form

Γu = {(xs, 0)} × [−1, 1]u

and such that Γu is disjoint from all its iterates (i.e., the disk Γu is contained in a funda-
mental domain of W u(P, f)) and f−ℓ(Γu) ⊂W u

loc(P, f). Moreover, {X} = Γu∩W s
loc(Q, f).

5.4.2 Local perturbations

We will perform a local perturbation of f in a neighborhood of the disk Γu in (9) to get a
diffeomorphism g such that there are (simultaneously) transverse homoclinic points of Pg and
intersections between W u(Pg, g) and W s(Qg, g). Since for every g close to f the invariant
manifolds W s(Pg, g) and W u(Qg, g) have transverse intersections, it follows that g has a het-
erodimensional cycle associated to Pg and Qg such that the homoclinic class of Pg is non-trivial.
Since the homoclinic class of Qg is non-trivial (see items (3) or (7)), this will imply the lemma.

A transverse homoclinic point of P will be obtained as an intersection of the (s + 1)-disk
Υs+1 ⊂ W s(P, f) in (6) and some positive iterate of Γu ⊂ W u(P, f). The perturbation is such
that, for the resulting diffeomorphism g, the saddles P and Q are not modified, Υs+1 ⊂W s(P, g)
and Γu ⊂ W u(P, g). So such an intersection will provide a point in H(P, g). The heteroclinic
intersection between W u(P, g) and W s(Q, g) is obtained as the intersection of some positive
iterate of Γu (in fact, the same as before) and the s-disk Γs in (7). Once more, for the resulting
g one also has Γs ⊂W s(Q, g).

The main difficulty for performing this perturbation is to modify the positive orbit of Γu

without altering the fact that Γs and Υs+1 are contained in the stable manifolds of Q and P ,
respectively. For solving this difficulty, we claim that:

Claim 5.11.

• The closure of the forward orbit of Υs+1 is disjoint from Γu.

• The closure of the forward orbit of Γs is disjoint from Γu.

Proof: The first assertion follows noting that, by construction, the positive iterates of Υs+1 are
disjoint from the local chart at Q (item (6)) while Γu is contained in this local chart (item (9)).

The second part of the claim follows from the observations below:

• The iterates f i(Γs), i ∈ {1, . . . , r + k} are disjoint from the local chart at Q (item 7(iii)
implies the assertion for i = 0, . . . , (r − 1) and item 7(i) for i = r, . . . , r + k). Hence, since
Γu is contained in the local chart of Q (recall (9)), these iterates are disjoint from Γu.
Moreover, f r+k(Γs) is contained in (∆s \W u

loc(P, f)) (see (7(i) and 7(ii)).
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• As f r+k(Γs) ⊂ ∆s, item (8) implies that the iterates f r+k+i(Γs) ⊂ f i(∆s), i ∈ {1, . . . , ℓ−
1}, are disjoint from the local chart at Q. Thus, by (9), these iterates are disjoint from
Γu. Furthermore, by item 7(ii),

Y 6∈ f r+k(Γs)

and, by item (8),
f r+k+ℓ(Γs) ⊂ f ℓ(∆s) ⊂W s

loc(Q, f).

Recalling that, by (9),

X = f ℓ(Y ) 6∈ f r+k+ℓ(Γs) and {X} = Γu ∩W s
loc(Q, f),

one has that
f r+k+ℓ(Γs) ∩ Γu = ∅.

• We claim that the positive iterates of f r+k+ℓ(Γs) ⊂ f ℓ(∆s) do not meet the point X ∈ Γu.
Assume, by contradiction, that X = f ℓ(Y ) ∈ f r+k+ℓ+i(Γs) ⊂ f ℓ+i(∆s) for some i > 0.
Since X = f ℓ(Y ) ∈ f ℓ(∆s) (item (8)) this implies that f i(∆s) ∩ ∆s 6= ∅ for some i > 0,
contradicting that ∆s is disjoint from its forward iterates (item (2)).

The claim now follows from the comments above recalling that f r+k+ℓ(Γs) ⊂ W s
loc(Q, f) and

that {X} = Γu ∩W s
loc(Q, f) (item (9)). 2

Bearing in mind the previous comments, we are now ready to perform the announced per-
turbation of f . By Claim 5.11, we can choose a small neighborhood V of Γu disjoint from the
closures of the positive orbits of Γs and of Υs+1. Let ft be a diffeomorphism which coincides
with f outside V and such that, in the local coordinates at Q, satisfies

ft(x
s, x, xu) = f(xs, xc, xu) + (0s, t, 0u),

for every (xs, x, xu) in a small neighborhood U of Γu (contained in V ). The definition of the
perturbation and the choice of V imply that Υs+1 ⊂W s(P, ft) and Γs ⊂W s(Q, ft).

Let c ∈ (a, b) be as in item (7). Then for every t = β−m c, large m > 0, the diffeomorphism
ft is C1-close to f . If m is big enough, using the expansion in the u-direction, one has

Γu
t (m) = {((Bs)m(xs), c)} × [−1, 1]u ⊂ fm

t (Γu) ⊂W u(P, ft).

As c ∈ (a, b), the segment Γu
t (m) meets transversely the disk Υs+1 = [−1, 1]s × [a, b] × {0u}.

Since Υs+1 ⊂W s(P, ft) this implies that the homoclinic class of P (for ft) is non-trivial.
Similarly, we have that Γu

t (m) intersects the disk Γs = [−1, 1]s × {(c, cu)}. Since Γs ⊂
W s(Q, ft), this implies that W u(P, ft) meets W s(Q, ft). This ends the proof of the lemma. 2

6 Applications to generic dynamics

The aim of this section is to prove Corollaries 2 and 3 and Theorems 2, 3, and 4 about C1-generic
dynamics. We begin by collecting some properties of chain recurrence and homoclinic classes of
C1-generic diffeomorphisms we will use systematically.
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6.1 Homoclinic and chain recurrence classes of C1-generic diffeomorphisms

There is a residual subset R of Diff1(M) such that every diffeomorphism f ∈ R satisfies the
following properties:

G1) The chain recurrence set and the non-wandering set of f coincide. Moreover, these sets
are equal to the closure of the hyperbolic periodic points of f . See [BC, Corollaries 1.2].

G2) Every chain recurrence class C(f) of f containing a periodic point Pf is the homoclinic
class of Pf . See [BC, Remarque 1.10]. In particular, since the recurrence classes define a
partition of the chain recurrence set, two homoclinic classes of f ∈ R which are non-disjoint
coincide (this result was previously stated in [CMP]).

G3) Every homoclinic class of f containing saddles of indices a and b, a < b, also contains a
saddle of index c for every c ∈ (a, b) ∩ N. See [ABCDW, Theorem 1].

G4) Every isolated chain recurrence class C(f) of f is robustly isolated: there are neighborhoods
U of f in Diff1(M) and V of the class C(f) in M such that, for every h ∈ U , the intersection
R(h) ∩ V is a unique chain recurrence class of h. See [BC, Corollaire 1.13]. Note that, by
item (G1), every isolated chain recurrence class of f is a homoclinic class.

G5) Given any pair of saddles Pf and Qf of f , there is a neighborhood Uf of f in R such that
either H(Pg, g) = H(Qg, g) for all g ∈ Uf , or H(Pg, g) ∩H(Qg, g) = ∅ for all g ∈ Uf . This
follows from the arguments in [BC] and a genericity argument. For an explicit formulation
of this result (and its complete proof) see [ABCDW, Lemma 2.1].

6.2 Proof of Theorem 2

In this section, we prove Theorem 2: There is an open and dense subset O of the set of tame
diffeomorphisms such that every f ∈ O either it satisfies the Axiom A plus the no-cycles con-
dition or it has a C1-robust heterodimensional cycle. Theorem 2 is a direct consequence of the
following local version of it:

Proposition 6.1. Let U be an open subset of Diff1(M) and V and open subset of M such that,
for every diffeomorphism g ∈ U , the intersection of the chain recurrence set R(g) of g and the
closure of V is a unique chain recurrence class C(g). Then there is an open and dense subset
UV of U such that, for every g ∈ UV , the chain recurrence class C(g) is either a hyperbolic basic
set or it has a robust heterodimensional cycle.

We postpone the proof of this proposition and prove Theorem 2 assuming it.

Proof of Theorem 2: We first observe the following:

Lemma 6.2. Let f ∈ R be a tame diffeomorphism. Then for every chain recurrence class C(f)
of f there are neighborhoods V of C(f) in M and Uf of f in Diff1(M) such that, for every
g ∈ Uf , the intersection of the chain recurrence set of g and V is a chain recurrence class C(g)
of g. Moreover, the chain recurrence class C(g) is a homoclinic class.

Remark 6.3. Lemma 6.2 means that we can apply Proposition 6.1 to chain recurrence classes
of tame diffeomorphisms.
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Proof: This lemma follows from the generic conditions (G1)–(G5) above. Consider a chain
recurrence class C(f) of a tame diffeomorphism f ∈ R. By (G1), the chain recurrence class C(f)
contains a periodic point, say Pf . By (G2), C(f) is the homoclinic class of Pf . Finally, since f
is tame, the chain recurrence class C(f) is isolated. By (G3), C(f) is in fact robustly isolated.
This completes the proof of the first part of the lemma.

Putting these results together and noting that every homoclinic class is contained in some
chain recurrence class, one has that for every tame diffeomorphism f ∈ R homoclinic classes
and chain recurrence classes coincide and are robustly isolated. This implies the lemma. 2

The theorem now follows from Proposition 6.1. Suppose that f is a tame diffeomorphism
that cannot be C1-approximated by diffeomorphisms with robust heterodimensional cycles. By
Lemma 6.2 and Proposition 6.1, each chain recurrence class of f is a hyperbolic basic set. Thus
the chain recurrence set of f (consisting of finitely many chain recurrence classes which are basic
sets) is hyperbolic. This implies that the diffeomorphism f is Axiom A.

We claim that f also verifies the no-cycles condition. Suppose, by contradiction, that f has a
cycle associated to two basic sets (chain recurrence classes), say C1(f) and C2(f), of the spectral
decomposition of its non-wandering set. Then, using this cycle, one has that, for any arbitrarily
small neighborhoods V1 of C1(f) and V2 of C2(f), there is a diffeomorphism g arbitrarily close to
f having a periodic point Qg whose orbit intersects V1 and V2. Thus the intersection of the chain
recurrence set of g containing Qg and V1 is not a chain recurrence class contained in V1. Since
the neighborhood V1 of C1(f) can be taken arbitrarily small, the chain recurrence class C1(f)
of the tame diffeomorphism f does not satisfy the conclusion of Proposition 6.1, contradicting
Remark 6.3. The proof of Theorem 2 is now complete. 2

We are left to prove Proposition 6.1.

Proof of Proposition 6.1: Given open sets U and V as in the proposition, consider a
diffeomorphism g ∈ U and its chain recurrence class C(g) contained in V . By (G1), after a
perturbation, we can assume that the chain recurrence class C(g) contains a hyperbolic periodic
point Dg. By (G2), we can assume that C(g) is the homoclinic class H(Dg, g) of Dg. Since this
proposition is local, we can assume that the continuation Dh of Dg is defined for every h ∈ U .
Now, according to [Ma2], either C(g) is hyperbolic or there is a perturbation h of g such that
h has a non-hyperbolic periodic point in V . After a new perturbation, we can assume that h
has two saddles with different indices in V (the non-hyperbolic point splits into two hyperbolic
periodic points of different indices). The hypotheses of the proposition imply that the orbits of
these two periodic points are both contained in V and belong to the same chain recurrence class
C(h). By (G2), we can assume that C(h) = H(Dh, h).

Since hyperbolic periodic points persist by C1-perturbations, the arguments above give a
dense open subset U1 of U ,

U1 = Uhyp

∐

U2,

such that

• the set Uhyp is open and, for every g ∈ Uhyp, the chain recurrence class C(g) is hyperbolic;

• the set U2 is open and every g ∈ U2 has two periodic saddles of different indices in C(g).

To prove the proposition it remains to see that, for every diffeomorphism g ∈ Uhyp, the chain
recurrence class C(g) is a basic set (Lemma 6.4) and that the diffeomorphisms of U2 having
robust cycles are dense in U2 (Lemma 6.6).
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Lemma 6.4. Let g ∈ Uhyp. Then the chain recurrence class C(g) is a basic set equal to H(Dg, g).

Proof: Just note that the hypotheses of the proposition imply that C(g) = H(Dg, g) robustly.
Using now that the chain recurrence set has associated a filtration7, it follows that C(g) is the
maximal invariant set in some neighborhood of it. Since C(g) is hyperbolic and is a homoclinic
class (thus it is transitive and the periodic points are dense in the class), one immediately has
that C(g) is a basic set. 2

We now state a well known consequence of the Hayashi’s Connecting Lemma (Lemma 5.6)
that we will use repeatedly in this section. For completeness, we will include its proof:

Lemma 6.5. Let U be an open set of Diff1(M) such that, for every f ∈ U , there are saddles
Pf and Qf with different indices depending continuously on f . Suppose that there is a dense
subset D of U such that H(Pf , f) = H(Qf , f), for all f ∈ D. Then there is a dense subset H of
U consisting of diffeomorphisms f having a heterodimensional cycle associated to Pf and Qf .

Proof: Suppose that the indices of Pf and Qf are p and q, p < q. Take f ∈ D and note that
the homoclinic class of Pf is a transitive set. Thus there is x ∈ H(Pf , f) whose forward orbit
accumulates to Pf and Qf . Hence there are sequences of natural numbers ki and mi such that

• fmi(x) converges to some point of W u
loc(Qf , f),

• fki(x) converges to some point of W s
loc(Pf , f),

• ki −mi > i.

Taking in Lemma 5.6 Ti = fmi(x), ni = ki−mi, Pf = Bf , andQf = Af , we get a diffeomorphism
h arbitrarily close to f such that W u(Qh, h) intersects W s(Ph, h). Let n be the dimension of
the ambient manifold. As the sum of the dimensions of W u(Qh, h) and W s(Ph, h) is

q + (n− p) = n+ q − p > n,

we can assume (after a new perturbation, if necessary) that the intersection between W u(Qh, h)
and W s(Ph, h) is transverse. This implies that there is an open and dense subset I of U such
that, for all g ∈ I, W u(Qg, g) and W s(Pg, g) have a non-empty transverse intersection.

Consider now a diffeomorphism f in the set I ∩ D (which is a dense subset of U). Since
H(Pf , f) = H(Qf , f) we can argue as above and apply again Lemma 5.6 to the saddles Pf and
Qf . Now Pf plays the role of Af and Qf the role of Bf . This gives a diffeomorphism h arbitrarily
close to f (thus h ∈ I) such that W u(Ph, h) intersects W s(Qh, h). AsW s(Ph, h)∩W

u(Qh, h) 6= ∅
(recall that h ∈ I), one has that h has heterodimensional cycle. As h can be chosen arbitrarily
close to f ∈ I ∩ D and the previous arguments hold for all f ∈ I ∩ D, this completes the proof
of the lemma. 2

Lemma 6.6. There is an open and dense subset Urcyc of U2 such that every diffeomorphism
f ∈ Urcyc has a robust heterodimensional cycle.

7There are two submanifolds with boundary M1 and M2 of the same dimension as the ambient manifold M

such that M2 ⊂ M1, g(Mi) is contained in the interior of Mi, i = 1, 2, and W = (M1 \ M2) is a neighborhood of
C(g) such that C(g) is the maximal invariant set of g in W (see [Co] for details).
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Proof: Recall that Theorem 1 claims that every co-index one cycle generates robust heterodi-
mensional cycles. Thus to prove the lemma it is enough to see that the diffeomorphisms having
a co-index one cycle are dense in U2. We first see that the diffeomorphisms g ∈ U2 such that
the chain recurrence class C(g) contains saddles having consecutive indices form a residual (thus
dense) subset of U2. Thereafter, using Lemma 6.5, we will get the density of diffeomorphisms
having co-index one cycles in U2.

By (G2) there is a residual subset G2 of U2 such that, for every f ∈ G2, C(f) = H(Df , f) for
some periodic point Df . Using (G4), we can assume that for every f ∈ G2 the indices of the
periodic points of H(Df , f) form an interval of N. Thus, by (G2) and the definition of U2, we
can assume that there are saddles Pf and Qf with index(Pf ) = index(Qf ) − 1 such that

C(f) = H(Pf , f) = H(Qf , f), for all f ∈ G2.

Thus we can apply Lemma 6.5 to the open set U2, the dense (in fact, residual) subset G2 of U2,
and the saddles Pf and Qf . This gives a dense subset D2 of U2 consisting of diffeomorphisms
f with a heterodimensional cycle associated to Pf and Qf . Noting that this heterodimensional
cycle has co-index one, we conclude the proof of the lemma. 2

Let Urcyc the subset of U2 of diffeomorphisms with a robust heterodimensional cycle. By
Lemma 6.6, this set is open and dense in U2. By Lemma 6.4, to prove the Proposition 6.1 it is
enough to take UV = Uhyp

∐

Urcyc. 2

6.3 Proof of Corollary 3

Recall that Corollary 3 claims the following: There is a residual subset R of Diff1(M) such that,
for every diffeomorphism f ∈ R and every isolated chain recurrence class C(f) of f , there are
two possibilities: either C(f) is hyperbolic or it has a robust heterodimensional cycle.

This corollary is a direct consequence of Proposition 6.1. Consider the residual subset R of
Diff1(M) satisfying properties (G1)–(G5) above. By (G4), C1-generically isolated chain recur-
rence classes are robustly isolated. Hence any isolated class C(f) of f ∈ R verifies Lemma 6.2.
Thus we can apply Proposition 6.1 to C(f), proving the corollary.

6.4 Proof of Theorem 3

Consider the residual subset R of Diff1(M) satisfying (G1)–(G5). We prove the following result
which implies Theorem 3.

Consider a diffeomorphism f ∈ R and a chain recurrence class C(f) of f containing two saddles
Pf and Qf of different indices. Then there are diffeomorphisms arbitrarily close to f having
robust heterodimensional cycles.

Note that, by (G2), C(f) = H(Pf , f) = H(Qf , f). Thus, by (G5), for every g ∈ R close
to f , one has C(g) = H(Pg, g) = H(Qg, g). Since the saddles Pg and Qg have different indices,
condition (G3) implies that there are saddles Ag and Bg in C(g) = H(Pg, g) = H(Qg, g) having
consecutive indices. Moreover, again by (G5) and (G2), for every h ∈ R close to g, one has

C(h) = H(Ph, h) = H(Qh, h) = H(Ah, h) = H(Bh, h).

Lemma 6.5 now gives ϕ arbitrarily close to h (thus arbitrarily close to f) with a co-index
one cycle associated to Aϕ and Bϕ. By Theorem 1, this co-index one cycle generates robust
heterodimensional cycles. The proof of the result is now complete.
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6.5 Proof of Theorem 4

Recall that Theorem 4 claims that every diffeomorphism with a co-index 1 cycle is in the closure
of an open set of Diff1(M) of diffeomorphism which do not satisfy the shadowing property. The
proof of Theorem 4 follows using the arguments in [AD, Theorem 1] (on its turn, these arguments
are an adaptation of the ones in [BDT, YY]). Let us sketch these arguments.

The main step of the proofs in [AD, BDT] can be summarized as follows. Suppose that a
diffeomorphism f has co-index one cycle with real central eigenvalues as follows. The cycle is
associated to saddles Pf and Qf , of indices u and u + 1, and there are a neighborhood of the
cycle V and a partially hyperbolic splitting over V of the form Ess ⊕ Ec ⊕ Eu, where Ec is
one-dimensional and dim(Euu) = u. Then there is a C1-open set N whose closure contains f
such that for every g ∈ N the unstable manifold of Pg accumulates to W s

loc(Qg, g) nicely : there
are a small unstable cone field around Euu, a sequence of points xn ∈ W u(Pg, g) converging to
some point x ∈W s

loc(Qg, g), and a sequence of u-disks Dn such that

• the disks are contained in the unstable manifold of Pg;

• every disk Dn is tangent to the unstable cone-field; and

• the disk Dn is centered at xn and its size is uniformly bounded from below (it contains a
u-ball centered at xn of uniform size).

Then, given g ∈ N , we first select large m in such a way xm is close to x ∈ W s
loc(Qg, g).

Thereafter we take large n such that gn(x) is close to Qg and g−n(xm) is close to Pg (recall that
xm ∈W u(Pg, g). We now consider the following finite pseudo-orbit of g with three-jumps:

zn+1 = Qg, zk = gk(x), if 0 ≤ k ≤ n, zk = gk(xm), if −n ≤ k < 0, z−n−1 = Pg.

The partially hyperbolic assumption prevents this pseudo-orbit from being shadowed by a true
g-orbit (this is proved in [AD, Lemma 3.12], see also [BDT, YY] where the similar arguments
are used). Therefore N is an open set of diffeomorphisms which do not satisfy the shadowing
property.

We are now ready to finish the proof in our case. Suppose that f has a co-index one
cycle. Then, by a perturbation of f , one gets a diffeomorphism h with a simple cycle (first,
using Theorem 5.1, one obtains a cycle with real central eigenvalues and thereafter one uses
Proposition 3.6). We now can apply the arguments above.

We note that the accumulation property above (W u(Pg, g) accumulates nicely to W s
loc(Qg, g))

can be obtained directly using the arguments in Proposition 4.3.

6.6 Proof of Corollary 2

In this section, we prove Corollary 2: existence of robust cycles implies approximation by co-index
one cycles.

Suppose that U is a C1-open set of diffeomorphisms f having robust heterodimensional
cycles, say associated to hyperbolic transitive sets Γf and Σf . Suppose that the indices of these
sets are p and q, p < q, respectively. Thus the set Γf is contained in the homoclinic class of a
saddle Pf of index p and the set Σf is contained in the homoclinic class of a saddle Qf of index
q. Note that the saddles Pf and Qf depends continuously on f .
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Lemma 6.7. Under the hypotheses above, there a residual subset G of U such that, for every
f ∈ G, the homoclinic classes of Pf contains saddles of indices p, p+ 1, . . . , q.

Proof: We first see that there is a residual subset G of U such that the homoclinic classes of
Pf and Qf are equal for all f ∈ G. Therefore, by (G3) (we can assume that G is contained in
R), the homoclinic class H(Pf , f) = H(Qf , f) contains saddles of indices p, p + 1, . . . , q. Thus
to prove the lemma it is enough to get the generic equality of these homoclinic classes.

Using the that U is an open set of diffeomorphisms with robust cycles and that the sum of
dimensions of W s(Pf , f) and W u(Qf , f) is greater than the dimension of the ambient manifold,
one immediately gets an open and dense subset V of U of diffeomorphisms f such that W s(Pf , f)
and W u(Qf , f) have a non-empty transverse intersection. The λ-lemma now implies that,

W u(Pf , f) ⊂ closure (W u(Qf , f)), for every f ∈ V.

Consider f ∈ V. We claim that every heteroclinic point x ∈ W u(Γf , f) ∩W s(Σf , f) is non-
wandering. Fix x ∈ W u(Γf , f) ∩W s(Σf , f) and a neighborhood U of x. By the λ-lemma, one
has that W s(Qf , f) and W u(Pf , f) intersect U . The λ-lemma also implies that

W u(Qf , f) ⊂ closure (∪n≥0f
n(U)) .

As W u(Pf , f) is contained in the closure of W u(Qf , f), one has that W u(Pf , f) is contained in
the closure of the forward orbit of U . As W u(Pf , f)∩U 6= ∅, there is k > 0 with fk(U)∩U 6= ∅.
Since this holds for every neighborhood U of x, this point is non-wandering.

Consider the residual subset G = R ∩ V of U . By (G1), the previous construction implies
that, for every f ∈ G, every x ∈ W u(Γf , f) ∩W s(Σf , f) is a chain recurrent point. It is now
immediate to see that the points Pf , Qf , and x are in the same chain recurrence class. By (G2),
one has H(Pf , f) = H(Qf ) for all f ∈ G. The proof of the lemma is now complete. 2

We have that, for every f ∈ G, the homoclinic class H(Pf , f) = H(Qf , f) contains a saddle
of index p + 1. Fix now f ∈ G and a saddle Rf of index p + 1 in H(Pf , f). By (G5), for every
g ∈ G close to f the saddle Rg belongs to H(Pg, g). By (G2), H(Rh, h) = H(Ph, h), for every
h ∈ G close to g. Lemma 6.5 gives ϕ arbitrarily close to g (thus to f) with a cycle associated
to Ph and Rh. By construction, this heterodimensional cycle has co-index one. This ends the
proof of the corollary.
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