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Abstract

A diffeomorphism f has a heterodimensional cycle if there are (transitive) hyperbolic sets
A and ¥ having different indices (dimension of the unstable bundle) such that the unstable
manifold of A meets the stable one of ¥ and vice-versa. This cycle has co-index one if
index (A) = index (¥) £ 1. This cycle is robust if, for every g close to f, the continuations
of A and ¥ for g have a heterodimensional cycle.

We prove that any co-index one heterodimensional cycle associated to a pair of hyperbolic
saddles generates C''-robust heterodimensioal cycles. Therefore, in dimension three, every
heterodimensional cycle generates robust cycles.

We also derive some consequences from this result for C''-generic dynamics (in any di-
mension). Two of such consequences are the following. For tame diffeomorphisms (generic
diffeomorphisms with finitely many chain recurrence classes) there is the following dichotomy:
either the system is hyperbolic or it has a robust heterodimensional cycle. Moreover, any
chain recurrence class containing saddles having different indices has a robust cycle.

keywords: Axiom A, chain recurrence class, cycle, dominated splitting, heterodimensional
cycle, homoclinic class, hyperbolicity, shadowing property.
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1 Introduction

1.1 Motivations and main result

Spoiling Smale’s dream that the theory of hyperbolicity could describe an open and dense set
of dynamical systems, Abraham and Smale [AS] constructed in 1970, by the first time, open
sets in the space of C'-diffeomorphisms whose elements do not satisfy the Axiom A property.
In contrast, generically, all periodic points of diffeomorphisms are hyperbolic. Recall that a
diffeomorphism f satisfies the Axziom A if the hyperbolic structures on its hyperbolic points
are compatible and fit together coherently: the non-wandering set Q(f) of f is hyperbolic and
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coincides with the closure of its periodic points. In this case, by the spectral decomposition
theorem (see [Neg|), the non-wandering set of f is the union of finitely many pairwise disjoint
hyperbolic basic sets, Q(f) = Aj U---UA,,, called the basic pieces of Q(f).

However, [AS] shows that this global hyperbolic structure is too rigid to be generic: there
is a C'-open set U of non-Axiom A diffeomorphisms defined on a manifold of dimension four
(the product of a two torus T? and a two sphere S?) such that every diffeomorphism in &/ has
two hyperbolic sets I" and ¥ whose indices (dimension of the unstable bundle) are different and
which are related by a C'-robust heterodimensional cycle. These cycles are defined as follows.

Definition 1.1 (Robust heterodimensional cycles). A diffeomorphism f has a heterodimen-
sional cycle associated to the (transitive) hyperbolic sets I' and ¥ of f if:

1. the indices (dimension of the unstable bundle) of the sets I' and ¥ are different;

2. the stable manifold of T' meets the unstable manifold of 3 and the same holds for the stable
manifold of Y and the unstable manifold of T'.

The heterodimensional cycle of f associated to the sets T' and ¥ above is C'-robust if there is
a Cl-neighborhood U of f such that every diffeomorphism g € U has a heterodimensional cycle
associated to the hyperbolic sets I'y and X, where I'y and X, are the continuations of I' and
> for g.

Clearly, heterodimensional cycles can only occur in dimensions greater than or equal to
three. However, Newhouse constructed in [Ne;] C?-open sets of non-Axiom A surface diffeomor-
phisms. This construction relies on the notion of C2-robust homoclinic tangency associated to
a hyperbolic set.

After the Abraham-Smale construction numerous examples of C'-robustly non-Axiom A
diffeomorphisms were constructed by several authors. First, [Si] strengths the ideas in [AS] to
get robustly non-Axiom A diffeomorphisms in the three dimensional torus. Later, [Sh, May,
BD;] gave examples of a special type of Cl-robustly non-Axiom A diffeomorphisms, the so-
called robustly non-hyperbolic transitive diffeomorphisms: these diffeomorphisms are transitive
(existence of a dense orbit in the whole manifold) and have hyperbolic saddles with different
indices. Transitivity implies that the non-wandering set is the whole manifold. The existence of
saddles having different indices now prevents the Axiom A property. Otherwise, by transitivity,
the whole ambient manifold should be a hyperbolic transitive set, therefore all the saddles should
have the same index, which is a contradiction.

The examples of robustly non-Axiom A diffeomorphisms in [AS, Si, BD;]| rely on the con-
struction of robust heterodimensional cycles (although this terminology is not used there), while
the constructions in [Sh, Ma;] do not involve explicitly robust cycles. However, see Remark 2, it
follows from our main result that in all known examples of C'-robustly non-Aziom A diffeomor-
phisms those having C'-robust heterodimensional cycles form a dense and open subset. Thus it
seems natural to ask how generally robust heterodimensional cycles appear for diffeomorphisms
far from hyperbolic ones:

Question 1. Let M be closed manifold. Does it exist a C*-open and dense subset © C Diff'(M)
such that every f € O either verifies the Aziom A and the no-cycles condition or has a C'-robust
heterodimensional cycle?



Note that a positive answer to this question implies the C'-density of hyperbolic surface
diffeomorphisms. See the discussion in Section 1.3 about the Smale density conjecture. We
will see that Theorem 2 gives a partial positive answer to this question for the so-called tame
diffeomorphisms (diffeomorphisms finitely many homoclinic classes, see the precise definition in
Section 1.2).

The examples by Abraham-Smale of non-Axiom A diffeomorphisms involves a hyperbolic
set I whose unstable manifold has dimension strictly greater than the dimension of its unstable
bundle. Note that a normally hyperbolic extension of transitive Anosov diffeomorphisms on a
torus T? gives an example of this configuration.

The construction in [BD;] gives a slightly different mechanism for constructing non-Axiom A
diffeomorphisms and robust heterodimensional cycles, based on the notion of blender. Roughly
speaking, a blender is a hyperbolic set whose embedding in the ambient manifold verifies some
specific geometric properties, whose effect is that, as in the Abraham-Smale example, the unsta-
ble manifold of a blender looks like a manifold of higher dimension. We review the construction
and main properties of blenders in Section 4.1.3. See also [BDVy, Chapter 6.1] for a discussion
of this notion.

One of the goals of this paper is to show that blenders (and as a consequence robust het-
erodimensional cycles) appear in a natural way in the unfolding of heterodimensional cycles
associated to two saddles.

Definition 1.2 (Heterodimensional cycle and co-index one cycle). A diffeomorphism f has a
heterodimensional cycle associated to two hyperbolic periodic saddles P and Q of f if the saddles
P and Q have different indices, the stable manifold of the orbit of P meets the unstable manifold
of the orbit of Q, and the same holds for the stable manifold of the orbit of Q and the unstable
manifold of the orbit of P.

A co-index one cycle is a heterodimensional cycle associated to saddles P and Q) whose
indices p and q satisfy of ¢ =p + 1.

WH(Q)

Figure 1: A heterodimensional cycle

Note that, by Kupka-Smale’s theorem, heterodimensional cycles associated to saddles occur
in the complement of a residual set of diffeomorphisms, thus they never are robust. Therefore
robust cycles should involve at least one non-trivial hyperbolic set.

The study of heterodimensional cycles was initiated in [NP] in the context of bifurcation
theory. Thereafter a systematic analysis of co-index one cycles was done in the series of papers



[DR;, DU, Di;, Dis, BD;, DRg, DR3, BDPR], where heterodimensional cycles are studied from
the point of view of bifurcation theory as well as a mechanism generating robustly non-hyperbolic
transitive sets and robust cycles. These results lead to the following question:

Question 2. Let f be a diffeomorphism with a heterodimensional cycle (associated to a pair
of saddles). Does every C'-neighborhood of f contain diffeomorphisms with C*-robust heterodi-
mensional cycles?

Our main result gives a positive answer to this question in the case of co-index one cycles.

Theorem 1. Let f be a C'-diffeomorphism having a co-index one cycle associated to a pair of
saddles. Then there are diffeomorphisms arbitrarily C*-close to f having robust (heterodimen-
sional) co-index one cycles.

Let f be a diffeomorphism defined on a manifold of dimension 3 with a heterodimensional
cycle related to saddles P and Q. In this case, either index(P) = 1 and index(Q) = 2 or
vice-versa, so such heterodimensional cycles are co-index one cycles. Therefore, we have

Corollary 1. Every diffeomorphism f defined on a 3-manifold with a heterodimensional cycle
associated to a pair of saddles belongs to the C'-closure of the set of diffeomorphisms having
C'-robust heterodimensional cycles.

Remark 1. In [Nes], Newhouse proved that the unfolding of any homoclinic tangency of a C?-
surface diffeomorphisms generates C%-robust tangencies associated to hyperbolic sets. Theorem 1
can be viewed as a version of this result for heterodimensional cycles in the C'-topology.

Remark 2. The approzimation by C'-robust cycles holds for all known examples of C'-robustly
non-Aziom A diffeomorphisms. The diffeomorphisms in [AS, Si] exhibit robust cycles by con-
struction. The diffeomorphisms in [Sh, May, BD4] are robustly non-hyperbolic and robustly
transitive. By [BDPR], open and densely, these diffeomorphisms have saddles of different con-
secutive indices. The transitivity and the Connecting Lemma in [Ha] (see also Lemmas 5.6
and 6.5) allow us to create cycles associated to these saddles, obtaining co-index one cycles.
Theorem 1 now implies the assertion.

Let us pose two questions related to the theorem and the corollary above. Consider a
diffeomorphism f with a co-index one cycle associated to a pair of saddles. Theorem 1 gives
diffeomorphisms g arbitrarily C'-close to f with C'-robust cycles associated to hyperbolic sets.
However, our proof does not give any relation between these hyperbolic sets and the initial
saddles in the cycle. Thus a natural question is the following:

Question 3. Let f be a diffeomorphism with a co-index one cycle associated to saddles P and
Q. Can the diffeomorphism f be C'-approximated by diffeomorphisms g with a robust cycle
associated to hyperbolic sets containing the continuations P, and Qg of P and Q¢

Another natural question concerns the degree of differentiability required in Theorem 1:

Question 4. Let f be a C"-diffeomorphism, r > 1, with a co-index one cycle. Can the diffeo-
morphism f be C"-approrimated by diffeomorphisms with robust heterodimensional cycles?



The results in [DRp] give a partial (positive) answer to Question 4 for some special heterodi-
mensional cycles. Clearly, Questions 3 and 4 can be formulated for heterodimensional cycles of
co-index greater than 1.

Concerning Question 2, a natural strategy for solving it is to see that any diffeomorphism with
a heterodimensional cycle can be approximated by diffeomorphisms with co-index one cycles.
However, while the arguments in the proof of Theorem 1 are semi-local (involving only the
dynamics in a neighborhood of the two periodic saddles and of two heteroclinic orbits defining
the cycle), Gourmelon convinced us that the higher co-index case exhibits some additional
difficulties, requiring a global analysis of the dynamics. On the other hand, the approximation
of heterodimensional cycles (not necessarily of co-index one type) by co-index one cycles is true
for robust cycles:

Corollary 2. Every diffeomorphism with a C'-robust heterodimensional cycle is C'-approzi-
mated by diffeomorphisms with C'-robust co-index one cycles.

The proof of this corollary (see Section 6.6) follows from Theorem 1, the properties of ho-
moclinic classes (see the precise definition in Section 1.2) of C'-generic diffeomorphisms® in
[CMP, BC, ABCDW], and the Connecting Lemma ([Hal).

In view of Corollary 2, Question 1 now is equivalent to the following one:

Question 5 (Question 1 reformulated). Can any C'-robustly non-Aziom A diffeomorphism be
Cl-approzimated by diffeomorphisms with co-index one cycles?

In fact, this question is a stronger version of the following conjecture:

Conjecture 1 (Palis, [Pa]). Every diffeomorphism in Diff'(M) can be C'-approzimated ei-
ther by an Axiom A diffeomorphism or by a diffeomorphism with a homoclinic tangency or a
heterodimensional cycle.

This conjecture was proved for surface diffeomorphisms by Pujals and Sambarino in [PS]
(note that for surface diffeomorphism heterodimensional cycles can be omitted). We will discuss
this conjecture, the previous questions, and our results in Section 1.3.

1.2 Consequences of Theorem 1

In this section, we deduce some consequences from our main result. In particular, we give some
partial positive answers to Question 1. We begin by recalling some definitions and results.

The homoclinic class of a saddle P of a diffeomorphism f, denoted by H(P, f), is the
transitive f-invariant compact set defined as the closure of the transverse intersections between
the invariant manifolds (stable and unstable) of the orbit of the saddle P. This set coincides
with the closure of the set of saddles homoclinically related with P (i.e., the saddles whose stable
and unstable manifolds transversely meet the unstable and the stable manifolds of P).

The chain recurrent set of a diffeomorphism f, denoted by R(f), is the set of points x
such that, for every ¢ > 0, there is a closed e-pseudo orbit joining x to itself: there is a finite
sequence r = g, Z1,...,Ty = « such that d(f(x;),z;+1) < e. By definition, the chain recurrent
set is closed and contains the set of periodic points. Two points « and y are in the same chain
recurrence class if, for every € > 0, there are e-pseudo orbits going from x to y and vice-versa.

'By C'-generic diffeomorphisms we mean diffeomorphisms forming a residual subset of Diff' (M).



By [BC, Corollaire 1.2], there is a residual set Ry of Diff' (M) of diffeomorphisms whose
chain recurrence sets coincide with the closure of their hyperbolic periodic points. Moreover,
for every f € Ri, any chain recurrence class containing a periodic point P coincides with the
homoclinic class of P, see [BC, Remarque 1.10]. Furthermore, by [BC, Corollaire 1.13], any
isolated chain recurrence class C(f) of a diffeomorphism f € R is robustly isolated. This means
that there are neighborhoods U of f in Diff' (M) and O of the chain recurrence class C(f) in M
such that, for every g € U, the intersection R(g) N O is a unique chain recurrence class of g. For
the precise statement of the C''-generic properties of homoclinic and chain recurrence classes we
use in this paper see conditions (G1)—(G5) in Section 6.1.

We say that a diffeomorphism is tame if every chain recurrence class of it is robustly isolated.
Thus tame diffeomorphisms have finitely many chain recurrence classes and the number of such
classes is locally constant. We denote the set of tame diffeomorphisms by 7~ C Diff!(M); this
set is C'-open. Furthermore, for generic tame diffeomorphisms, chain recurrence classes are
homoclinic classes.?

Theorem 2 (Hyperbolicity versus robust cycles). There is an open and dense subset O of the
set T of tame diffeomorphisms such that every f € O is either hyperbolic (Axiom A and the
no-cycles condition) or it has a C*-robust heterodimensional cycle.

Recall that an Axiom A diffeomorphism f has a cycle if there are basic sets A;,...,A;, of
the spectral decomposition of the non-wandering set of f such that W*"(A;, ) N W*(A;,, ) # 0,
for all k =1,...,n, where i,4+1 = 41. We prove Theorem 2 in Section 6.2.

We also have the following local formulation of the theorem above (see Section 6.3 for the
details of the proof).

Corollary 3. There is a residual subset R of Diff!(M) such that for every diffeomorphism
f € R and every isolated chain recurrence class C(f) of f there are two possibilities: either C(f)
1s hyperbolic or it has a robust heterodimensional cycle.

[ABCDW] claims that, for C'-generic diffeomorphisms, the set of indices of the (hyperbolic)
periodic points in a chain recurrence class (in fact, such classes are homoclinic ones) form an
interval in N. This result and the transitivity of chain recurrence classes with periodic points
(for generic diffeomorphisms) imply that if a chain recurrence class has two saddles having
different indices then one can obtain (after an arbitrarily small perturbation) a co-index one
cycle. Theorem 1 now implies (see Section 6.4):

Theorem 3. There is a residual subset R of Diffl(M) such that any f € R having a chain
recurrence class with periodic saddles of different indices has a robust heterodimensional cycle.

A diffeomorphism f satisfies the shadowing property if for any § > 0 there is € > 0 such that
any finite e-pseudo-orbit of f is d-shadowed by a true orbit: if (x;)}", is a é-pseudo-orbit there
is = such that d(f*(z),z;) < e for alli =0,...,n. A consequence of the existence of C''-robust
co-index one cycles in terms of the shadowing property is the following:

2 According to [CMP], there is residual subset R of Diff* (M) such that, for every f € Ro, any pair of homoclinic
classes of f are either disjoint or coincide. Thus, for f € R, one can consider the number (in NU {+o00}) of
(different) homoclinic classes of f. This number is locally constant in Ro, see [Ab]. A diffeomorphism f € Ry is
tame if this number is finite and we say that it is wild if otherwise.



Theorem 4. Let f be a diffeomorphism with a co-index 1 cycle. Then there is an open set
U of Diff!(M) whose closure contains f consisting of diffeomorphism which do not satisfy the
shadowing property.

This theorem is motivated by Remark 2 and the following result in [AD] (in fact, the proof
of Theorem 4 follows using the arguments there): among the C!-robustly non-hyperbolic and
robustly transitive diffeomorphisms those which do not satisfy the shadowing property form an
open and dense subset. The proof of Theorem 4 is in Section 6.5.

1.3 Discussion: C'-Robust homoclinic tangencies and heterodimensional cy-
cles

The main difference between Question 5 and Conjecture 1 above is that the conjecture involves,
besides heterodimensional cycles, homoclinic tangencies. Let us make a small digression about
the role of homoclinic tangencies for C'-generic diffeomorphisms. Following Definition 1.1, a
diffeomorphism f has a C'-robust homoclinic tangency if there is a C'-neighbourhood U of f
such that every g € U has a hyperbolic set A; whose unstable and stable manifolds have non-
transverse intersections (here we do not impose continuous dependence on the diffeomorphisms
g of the hyperbolic sets A).

First, there are not known examples of surface diffeomorphisms with C'-robust homoclinic
tangencies. On the other hand, most of examples of Cl-persistent tangencies (in dimension
three or higher) yields robust heterodimensional cycles and involves the notion of blender, see
[BD2, BD3, DNP]. Finally, [As] constructs C!-diffeomorphisms with robust homoclinic tangen-
cies considering deformations of the product of a Plykin attractor and a hyperbolic dynamics
of saddle type. It is not known if the construction in [As] yields heterodimensional cycles.
Thus a key question is to decide whether there are diffeomorphisms with C'-robust homoclinic
tangencies far from the ones having heterodimensional cycles. Since surface diffeomorphisms
cannot display heterodimensional cycles, the simplest version of this question is about the exis-
tence of C'-robust tangencies for surface diffeomorphisms. This last problem is closely related
to Smale’s conjecture of C'-density of hyperbolic dynamics for surface diffeomorphisms (this
conjecture remains open), see [Sma]?>.

Recall that in [Ne;] Newhouse constructed surface diffeomorphisms having C2-robust ho-
moclinic tangencies. Later, [Nes] stated that, in the C2-topology, homoclinic tangencies of a
surface diffeomorphism yields C2?-robust tangencies. See also [Ro, PV] for generalizations to
higher dimensions of this result. These results relies on the construction of thick hyperbolic sets
(see [PT)).

In [Ur], Ures showed that the arguments in the Newhouse’s construction cannot be carried
out to the C'-topology. Moreover, Moreira recently presented evidences showing that hyperbolic
sets of Cl-diffeomorphisms cannot exhibit robust tangencies, [Mo]. We interpret these results
as indications that homoclinic tangencies of surface diffeomorphisms cannot be C'-persistent.
Thus robust heterodimensional cycles seems to be a key ingredient in the generation of C''-robust
non-hyperbolic dynamics. This suggests that the answers to Questions 1 and 5 should be both
positive.

3For a discussion on the current state of the Smale’s density conjecture we refer to [ABCD]. Briefly, there
are two sort of obstacles to the C'-density of hyperbolic dynamics: (i) persistence of infinitely many hyperbolic
homoclinic classes and (ii) existence of a single homoclinic class with a robust homoclinic tangency. The discussion
here is related to the second obstacle.



We close this discussion noting that the topological dimension property of blenders (the
dimension of the unstable manifold of the blender is greater than its index) is a C!-robust
property. This property plays a role similar to the thick hyperbolic sets in the construction of
C'-robust heterodimensional cycles.

2 Plan of the proof of Theorem 1

In this section, we outline the proof of Theorem 1 and emphasize its main ingredients.

2.1 Cycles with real central eigenvalues

We begin by considering a special sort of heterodimensional cycles, called cycles with real central
etgenvalues.

Consider a diffeomorphism f with a co-index one cycle associated to saddles P and @, say
of periods 7(P) and 7(Q) and of indices v and u + 1. We say that a contracting eigenvalue
X of Df™P)(P) and an expanding eigenvalue § of Df™(@)(Q) are a pair of central eigenvalues
of the cycle if |\ > |o| for every contracting eigenvalue of D f™P)(P) and |8] < |n| for every
expanding eigenvalue of Df™(@)(Q). The cycle has real central eigenvalues if there is only
one pair of central eigenvalues: there are a contracting real eigenvalue A of D f™(P )(P) and an
expanding real eigenvalue 3 of Df™(@)(Q) such that A and 8 have multiplicity one, |\| > |o| for
every contracting eigenvalue o of Df™F)(P), and |3| < |n| for every expanding eigenvalue 7 of
Df™@)(Q), see Definition 3.1.

Next theorem states the approximation of diffeomorphism with co-index one cycles by dif-
feomorphisms having cycles with real central eigenvalues:

Theorem 5.1 Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Then every Cl-neighborhood U of f contains a diffeomorphism g with a co-index one
cycle with real central eigenvalues. Moreover, this cycle can be taken associated to saddles Pé
and qu homoclinically related to the continuations Py and Qg of P and Q.

This theorem is proved in Section 5, it implies that it is enough to prove Theorem 1 for
cycles with real central eigenvalues:

Theorem 2.1. Let f be a diffeomorphism with a co-index one cycle having real central eigenval-
ues. Then there are diffeomorphisms arbitrarily C'-close to f with C'-robust heterodimensional
cycles.

To prove Theorem 2.1, we need the notion of strong homoclinic intersection associated to
a saddle-node or a flip periodic point. Let f be a diffeomorphism and S a periodic point of f
of period 7(S). We say that S is a saddle-node (resp. a flip) of f if the derivative D f7(5)(S)
has an eigenvalue equal to 1 (resp. —1) and all others have modulus different from one. Then
the tangent space TsM splits into three D f™)-invariant directions TgM = E**(S) @& E(S) @
Ev(S), where E*°(S) and E""(S) are the strong stable and strong unstable bundles and E¢(S)
is the one-dimensional center bundle (associated to the eigenvalue of modulus one). In our
case, the strong stable and strong unstable bundles are both non-trivial. The strong stable
manifold W*5(S) of S is the unique f™)-invariant manifold tangent to E**(S) having the
same dimension as E**(S). This manifold is well and uniquely defined, see [HPS]. The strong
unstable manifold of S, W**(S), is defined similarly considering the bundle E**(S). We say



that a saddle-node or a flip S has a strong homoclinic intersection if there is some point X # S
with X € W*5(S) N W*(S). The point X is a strong homoclinic point of S. Strong homoclinic
intersections for saddles having a partially hyperbolic splitting E*® & E¢ & E“* are defined in
the same way.

Theorem 2.1 follows from the following two results (the proofs are in Sections 3 and 4)

Theorem 3.3. Let f be a diffeomorphism with a co-index one cycle with real central eigen-
values. Then there are diffeomorphisms arbitrarily C'-close to f having strong homoclinic in-
tersections associated to saddle-nodes or to flips.

Theorem 4.1. Let f be a diffeomorphism with a strong homoclinic intersection associated to
a saddle-node or to a flip. Then every C'-neighborhood U of f contains diffeomorphisms with
C'-robust heterodimensional cycles.

2.2 Ingredients of the proofs of Theorems 3.3 and 4.1

Sketch the proof of Theorem 3.3: We first perturb the diffeomorphism f having the cycle
to get a new cycle whose relevant dynamics is as simple as possible (this corresponds to the
notion of simple cycle, see Definition 3.5). This is done in Section 3.1, let us explain the main
ingredients of this construction.

Consider a diffeomorphism f with a co-index one cycle with real central eigenvalues as-
sociated to saddles P and @), say of indices v and u + 1. We first select heteroclinic points
X e Ws(P)NW*™Q) and Y € W*(P) N W?#(Q). After a perturbation, we can assume that
the heteroclinic intersection at X € W#(P) N W*(Q) is transverse (note that dim W?*(P) +
dimW*(Q) = (n —u) + (u+ 1) = n+ 1, where n is the dimension of the ambient) and that the
heteroclinic intersection at Y € W*(P)NW?*(Q) is quasi-transverse, i.e., Ty W*(P) & Ty W#(Q).

Using the heteroclinic points X and Y and following [BDPR, Section 3.1], we consider a pair
of transition maps (corresponding to iterations of the diffeomorphism), the first one Tpg goes
from a neighborhood of P to a neighborhood of ) following the orbit of the heteroclinic point
Y, and the second one Tgp goes from a neighborhood of @) to a neighborhood of P following
the orbit of X. These transitions are depicted in Figure 2.

Top
Qp\
| == /—:‘»/

X 7P

Figure 2: Transitions

We next focus on the dynamics in a small neighborhood of the cycle, that is, a neighborhood
of the orbits of the saddles P and () and of the selected heteroclinic points X and Y above.



A relevant part of the dynamics in this neighborhood (shortly, the dynamics of the cycle) is
obtained by considering (suitable) compositions of the transition maps Tpg and Tgp above and
the restrictions of the diffeomorphism to neighborhoods of the saddles P and ). The goal is to
turn this semi-local dynamics of the cycle as simple as possible (in fact, composition of affine
maps). For that we perform the following local and small C!-perturbations:

e Linearization. Using the C'-topology, we linearize (after a perturbation) the dynamics of
f in a neighborhood of the cycle: the restrictions of f*7) and (@) to neighborhoods of
P and @ are both linear and the transition maps are affine maps.

e Preservation of dominance. Using that the cycle has real central eigenvalues, one can
assume (after a perturbation) that the dynamics of the cycle is dominated. More precisely,
there is a locally constant dominating splitting E°° & E° @& E"* which is preserved by the
transitions and such that the dimension of E¢is 1. One has that E*(P) = E**(P)+ E¢(P),
and E4(Q) = E"(Q) + E(Q).

In Proposition 3.6, we obtain (after a small C'-perturbation) cycles in simplified form (sat-
isfying the linearization and preservation of dominance properties above). The analysis of the
dynamics of these cycles is essentially one-dimensional (reduction to the central direction) and
depends on the central eigenvalues of P and ). The proof of Theorem 3.3 now goes as follows:

e We consider the unfolding of simple cycles preserving their affine structures (associated
to the dominated splittings). This leads to a time re-scaling of simple cycles and their
unfoldings, called model maps and model unfolding maps (see Section 3.2). The model
unfolding families F g, depend on three parameters: the parameters A and 3 correspond
to the central eigenvalues of the cycle and the parameter ¢ corresponds to its unfolding. A
key fact is that to each unfolding of a simple cycle preserving its affine structure corresponds
a model unfolding family (and vice-versa).

e By construction, the model family keeps invariant the co-dimension one foliation gener-
ated by the sum of the strong stable and the strong unstable bundles of the dominated
splitting. We consider the quotient of the dynamics of the model family by this foliation,
obtaining a three-parameter family of systems of iterated functions defined on an interval
(see Section 3.3). Proposition 3.9 gives a dictionary which translates properties from the
one dimensional maps to the model families. Later, we will translate these properties of
the model families to the true diffeomorphisms. The key word of the dictionary is that
periodic points of the one-dimensional maps having two different periodic itineraries cor-
respond to saddles of the model family with strong homoclinic intersections (i.e., there is a
saddle whose strong stable manifold tangent to £*° and strong unstable manifold tangent
to E"" meet quasi-transversely).

e In Section 3.4, using Proposition 3.9 and analyzing the dynamics of the system of one-
dimensional iterated functions, we translate some properties of the one-dimensional dy-
namics to the model family. The key property guarantees the existence of strong homo-
clinic intersections associated to periodic points. In Propositions 3.16 and 3.17 we get a
sequence of parameters (t,), t, — 0, such that for each ¢, the corresponding model map
F\ g4, has a periodic point A, with a strong homoclinic intersection. The sequence of
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periods (m(A,)) of the saddles A4,, go to to infinity and the modulus of the central eigen-
value of DF j\r (ﬁ’?t’;)(An) (corresponding to the central bundle) is uniformly bounded. One
has that the same properties (existence of strong homoclinic intersections and uniformly
bounded central eigenvalues) hold for a sequence of diffeomorphisms g, converging to f in

the C'-topology (see Proposition 3.4).

e We conclude the proof of Theorem 3.3 by noting that a saddle (with arbitrarily large period
and whose central eigenvalue has modulus uniformly bounded) having a strong homoclinic
intersection, can be turned, by a small C''-perturbation, into a saddle-node or flip with a
strong homoclinic intersection.

This ends the outline of the proof of Theorem 3.3

Sketch the proof of Theorem 4.1: Theorem 4.1 is proved in Section 4. The proof of this
theorem follows from the results in [BD;, BDV;], which provide C'-robust cycles via the con-
struction of blenders. We first consider in Section 4.1 strong homoclinic intersections associated
to saddle-nodes. In Section 4.2, we reduce the case of strong homoclinic points associated to
flips to the saddle-node case.

The proof for saddle-node has two main steps. We first introduce (see Section 4.1.1) the
affine saddle-node cycles: a translation of the notion of simple cycle to the context of strong
homoclinic intersections associated to saddle-nodes. We next see that strong homoclinic inter-
sections generate affine saddle-node cycles. These constructions are similar to the construction
of simple cycles in Section 3.1.

Thereafter, by applying a series of local perturbations to an affine saddle-node cycle, we get
a blender, see Section 4.1.2. Finally, in Section 4.1.3, we review the notion of blender and deduce
the generation of C'-robust cycles from the existence of such blenders.

2.3 Cycles with non-real central eigenvalues. Ingredients of Theorem 5.1

Let us now explain the main steps of the proof of Theorem 5.1 (see Section 5). Suppose that f
has a co-index one cycle associated to saddles P and (). Assume that the index of () is greater
than the index of P. We prove that there is g arbitrarily C'-close to f having a cycle with real
central eigenvalues associated to new saddles homoclinically related with P and Q.

We first need a definition. A saddle A of period w(A) of a diffeomorphism f has real eigen-
values if the eigenvalues of D f™A4)(A) are real and different in modulus and have multiplicity
one. By [BDP], there is a residual subset of Diff' (M) of diffeomorphisms f such that, for every
non-trivial homoclinic class H (P, f) of f, the saddles of H(P, f) whose eigenvalues are real form
a dense subset of H(P, f).

Using the previous result and the transitivity of a homoclinic class, one proves the following:
Consider a diffeomorphism f with a co-index one cycle associated to saddles P and ) such
that the homoclinic class of P is non-trivial. Then there is a new heterodimensional cycle
associated to @ and to some saddle P’ in the homoclinic class of P having at least one real
central eigenvalue (the one corresponding to P’). See Theorem 5.3 in Section 5.1. In particular,
this theorem implies that if the homoclinic classes of P and () are both non-trivial, one can
generate a new cycle associated to saddles (in the homoclinic classes of P and @) with real
eigenvalues. In this way, one gets a cycle with real central eigenvalues.
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In view of Theorem 5.3, to prove Theorem 5.1 it is enough to see that given any diffeomor-
phism with a co-index one cycle there are two possibilities: either the cycle has real central
eigenvalues (in this case there is nothing to do) or the diffeomorphism is approximated by dif-
feomorphisms with co-index one cycles associated to a pair of saddles whose homoclinic classes
are both non-trivial.

Consider a diffeomorphism f with a co-index one cycle as above and a pair of central eigen-
values A and 3 of the cycle (X is a contracting eigenvalue of D f™F)(P) and 3 is an expanding
cigenvalue of Df™(@)(Q)). After a perturbation, we can assume that these central eigenvalues
have multiplicity one and the only eigenvalues of the same modulus as A and 3 are A and f3
(assuming that they are non-real). There are three cases: (i) the central eigenvalues A and
[ are both non-real, (ii) there is exactly one non-real central eigenvalue, and (iii) the central
eigenvalues are both real, this is the case of central real eigenvalues. Thus it remains to consider
cases (i) and (ii).

First, one proves that if a saddle in the cycle, say the saddle ), has a pair of conjugate
non-real central eigenvalues then there are diffeomorphisms g close to f with cycles associated
to P and @ such that the homoclinic class H(P, g) of P is non-trivial, see Proposition 5.7 in
Section 5.2. The proof of this result is relatively easy and only involves linearizations and the
assumption that the non-real central eigenvalue of the saddle () has irrational argument. These
assumptions are obtained after perturbations.

The previous result (Proposition 5.7) implies that if both saddles in the cycle have non-real
central eigenvalues, we can assume, after a perturbation, that the homoclinic classes of both
saddles P and ) are non-trivial. Hence, applying Theorem 5.3, one gets co-index one cycles
with real central eigenvalues, see Lemma 5.9 in Section 5.3.

Finally, in Section 5.4 we study the remainder case, when only one central eigenvalue of the
cycle is non-real (say the central eigenvalue of P). Thus, by Proposition 5.7, we can assume
that the homoclinic class of @) is non-trivial. Hence the stable manifold of @) accumulates to the
heteroclinic intersection of W*(P) N W#(Q). The cycle configuration also implies that stable
manifold of P also accumulates to the heteroclinic intersection. These two facts allow us to
perform a perturbation, destroying the initial cycle, which simultaneously generates transverse
homoclinic points of P as well as a new quasi-transverse intersection between W*(P) and W*#(Q),
see Lemma 5.10. Thus we get a new cycle associated to two saddles with non-trivial homoclinic
classes. Once more, using Theorem 5.3, we get co-index one cycles with real central eigenvalues.

This concludes the outline of the proof of Theorem 5.1: every diffeomorphism with a co-index
one cycle is Cl-approximated by diffeomorphisms with cycles with real eigenvalues.

Standing notation: Throughout this paper we use the following notations.
e Given a periodic point P of a diffeomorphism f we denote by m(P) the period of P.

e If P is hyperbolic, there is defined its continuation for every diffeomorphisms g close to f.
We denote such a continuation by P,.

e The perturbations we consider are always arbitrarily small. Thus the sentence there is a
Cl-perturbation g of f such that means there is g arbitrarily C'-close to f such that.
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3 Co-index one cycles with real central eigenvalues

The goal of this section is to prove Theorem 3.3. We begin this section with two definitions.

Definition 3.1 (Central eigenvalues of a co-index one cycle). Let f be a diffeomorphism with a
co-index one cycle associated to the saddles P and @ (of periods w(P) and w(Q)). Let \1,..., A\,
be the eigenvalues of Df™F)(P) enumerated with multiplicity, where |N\;| < |Nip1| (n is the
dimension of the ambient manifold). Similarly, Bi,...,0Bn, |Bil < |Biti1l|, are the eigenvalues
of Df”(Q)(Q). Suppose that the stable manifolds of P and @ have dimensions s + 1 and s,
respectively.

o An eigenvalue \; of Df™P)(P) is a central eigenvalue of the cycle (associated to P) if
IXil = [As+1] < 1. Similarly, an eigenvalue §; of Df™@)(Q) is a central eigenvalue of the
cycle associated to Q if |Bj] = |Bs+1]| > 1.

e The central eigenvalue of the cycle associated to P (resp., Q) is real if |As+1] > |As| (resp.,
Bs+1| < |Bst2l). In this case, we write As11 = Ac (resp., Bst1 = fBe)-

e The cycle has real central eigenvalues if the central eigenvalues associated to P and Q) are
both real.
Consider a diffeomorphism f with a co-index one cycle with real central eigenvalues. The

following properties hold:

e There is a (unique) D f-invariant dominated splitting? defined on the union of the orbits
Op of P and Oq of Q,

TyM = E¥ & ES & EY", AcOpuUOg.
such that dim £’ = s, dim £9 = 1, and dim EY{" = u, where u is the index of P.

e The central eigenvalues A\, and . of the cycle are the eigenvalues of D f™® )(P) and
Df™@)(Q) corresponding to the (central) bundle E¢, respectively.

o If Ac Op then Ef = E5 © £ and if A € Og then £Y = ES © EY".
We say that the splitting E%° @ E¢ @ E"" is the partially hyperbolic splitting of the cycle.

Definition 3.2 (Strong homoclinic intersections). Let P be a periodic point of period w(P) of
a diffeomorphism f such that there is a D f-invariant partially hyperbolic splitting defined over
the orbit Op of P,

TO(P)M —ES @ E‘o Euuu7

4A D f-invariant splitting E @ F of TM over an f-invariant set A is dominated if the fibers of the bundles have
constant dimension and there are a metric || - || and a natural number n € N such that

n —n ]‘
IDf" (@)ell - IDf " (@)r|l < 5, forallz € A
For splittings with three bundles E @ F & GG, domination means that the splittings (E® F) ® G and E® (F & G)
are both dominated. A dominated splitting is partially hyperbolic if at least one of the bundles is uniformly

hyperbolic. We consider partially hyperbolic splittings £ @& F' & G such that E is uniformly contracting and G is
uniformly expanding.

13



such that E€ has dimension one, every eigenvalue \ of Df”(P)(P) corresponding to E%° satisfies
I\ < 1, and every eigenvalue 3 of Df™F)(P) corresponding to E"* satisfies |5] > 1 (i.e., E*
is uniformly contracting and E"" is uniformly expanding).

Let W*5(P, f) be the orbit of the unique f™)-invariant manifold tangent to E*(P). Simi-
larly, WY(P, f) is the orbit of the unique f™)-invariant manifold tangent to E**(P)®

The periodic point P has a strong homoclinic intersection if there is X € W#(P, f) N
WU (P, f), where X # P. We say that the point X is a strong homoclinic point of P. The
point X is quasi-transverse if Tx W*S(P, f) + TxW"(P, f) = TxW* (P, f) & Tx W"(P, f).

In this definition, the partial hyperbolicity implies that if A, is the eigenvalue of D f”(P )(P)
corresponding to E¢ then |A| < |A\;| < |3, for every eigenvalue A corresponding to £ and any
eigenvalue (8 corresponding to E"*. Note that if the the periodic point P is hyperbolic then
its index is either dim(E*") or dim(E*") + 1. In the first case, W"(P, f) = W"*(P, f) and
Wes(P, f) € W5(P, f). In the second one, W5(P, f) = W*(P, f) and W"“*(P, f) C W“(P, f).

As E° has dimension one, if the periodic point P is not hyperbolic, either A\, = 1 or A, = —1.
In the first case, we say that P is a saddle-node, in the second one P is a flip.

The goal of this section is to prove:

Theorem 3.3. Let f be a diffeomorphism with a co-index one cycle with real central eigenvalues.
Then there are diffeomorphisms arbitrarily C'-close to f having strong homoclinic intersections
associated to saddle-nodes or to flips.

The proof of this theorem has two steps. The first step (which is the main one) is the
proposition below:

Proposition 3.4. Let f be a diffeomorphism having a co-index one cycle with real central
etgenvalues. Then there are a constant C > 1 and a sequence f, of diffeomorphisms, f, — f
(in the Cl-topology), such that every f, has a periodic point A, such that:

o The orbit of A, has a partially hyperbolic splitting E*® & E°¢ @& E"*, where E€ is one-
dimensional, E*° is uniformly contracting, and E™ is uniformly expanding.

e The sequence of periods w(Ay) of Ay, satisfies m(A,) — 00 as n — oo.
e The central eigenvalue A°(A,,) ofo:f(A") corresponding to E€ satisfies |\°(Ay,)| € [1/C, C].
e The periodic point A, has a quasi-transverse strong homoclinic intersection.

After proving Proposition 3.4, for large n, one performs a C''-perturbation of the diffeomor-
phism f,, along the orbit of A, in order to transform A, into a saddle-node or a flip. This
perturbation preserves the strong homoclinic intersection. This perturbation roughly is a com-
position with a homothety of radius (|A.(4,)[)/74n) along the orbit of A,,.

In this way, one gets a central eigenvalue of modulus one. Note that the sequence (|A.(Ay)|)
is bounded and 7(A4,) — oo, thus (|Ac(A4,)))"/"4n) — 1 as n — oo. Hence the size of the
perturbation can be taken arbitrarily small. This gives a sequence of diffeomorphisms g, — f (in
the C''-topology), such that every g, has a periodic saddle-node or flip with a strong homoclinic
intersection. This concludes the proof of Theorem 3.3.

To prove Proposition 3.4 we need the following preparatory ingredients and results:

5The existence and uniqueness of W**(P, f) and W"* (P, f) follows from [HPS]. These manifolds are the strong
stable and strong unstable manifolds of P.
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e Simple cycles (see Section 3.1). We prove in Proposition 3.6 that, after a perturbation,
every co-index one cycle with real central eigenvalues has local coordinates where the
dynamics of the cycle is affine and partially hyperbolic (with one-dimensional central di-
rection). Hence simple cycles have an affine structure associated to its partially hyperbolic
splitting. We consider the unfolding of simple cycles preserving such an affine structure.

e Model unfolding families (see Section 3.2). We construct three-parameter families of affine
maps defined on cubes of R" satisfying the following key property: for every unfolding
of a simple cycle preserving its affine structure there is a model unfolding family which
describes such an unfolding of the cycle (and vice-versa). See Remark 3.7.

e One-dimensional reductions (see Section 3.3). The model families preserve a co-dimension
one bundle (corresponding to the sum of the strong stable and the strong unstable bun-
dles). Then one can consider the one-dimensional quotient dynamics describing the central
dynamics. This leads to systems of iterated functions defined on the central direction. In
Section 3.4, for these one-dimensional reductions, we obtain periodic points with two dif-
ferent periodic itineraries.

e From one-dimensional reductions to model unfolding families. We finish the proof of Propo-
sition 3.4 in Section 3.5. We see how the existence (for the one-dimensional reductions) of
periodic points with two different itineraries is translated to the existence of periodic points
with quasi-transverse strong homoclinic intersections for the model unfolding family.

3.1 Simple cycles

In this section, we consider a diffeomorphism f with a co-index one cycle with real central
eigenvalues. We obtain, after a C''-perturbation, a new co-index one cycle (associated to the
same initial saddles, thus with real central eigenvalues) and local coordinates at these saddles
such that the dynamics in a neighborhood of the cycle is affine. Let us explain this point more
precisely. We first describe simple cycles in non-technical and non-formal terms. For that we
begin by introducing some notations.

Consider a cycle associated to saddles P and @, say with index (P) 4+ 1 = index (Q). We
fix small neighborhoods Up and Ug of the orbits of P and @ and heteroclinic points X &
WP, f)NW™(Q, f) and Y € W*(P, f) NnW*(Q, f). After a perturbation, we can assume that
the intersection between W#(P, f) and W*(Q, f) at X is transverse and that the intersection
between W*(P, f) and W#(Q, f) at Y is quasi-transverse. Then there are neighborhoods Ux of
X and Uy of Y and natural numbers n and m such that

fn(Ux) c Up, fﬁn(Ux) C UQ, fm(Uy) C UQ, and fﬁm(Uy) Cc Up.
We say that
e theset V=UpUUqU (UL_, f'(Ux)) U (U™_,. f'(Uy)) is a neighborhood of the cycle,

e 2n and 2m are transition times from Ug to Up and from Up to Ug, respectively, and

e the maps Ty = f2™ and T = f2" are transition maps from Up to Uq and from Ug to Up
(these maps are defined on small neighborhoods Uy of f~™(Y) and Ux of f~"(X)), see
Figure 3.
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Our goal is to prove that, after a C'-perturbation, we can choose the neighborhoods Up,
Ug, Ux, and Uy and the numbers n and m such that there are local coordinates at P and @
such that (in these coordinates),

o f™®) and (@) are linear maps, and
e the transitions T; = f2™: 0}/ — Ug and Ty = 2. UX — Up are affine maps.
If the conditions above are satisfied, we say that the cycle is a simple cycle. The precise (some-

what technical) definition is given below. The elements in the definition are depicted in Figure 3.

Definition 3.5 (Simple cycle). A co-index one cycle of a diffeomorphism f associated to periodic
saddles P and @ is simple if it satisfies conditions (S1)—(S4) below.

S1) The cycle has real central eigenvalues.

S2) There are local charts Up and Ug centered at P and ) where the expressions of frP)
and f™(@) are linear. Moreover, there is a partially hyperbolic splitting E*5 @ E¢ @ E",
defined over the orbits of P and (), which in these local charts is of the form

E*® =R x {(0,0)}, E°={0"} xRx{0"}, E" ={(0°0)} xR",
where s and u are the dimensions of W*(Q, f) and W (P, f), respectively.
We extend the splitting £ @ E°@® E*" to the neighborhood Up UUg as constant bundles.
S3) There is a quasi-transverse heteroclinic point Yp € W*(Q, f) N W¥(P, f) in the chart Up,
dim(Ty, W*(Q, f) + Ty, W*(P, f)) =n — 1,
such that (in these local coordinates):
1. The point Yp is of the form Yp = (0%,0,a"), where a* € R“. Moreover, there is a

neighborhood C*(Yp) of Yp in W*(Q, f) N Up contained in R* x {(0,a")}.

2. There is £ > 0 such that Yy = f*(Yp) belongs to the chart Uy around @ and
Yo = (a®,0,0%), where a® € R®. Moreover, there is a neighborhood C*(Yg) of Yy in
W (P, f) N Ug contained in {(a®,0)} x R".

3. There is a neighborhood Uy, of Yp, Uy, C Up, such that fe(UyP) C Ug and

T = f4: Uy, — fY(Uy,)

is an affine map preserving the splitting F*® @ FE¢ @ E**. Moreover, the map ¥ is
uniformly contracting in the F*® direction, uniformly expanding in the E** direction,
and an isometry in the central direction E°.

S4) There is a point Xg € Ug in the transverse intersection W*(Q, f) h W#(P, f) such that
(in these local coordinates):

1. The point Xg is of the form X¢g = (0°,bg,0%), with by > 0. Moreover, there is € > 0
such that the segment I = {0°} x [bg —€,bg + €] x {0"} containing X is contained
in W*(Q, f) M W*(P, f).
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2. There is r > 0 such that Xp = f"(Xg) is in the chart Up and Xp = (0%,bp,0"),
where bp < 0. Moreover, the curve J = f"(I) satisfies

J=f"(I)={0°} x [bp —e&,bp +¢| x {0"} C Up.
3. There is a neighborhood Ux,, of Xq, Ux, C Ug, such that f"(Ux,) C Up and
To=f": UXQ - fT(UXQ)

is an affine map preserving the splitting E*® & E¢ ¢ E**. Moreover, the map %3 is
uniformly contracting in the F*® direction, uniformly expanding in the E** direction,
and an isometry in the central direction E°.

We call the affine maps T; and To the transitions of the simple heterodimensional cycle.

This definition means the dynamics in a neighborhood of a simple cycle is given by linear
maps (the dynamics nearby the saddles), by affine maps (the dynamics corresponding to the
transitions), and by suitable compositions of these maps.

Euu EU’LL
) E°

Xp AZP
E?® 1 J A
YQ/ UXQ {DYUYP

P

E‘SS

5%

Figure 3: Elements of a simple cycle

Proposition 3.6. Let f be a diffeomorphisms having a co-index one cycle with real central
eigenvalues associated to the saddles P and Q). Then any C'-neighborhood U of f contains
diffeomorphisms g with simple cycles associated to P and Q).

Proof: This proposition is almost the same as [BDPR, Lemma 3.2], the only novelty here is
that we require the transition maps %; and %> to be isometries in the central direction. So we
just prove this step and refer to [BDPR, Lemma 3.2] for details.

Using [BDPR, Lemma 3.2], we can assume (after a perturbation) that there are defined maps
%1 and %5 preserving the partially hyperbolic splitting E** @ E¢ @ E“*. Let A and B be the
derivatives of f™P) at P and of f™(@ at Q in the local charts. Note that one can replace ¥, by
A™ 0% o B™2, for any positive my and msy. This corresponds to replace the quasi-transverse
heteroclinic points Yp and Yy by =" 7"F)(Yp) and fm27(@(Yy), respectively, thus replacing
the transition time ¢ by a larger number.

We can choose m; and mg arbitrarily large in such a way the modulus of the derivative of ¥y
in the central direction remains (upper and lower) bounded. Now, after a C''-perturbation of f in
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a small neighborhood of the segment of orbit Y, f(Yp), ..., f{(Ypr) = Yy (a small multiplication
in the central direction), we can assume that the modulus of the derivative of ¥; in the central
direction is exactly one. Thus, after a new perturbation, we have that the action of T; in the
central direction is an isometry.

The proof for the transition T9 is completely similar.

Finally, the expansion (resp., contraction) of ¥; and ¥y in the E"* (resp., E*°) follows
observing that A and B are expanding (resp., contracting) in these directions, so it is enough to
take large ¢ and r (i.e., to increase m; and mo above). This completes the sketch of the proof
of the proposition. a

3.2 Model unfolding families

By Proposition 3.6, every co-index one cycle with real central eigenvalues is approximated by
simple cycles. The key property is that the dynamics in a neighborhood of these cycles is
affine. We now focus on simple cycles and describe the dynamics of nice perturbations of them:

the unfolding of simple cycles preserving their affine structures. This leads us to consider 3-

parameter families of model unfolding maps F ;E ﬂit, where the parameters A € (0,1) and § €

(1,00) correspond to the central eigenvalues of the cycle and the parameter ¢ € R corresponds
to the unfolding of the cycle. The parameters + describe the orientation of the transitions <
and T9 of the simple cycle in the central direction.

We now define model unfolding families. Consider two copies Ap and Ag of the unitary
cube [—1,1]° x [-1,1] x [-1,1]* and sub-cubes ¥p C Ap and Xg C Ag, defined as follows.
Consider small § > 0 and points bg € (0,1) and a} € (R*\ {0"}) such that

lbo — 6,bo + 0] € (0,1) and [a% — & a% +8]* € (=1,1)*\ {0"},

where [a'y — §,a’s + §]" is the u-cube of edges of length 20 centered at a' (we use this notation
from now on). Then

e Yp is the cube [—1,1]° x [=4,0] X [a% — &, a% + 0]* contained in Ap;
e > is the cube [—1,1]° X [bg — §,bg + d] x [—1,1]* contained in Ag.
We also fix linear maps

o A% B* Ty T5: R® — R® which are contractions (i.e., their norms are strictly less than
one);

o A" BY TV T3 : R* — R" which are expansions (i.e., their inverse maps are contractions).

We now define a family of maps on the disjoint union Ap [[ Ag (the resulting maps will be the
model ones) as follows:

1. Given A € (0,1) and 8 > 1, consider the linear maps
AnBs, TN T, LT, iR =R, n=s+u+1,
defined by

o Ay(z*, 2% x") = (A%(x®), A€, A" (z"));
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e By(a®, 2% a") = (B*(2*), Bz, B*(z"));
° ’fzi(xs,xc,;ru) = (T7(z®), £ 2, TH(a")); i =1, 2.
2. Fix bp € (—1,0) with [bp — 8,bp 4+ 8] C (—1,0) and let ;" be the affine map defined by
’Zéi(xs,ﬁ,x“) = ’j;i(ﬁ,xc,x") + (0%, —=bg + bp,0").
Note that 757(0°, bg, 0%) = (0°,bp, 0%).

3. Take afy € R*\{0°} such that [ag, — 4, ag) +6]* C [—1,1]°\{0%} (as above, [ag, -, ag) + 6]
is the s-cube of edges of length 2§ centered at aa). For small t € R, let ’Tﬁ be the affine
map defined by

left(xs,xc,x“) = ’fli(xs,xc,xu) + (agy, t, =T1"(ap)).
Note that, for t = 0, 7,5 = ’Tio and Tlit(Os 0,a%) = (ag,t,0%).

The map Tlit is a perturbation of ’Tl obtained considering a translation of size ¢ in the
central direction.

Bg Ay
O\ EQ@ ] O Ap
R ! R
\ ZP
\ o
20 N 7

Figure 4: Model maps

Given A € (0,1), # > 1, and small ¢t € R, we consider the map Fy ﬂji defined on a subset
SQ7P7t Of AQ H AP?
Fige: Sap:— Aq [ Ar,

obtained as follows:
o if x € Ap\ Xp and Ay(z) € Ap, then F)\ﬁt( x) = Ax(x) € Ap;
o if z € Ag \ Xg and Bg(z) € Ag, then F/\ﬂt( x) = Bg(x) € Ag;
o if x € Xp and Tlit(a:) € Ag, then F)\ﬁt( x) = ’Tlit(@ € Ag;

e if 2 € Xg and 7;5(z) € Ap, then F;Eﬁit( ) =T (z) € Ap.
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The set Sg p; is the maximal subset of Ag [[ Ap where F. )\i ﬁit can be defined according to the

rules above. Note that the map F ;E ﬂit is bi-valuated in some points.

For a fixed A € (0,1) and # > 1, we say that F' j[ ’ﬁio is a model map and the 3-parameter
family F ;E ﬂit is a model unfolding family. The maps TljE and ’Tf are the transitions of the model
family. Finally, left is the unfolding map.

Standing notation: Here F ;L ;’t means that we consider the maps Tlt and ’T;, for I ﬁ+t we

choose ’Tft and T;r, for F;r 54 We take ’Tfrt and 7, , and F\ ;; means that we consider Tft and
7, . As the role of + is rather unessential in this section, for notational simplicity, we will omit
these scripts. The first script &+, relative to ’Tlit, will play an important role in Section 3.4. The
effect of these scripts only affect the orientation of central dynamics: for the choices (++) and
(——) provide isometries preserving the orientation (the identity), and the choices (+—) and
(—+) give isometries reversing the orientation (minus the identity).

Remark 3.7 (Model unfolding families and simple cycles).

e We denote by P the point (0%,0,0") € Ap and by @ the point (0°,0,0%) € Ag. These
points are saddles of F) g; of indices u and u + 1, respectively. The map F) go has a
co-index one cycle with real central eigenvalues associated to P and @Q: it is enough to
note that:

(087 0) a%)v (azgv 0) Ou) € Wu(Pa F)\,ﬂ,O) N WS(Q) F)\,ﬁ,o)

and
(0%,bg,0%), (0°,bp,0%) € W(P, F 5,0) "W (Q, Fxpy)-

Also note that the intersections at (0°,0,a}p) and (ag,,0,0") are quasi-transverse and the
intersections at (0°,bg,0") and (0%,bp,0") are transverse.

e Observe that if f is a diffeomorphism with a simple cycle then there is a model map F) g
such that the dynamics of f in a neighborhood of the cycle is, after a finite time re-scaling,
the one of F) 50. More precisely, there are a model map F) g0, local coordinates around
the saddles P and @ in the cycle, and heteroclinic points Xp, X, Yp and Yg such that:

i) The point Xp corresponds to the point (0°,0,a%) of the model, X corresponds to
(aa, 0,0%), Yp corresponds to (0°,bp,0"), and Yg corresponds to (0%, by, 0%).

ii) The transitions ¥; and %9 of the simple cycle are the transitions 73 and 73 of the
model map.

iii) Suppose that the central eigenvalues of the simple cycle are A and 3. Assume first that
these eigenvalues are both positive. Then the dynamics of f®) in a neighborhood of
the saddle P is the one of the model map in the cube Ap, for some linear map A, (for
appropriate A° and A"). Similarly, the dynamics of f™@) in a neighborhood of Q is
the one of the model map in the cube Ag), for some linear map By (for appropriate B*
and B%). If the central eigenvalue ) is negative, we consider f?2 ™(P) and the dynamics
is given by some A,2. Analogously, if 3 < —1, we consider f2™(@) and the dynamics
is given by some Bg2.

In this case, we say that F) g is a model map for the simple cycle of f. If A < 0 (resp.
3 < 0) we replace A by A\? (resp. 3?).
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e Suppose that the diffecomorphism f has a simple cycle and that F) go is a model map
of it. Then, for every A and (' close to A and [ and for every ¢ close to 0, there is a
diffeomorphism ¢, which is C'-close to f, such that the dynamics of ¢ in a neighborhood
of the cycle of f (up to the same re-scaling as the one of f) is given by Fy g ;.

The main result about model families is the following:

Proposition 3.8. Let F;_L’ﬁio be a model map. Then there are a constant C > 0 and sequences
A — A, B — B, and t,, — 0, such that, for every n, the map

+.,+
By =F\ 5.1,

has a periodic point A,, of period my,, m, — 0o, such that
o the central eigenvalue A.(Ay) of DF)"(A,,) satisfies 1/C < |A(Ap)| < C,
e the periodic point A, has a quasi-transverse strong homoclinic intersection.

In view of the previous comments, this proposition implies Proposition 3.4.

We will prove Proposition 3.8 in Section 3.4. The proof involves a one-dimensional reduction
associated to model families. Note that every model unfolding family F g, preserves the foliation
Fs% generated by the hyperplane E* @& E"* (indeed the model family preserves any foliation
tangent to E*°, or to E, or to E"", or tangent to the sum of any pair of these bundles). This
fact allows us to consider the quotient dynamics of F) g; by the leaves of F7°“, which defines a
one-dimensional dynamics. The study of this one-dimensional reduction and its dynamics is the
goal of the next section.

3.3 One-dimensional dynamics associated to model families

Let Ip and Ig be two copies of [—1,1]. Denote by P and @, respectively, the point 0 in the
segments /p and Ig. For any A € (0,1), 8 > 1, consider the linear maps

Hhilp — R, f)\(l‘):)\x and gg:IQ—>]R, gﬂ(x):ﬂx'

Consider bg € (0,1), bp € (—1,0), and § > 0 as in Section 3.2. Denote by Jg the segment
[bg — 0,bg + 6] in I and by Jp the segment [—4, +6] in Ip. Finally, consider the isometries 05
and Hli’t defined by

9;:: Jg — Ip, Héc(bQ—i—x) =+x+bp

and
Hft: Jp — Ig, Hft(a:) =tz +1.

Given a model unfolding family F ;E ﬂit, the family of maps (gj o Gi’t o fito 9;)n7m20 is the

one-dimensional family associated to FE ’ﬁ Note that each map (gﬁ o th o fl'o 9;) is defined
on a sub-interval (this interval may be empty) of Jg.
The goal of this section is to prove the following proposition:

Proposition 3.9. Let F )\ ﬂ , be a model unfolding family. Then there is N > 0 with the following
property: For every pair of natural numbers n and m, n,m > N, any parameter t, and any point
a € Jg satisfying

gg oﬂft o fi OHQi(a) =q
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Figure 5: One-dimensional families

there is a periodic point A, , € ¥q of F;[’ﬁit of period m + n + 2 of the form
Apn = (a®,a,a")
such that:

o The central eigenvalue \°(Ap, ) of D(F)\i’ﬂ T2 (A, ) is £AT 7 (where + is the prod-
uct of the signals associated to the maps Hft and 9;)

e Suppose, in addition, that there are m',n’ € N larger than N such that (m',n’') # (m,n)
and
g5 0 0%, 0 fi¥ 005 (a) = a.

Then there is a point B, B # Ay, p, B € W““(Am,n,F;[’ﬁit) N WSS(Am,n,F)\i’ﬁit) (i.e., the
periodic point Ay, n has a strong homoclinic intersection). Moreover, this intersection is

quasi-transverse.

By Proposition 3.9, to prove Proposition 3.8 (thus Proposition 3.4) it is enough to see that
given any simple cycle and a model unfolding family F)\i ﬁit of it, there are a point a € Jg and
sequences of parameters tp, — 0, of eigenvalues A\, — A and O — [, and of natural numbers
T, Mg, M, M), — 00, (Mg, ny) # (M, ny.), such that

ng + my + _ n;c + m;ﬂ + —
g 0014, 0 fyoby(a)=a and ggfoby, of *oby(a)=a.

We now prove Proposition 3.9

Proof: Recall that the map F) g; (we omit the superscripts £) coincides with the linear maps
Ay = (4%, fr, A%) in Ap N AN (Ap) and By = (B, g5, B*) in Ag N B/gl(AQ). Since A® and
(B*)~! are contractions, there is large N such that

I(B*)™™| < & and [[(A*)™]| <5,

where 0 is as in the definition of the model family.

We say that a subset CV of ApUAg is a vertical cylinder at the point X = (2*, z,2") € CV
if there is some compact set K® C [—1, 1]° such that C¥ = K*® x {z} x [-1,1]*. Similarly, a set
Ch C ApUAq is a horizontal cylinder at X € C" if there is some compact set K* C [—1,1]%
such that C" = [~1,1]* x {2} x K"
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Lemma 3.10. Let a € Jg such that there are m,n > N such that the point
b= g0 b7, 0 5" 0 6 (a) € I

is well defined. Then there are points A € g and B € Xg of the form A = (a°,a,a") and
B = (b°,b,b") and a horizontal cylinder C" at A such that:

o The map (Fyp4)""™*2 is defined (and continuous) on C", and
o (Fyp4)"t™*2(Ch) is a vertical cylinder C¥ at B.
In fact, the orbit of the point A in the lemma has the following itinerary:

e Ac ZQ and F)\”g,t(A) = 'TQ(A) € Ap,

F3(A) = (AN o Ta(A) € Ap, for all i = 1,...,m, and F}'J[(A) € p,

FYR7(A) = Tipo (AN)™ 0 To(A) € Ag,

F{E 2 (A) = (Bg) o Tip o (Ay)™ 0 Ta(A) € Ag, forall j =1,...,n.

Proof: Consider the (s+u)—disk D = [-1,1]® x {a} x [-1,1]*. By the choice of N, as m > N,
and since (T3)~1, T5, (A*)~!, and A® are linear contractions, the map

(Fap) ™ =AY 0Ty

is defined on a horizontal cylinder H at some point Ag of the form Ay = (a{}, a, af) whose image
is a vertical cylinder V41 of the form

Vins1 = (Fap) 7" (H) = Ky x {amga } x [=1,1]%,

where
amy1 = fy oba(a) and Kj 4 = (A°)" o T5([—1,1]%).

Since m > N, one has that the set K | is contained in [—6, §]°. Therefore the intersection

Vi1 = Vg1 N Ep is of the form
1 = Ko X {ami1} x [ap — ,ap +0]".

Note that, by construction, the set (Fy )~ ™ (V/, +1) is a horizontal cylinder H' C H at
some point A; of the form (af,a,at) (in fact, we can take Ay = A;).
As T} is a linear expansion, the set V) ., = 714(V,, ;) contains a set V;,, ;5 of the form

Vinge =TT (K1) X {amg2} x [=6,0]",  where aymq2 = 01 (am+1).

By the choice of N and since n > N, the map (Fy g¢)" = Bg is defined from a horizontal cylinder
H,, of the form

Hyp = [=1,1]° X {amy2} x K C [=1,1]° X {ami2} x [0, 0]"
onto a vertical cylinder at some point B = (b°, b, b"), where

b= gglam+2) = g5(01,t(am+1)) = gg o b1t 0 f3" 0 Oa(a).
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Figure 6: Disks in the proof of Lemma 3.10 (projection along the R*-direction)

Consider now the intersection
W = Hy, N Vi = T7 (K5 11) X {amg2} X K.

Finally, by construction, (Fy g)" (W) is a vertical cylinder CV(B) at the point B = (b°,b,b") and
(Fx )~ "2 (W) is an horizontal cylinder C"(A) at some point A of the form A = (a*,a,a").
This concludes the proof of the lemma. a

Scholium 3.11. Under the hypothesis of Lemma 3.10 and assuming that a = b, there is a
horizontal cylinder C"(A) at A such that CV(A) = (Fy 54) ™+t (Ch(A)) is a vertical cylinder
at A crossing C"(A) in a Markovian way.

We are now ready to finish the proof of Proposition 3.9. By Scholium 3.11, if @ = b, then
there is a horizontal cylinder C*(A) at A such that CV(A) = (Fy g,¢) ™™ *+2)(C"(A)) is a vertical
cylinder at A crossing C"(A) in a Markovian way. Hence (F) ;)™ "™ *2 has a unique periodic
point A, , = (a®,a,a") € C'(A) N C*(A).

Since the transitions maps 7 1,t and 73 are isometries in the (invariant) central bundle E°,
one has that the central eigenvalue of D(F) g4)" "™ (A, ) is £A™ ™. This concludes the proof
of the first part of the corollary.

To prove the second part of the corollary, note first that the vertical disk {(a®,a)} x [—1, 1]*
is contained in the unstable manifold of A,,,: by construction, Lemma 3.10 implies that
(Fxp.4)~ ™2 maps {(a®,a)} x [~1,1]" inside itself in a (linear) contracting way. Similarly,
(Fg,.t)" ™™ %2 maps the horizontal disk [—1,1]* x {(a,a")} inside itself as a linear contraction.
Thus the disk [-1,1]* x {(a,a")} is contained in the stable manifold of A, .

Take now the integers m/,n’ € N in the second part of the corollary. The first part of the
corollary gives a periodic point A, of F) g of period m’4+n’+42 of the form A, ,» = (a®,a,a").
By construction, A, s # A;un. As a consequence, by the comments before, the horizontal and
the vertical disks through A, ,/ intersect transversely (in a su-hyperplane R® x {a} x R") the
vertical and the horizontal disks through A, ,,, respectively,

({(a® a)} x [=1,1]*) N ([=1,1]* x {(a,a")) # 0,
({@* a)} x [=1,1]") 0 ([=1,1]* x {(a,a")) # 0.
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Figure 7: Strong homoclinic intersections

This implies that
WY Apns Fapt) "W (Apy o, Frge) # 0, WY (A s Fxgt) N W (A, Frpe) # 0.

Thus there is a cycle between the strong stable and unstable manifolds of A, ,» and A, .
Moreover, these strong manifolds meet quasi-transversely. The A-lemma now gives a point X #
Apn in W ( Ay, Fagt) N W (Apn, Fagt). Moreover, this intersection is quasi-transverse.
See Figure 7. The proof of Proposition 3.9 is now complete. a

3.4 Periodic points for one-dimensional maps associated to model families

In this section, we consider one-parameter families of maps of the form
g o0, 0 fitoby, n,m>0.

We prove that given an initial system (gg oHli’O o fy\* on)ngO there are A" and /3’ close to A and
B, t close to 0, and large n,m,n’,;m’, (m,n) # (m/,n’), such that the maps g © Hft o filo HQi
and gg,/ o Hft o ff}l ) 955 have a common fixed point a. Considering these maps as associated
one-dimensional maps of model unfolding families, one gets the assumptions of Proposition 3.9
(after some perturbation).

3.4.1 The orientation preserving case

In the section, we prove Proposition 3.8 when A > 0, 5 > 0 and the transition T} preserves the
orientation of the central bundle.

Lemma 3.12. For any ¢ > 0 and K > 0, there are By € (6 —¢,0+¢), Ao € (A —¢e,\+¢),
t € (0,¢), and natural numbers n,m,n’ larger than K such that:

1. n<n/,
2. Nt bp +t = B, bg, and

3. NPbp +t= 67" bg.
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Proof: We first claim that there are 3; arbitrarily close to 8 and n,m arbitrarily large such
that

A™ (1= A) bp| = 87" bo.

To prove this claim, one first takes By close to J such that
choose n, m arbitrarily large such that

log A
log 82

is irrational. This allows us to

A (L= A) |bp|
By " bg

is arbitrarily close to 1. A small modification of Gy gives the announced f;.
Next, we fix n’ > n such that 35 (=) 4 very small for all g3 close to B1. This allows to
choose fy in a small neighborhood of #; such that

AT (1= N) [bp| = By (1= B3 ") bg.

Take
t=08"bg+ A" |bp| and Ng =),

This choice of t immediately gives equality (2) in the lemma:
ByMbg =t —N"Tbp| =t + A" bp.
Similarly, the choices of n’ and ¢ give
By bg = By bg + X" bp| — A [bp| =t + AT bp.

This completes the proof of the lemma. a

Lemma 3.12 can be written in terms of the one-dimensional maps associated to the model

unfolding maps F;L ﬂit (where 77 ¢ preserves the orientation).

Corollary 3.13. For any e > 0 and K > 0, there are By € (B —¢,8+¢), Ao € A —¢e,\+¢),

t € (0,¢), and natural numbers n,m,n’ larger than K such that
o g5 obi, 0 [ 06y (bg) = bo,

. gg/ o Gli’t o f{" 0 05 (bg) = bg, where n’ > n.

Proof: Note that 05 (bg) = bp and Hf" ,(x) = x +t. Thus the first equality in the corollary is
equivalent to

bo=ghobi, o [\ oby(bg) =" (N, +t),  [lbg= A"ttt

This identity is exactly (2) in Lemma 3.12. The second identity in the corollary follows from
(3) and (1) in Lemma 3.12 arguing in the same way. 0
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3.4.2 The orientation reversing case

In the section, we prove Proposition 3.8 when A > 0, § > 0, and the transition 77 reverses the
orientation of the central bundle. The proof follows essentially as the one in the orientation
preserving case. The main difficulty in this case is to get a result similar to Lemma 3.12.

Lemma 3.14. For anye >0 and K > 0, there are 5y € (6 —¢,0+¢), o € A—e,A+¢), and
natural numbers n, m,n’,m’ larger than K such that:

1. n<n and m <m/,
2. AT |bp| = 5" bg, and

3. N bp| = 85" bo.

Proof: We first take a > 1 close to 1 (in particular, log a is much smaller than |log A| and log /3)
such that

b
r (loga) = log <\b—i|) , for some r € N.

We replace A and (8 by some Ay and 3y, arbitrarily close to A and (3, of the form
loghg = —hloga and logfBy=kloga, h,keN.

We claim that one can take h,k € N being relatively prime integers. Otherwise (i.e., if for this
choice of a, h and k are not relatively prime numbers), we replace a by a%, h by hk+1 and k
by k2. In this case, hk + 1 and k? are relatively prime. Clearly, log a¥ divides log (%), Bo is

not modified, and the new A is close to A (if k is big enough).
As h and k are relatively prime numbers, there are mg and ng with —mgh + ngk = 1. By

the definition of h and k, this choice of mg and ng gives \j"° 5;° = a. Hence, since log (i—i‘) =
r log a, taking n = rng and m = rmg, one gets
bo
m an — .
0 ﬁO ‘bP|

This gives (2) in the lemma.
To get (3) in the lemma, note that the ratio }gg gg is rational by construction, thus there are

ni,myp > 0 such A\§"* G = 1. Taking m’ = m +m; and n’ = n+ ny one gets (3). Note that, by
construction, n’ > n and m’ > m. This completes the proof of the lemma. a

As in the orientation preserving case, Lemma 3.14 can be formulated in terms of the one-
dimensional maps associated to the family F\ ﬂit

Corollary 3.15. For anye > 0 and K > 0, there are By € (B—¢,08+¢) and \g € (A\—¢e, A\ +¢),
and natural numbers n,m,n’,m’ larger than K such that:

e n<n and m<m,
o g5 oo f{obs(bg) =bq,

o g5 00 [ 065 (bg) = bg.
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3.5 Strong homoclinic intersections for model unfolding maps

In this section, we prove Proposition 3.8. As in the previous section, there are two cases (the
9 M
preserving and reversing orientation cases).

3.5.1 The transition 7;; preserves the orientation of the central bundle

When the transition 77 ; preserves the orientation, using Corollary 3.13 and Proposition 3.9, we
get strong homoclinic intersections associated to periodic points of the model unfolding family:
Proposition 3.16. For every model unfolding family (F;Lﬂit) there is a constant C' > 1 satisfying
the following property:

For any e >0 and K > 0, there are By € (B —¢,8+¢), o € (A—e,A+¢), t € (0,¢), and
natural numbers n, m larger than K, such that F;:):jgo,t has a periodic point A1, of period
m+n—+ 3, such that

e the central eigenvalue A\°(Apm1n) Of Ami1n satisfies | A(Amy1n)| € [1/C,C],

e the periodic point Ap,i1,, has a quasi-transverse strong homoclinic intersection.

Proof: Proposition 3.9 and Corollary 3.13 give Ao, 8o, and ¢ such that F' ;g fgmt has a periodic
point A, 41, (of period n 4+ m + 3) with a quasi-transverse strong homoclinic intersection and
whose central eigenvalue has modulus [\J"" 37|

Thus it remains to choose the constant C' (bounding the modulus of the central eigenvalue).
By Lemma 3.12, there is n’ > n such that

AL bp 4t =63"bg and AT bp 4+t = 35 bo.
As a consequence, one has

(L") b
(EYIR

1—501> bo ( 1 > bo
— 0 ) N < [ )
(1—)\0 lbp| — 0’ Ao 1—Xo/ |bp]

Since \g, By are close to A, 3, it is enough to choose a constant C' satisfying

2 1 bg 1—AX |bp|
> = ) = —=) =%
CW&X{(l—A) \bP|’<1—ﬁ‘1> bQ}

This concludes the proof of the proposition. O

N (Mo — 1) bp = By (1= By~ b, m ey =

Hence, as n’ > n,

3.5.2 The transition 7;; reverses the orientation of the central bundle

If 77 ¢ reverses the orientation, using Corollary 3.15 and Proposition 3.9, we get a quasi-transverse
strong homoclinic intersections associated to saddles of the model unfolding family for ¢ = 0
(note that in this case, the parameter ¢ is not modified):
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Proposition 3.17. For every model unfolding family (F):’;’[t) there is a constant C' > 1 satisfying
the following property:

For any € > 0 and K > 0, there are By € (B —¢e,0+¢€), Ao € (A —¢&, A+ ¢), and natural
numbers n, m larger than K, such that F)\_()’,:EO,O has a periodic point Ay, 15, of period m—+n+3,
such that

e the central eigenvalue A°(Ami1.n) Of Amtin satisfies |N(Amy1n)| € [1/C,C],
e the periodic point A1, has a strong homoclinic intersection.

The proof of this proposition follows exactly as the one of Proposition 3.16, thus it is omitted.

3.5.3 End of the proof of Proposition 3.4. Proof of Theorem 3.3

Proposition 3.16 implies immediately Proposition 3.4 when the transition 77, preserves the
orientation of the central bundle. Finally, Proposition 3.17 implies Proposition 3.4 when the
transition 7; ; reverses the central orientation. Thus the proof of Proposition 3.4 is now complete.

Recall that in the introduction of this section, we derived Theorem 3.3 from Proposition 3.4.
This completes the proof of Theorem 3.3.

4 Robust cycles at strong homoclinic intersections

The goal of this section is to prove the following result:

Theorem 4.1. Let f be a diffeomorphism with a quasi-transverse strong homoclinic intersection
associated to a saddle-node or to a flip. Then every C'-neighborhood U of f contains an open
set of diffeomorphisms with C'-robust heterodimensional cycles.

The main step of the proof of this theorem is to see that any diffeomorphisms with a quasi-
transverse strong homoclinic intersection associated to a saddle-node or to a flip can be approx-
imated by diffeomorphisms exhibiting blenders, see Lemma 4.4. We first analyze the case when
the strong homoclinic intersection is associated to a saddle-node. The flip case is derived from
this case (see Section 4.2).

4.1 Proof of Theorem 4.1: the saddle-node case

In this section, we will sketch the proof of Theorem 4.1 for strong homoclinic intersections
associated to saddle-nodes. This is a rather folkloric result in partially hyperbolic dynamics.

4.1.1 Affine saddle-node cycles

Consider a diffeomorphism f having a quasi-transverse strong homoclinic intersection Y asso-
ciated to a saddle-node P. First, as in the case of co-index one cycles, we perform a series of
C'-perturbations to the diffeomorphism f in order to linearize the dynamics in neighborhoods of
the saddle-node P and of the homoclinic orbit of Y. This first part of the construction (A1-A3)
is similar to the one for co-index one cycles in Section 3.1. Let us describe a bit more precisely
this construction.
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A1) By a Cl-perturbation of f, we can assume that there is a local chart [—1,1]*1*% at the
saddle-node P such that the expression of f™(*) is of the form

) = (A% id, A"): R° x R x R* — R® x R x R,

where A% and A% are linear maps with ||A%|| < 1 and ||(A%)~}|| < 1. (This step corresponds
to the first part of (S2)).

A2) Consider the closure Ay of the orbit of the homoclinic point Y (i.e., the union of the orbits
of P and Y'). By the previous item and since the intersection of W"%(P, f) and W**(P, f)
at Y is quasi-transverse, one has that f is partially hyperbolic in the set Ay, having a
partially hyperbolic splitting of the form

TAyM S D E° D Euu’

where the central bundle E°¢ is one-dimensional, dim £*® = s, and dim E“* = u. This
splitting can be extended to a small neighborhood of Ay. (This step corresponds to the
second part of (S2)).

A3) Using the local coordinates above, we define local strong unstable and strong stable
manifolds of P by

Wige (P, f) = {(0%,0)} x [=1,1]* and = Wige(P, f) = [=1,1]° x {(0,0%)}.

Then there are points W = (0°,0,w") and Z = (2%,0,0%) in the orbit of Y and mgy > 0,
such that W € Wi(P, f), Z € Wi(P, f), and f" (W) = Z. Moreover, for every
ie{l,...,mg— 1}, f/(W) does not belong to the local chart.

After shrinking the local chart and replacing W by some negative iterate of it and Z by
some positive iterate of it (so that mg is replaced by a larger number), we can perform a
perturbation of f along the segment of orbit f(W), f2(W),..., fm~1(W) in such a way
the expression of f™0 in a neighborhood of W (in the local coordinates) is of the form

fro (@t m2t) = (K°(2°) + 2°, £, K* (2" — w")),

where K* and K“ are linear maps with ||[K?®|| < 1 and [|[(K*)~!|| < 1. (This step corre-
sponds to (S3)).

A4) By construction, the stable-unstable hyperplane II** = R® x {0} x R" is locally invariant
by ™) in a neighbourhood of P and by f™ in a neighborhood of W. Hence there is
an iterate of f whose restriction to the hyperplane II** has a Smale linear horseshoe Xy
containing P, W, and Z. Moreover, after replacing the homoclinic point W by a homoclinic
point corresponding to an even iterate of it by f™° (if necessary), we can assume that (in
a neighborhood of W) f™0 is the identity in the central direction:

fmo(xs’x’xu) = (KS(xS) + ZS,J,', Ku(xu - wu))

A5) Since the horseshoe ¥ contains infinitely many strong homoclinic intersections of P, there
is a strong homoclinic point G of P, G = (¢°,0,0%) € W5 (P, f), whose f-orbit is disjoint

loc
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Figure 8: A partially hyperbolic horseshoe

from the one of W. We also consider a point H = (0%,0,h") = f~"(G) € W (P, f), for
some big m € N.

More precisely, after changing linearly the coordinates around P, shrinking the local chart,
and replacing (if necessary) Z and G by some forward iterates of them and W and H by
some backwards iterates of them, there are natural numbers ns and ns, f"?(W) = Z and
f"(H) = G, a cube C = [-1,1]*"1F% and three horizontal sub-cubes Cy, Co, and C3 of
the form

C; = [-1,1" x C¥, i€ {1,2,3},

where C}, C¥, and C¥ are disjoint u-disks contained in [—1, 1]*, such that:
e the cube (' contains the points P, Z, and G, the cube C5 contains W, and the cube

C5 contains H;

o f™P)((Cy) is a vertical sub-cube of C' which crosses C;, Cy, and C3 in a Markovian
way:;

e f{(Cy) is disjoint from C for every i = 1,...,n9—1, and f"2(Cy) is a vertical sub-cube
C5 x [-1,1]1T of C containing Z;

e the expression of the restriction of f2 to C5 in these local coordinates is

fn2($8’xc7 $u) — (TS(:ES) + ZS’:EC7 TU(:I/,U . ,wu))7

where T° and T* are linear maps with ||7%|| < 1 and ||(T%)~!|| < 1;

e there is n3 such that f(C3) is disjoint from C for every i = 1,...,n3—1, and f"3(C3)
is a vertical sub-cube of C5 x [—~1,1]}*% C containing G;

e the expression of the restriction of f”3 to ('3 in these local coordinates is affine,
£, 0,0 = (L0(a) + g o, LM — hY),
where L* and L are linear maps with ||L%|| < 1 and ||(L%)7}| < 1;
e the orbit of G is disjoint from C5 and the orbit of Z is disjoint from Cj.

A6) Consider the map F': C; UCy U C3 — C whose restrictions to Cp, Cy and Cy are f”(P),
f2, and f"3, respectively. We write F' = (F*“,id) (i.e., we write the central coordinate
in the last position). Observe that F'*" is a linear horseshoe map conjugate to a complete
shift of three symbols.
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Figure 9: The horseshoe map F*" in the hyperplane R® x {0} x R*

4.1.2 Local perturbations

We now consider a local C'-perturbation fo of f such that its associated map F, defined on
the cubes C1, Cy and C3 (defined exactly as F') is of the form

FSO = (Fsuuw)a

where ¢: [-1,1] — [-1,1] is a Morse-Smale map C!-close to the identity having exactly two
fixed points close to 0, the repelling point 0 and the attracting point —9 (small 6 > 0), these
points have eigenvalues close to one. In this way, we get a diffeomorphism f, having a pair of
twin horseshoe (of indices u and u 4 1) as depicted in Figure 10. More precisely, the following
properties hold:

e The point Ps = (0°,—6,0") is a periodic saddle of period 7(P) and index w of F,. The
points Zs = (2%, —4,0") and G5 = (¢°, —4,0") are strong homoclinic intersections of Fj.
Similarly, P is a periodic saddle of period m(P) and index u + 1 of Fi, and the points Z
and G are strong homoclinic intersections of P.

e The restriction of F, to the hyperplane [—1,1]® x {0} x [—1,1]* is the linear horseshoe
map F*“. Consider the cube

C(6) =[-1,1° x [-6/2,6/2] x [-1,1]".
Then the maximal invariant set I of F, in C(0) is a hyperbolic basic set of index u + 1.

We now modify f in f?271(Cy) and f~1(C3) to get a two-parameter family of diffeomor-
phisms f;, (see Figure 10) such that:

e the restriction of f}? to Cq is f'7 (2%, x,2") = f"2(z*, 2, 2") + (0,1, 0);
e the restriction of ffﬁ to C3 is ffﬁ (z%,x,2%) = f™(z*, x,z") + (0,7,0).
For small ¢t and r, denote by F}, the map defined on C1 U Cy U C3 as follows:

o [y, (2% x,a") = F (2%, x,2%), if (2%, 2,2") € (4,

32



s

t

qt A

7 Z |

J t
G —
G6 — T _5 5

A
A

P§ Y P ©

Figure 10: Twin horseshoes for f,

o I, (2% x,a") = Z}ﬁ(azs,x,x") = Fy(a®,z,2") 4+ (0,t,0), if (z°,z,2%) € Cy, and
o Iyp(x® z,a") = fiid(x®, @, 2") = Fy(2®,m,2%) + (0,7,0), if (2%, 2,2") € C3.

Remark 4.2. For every small t and r, the maps fi, and Fy, satisfy the following properties:
1. The perturbation fi, do not modify the orbits of the periodic points Ps and P of f,.

2. The vertical disk {(g°,—d +r)} x [=1,1]" is contained in the unstable manifold of Ps (of
dimension u) of Fy,.

3. Fori=1,2,3, consider the cubes C;(0) = C;NC(J). Denote by A, the mazimal invariant
set of Fy, in C1(0) U C(d). Since this set does not depend on r we just write Ay = A .

o Fort =0, Ay is a basic set of F, of index (u+ 1) contained in I' (the mazimal
invariant set of F, in C(0)). Hence, Ay is a hyperbolic basic set of Fy, of index
(u+ 1), which is the continuation of Ag.

o The map F;, has a unique fized point Qy, in Ca(8). Since this point does not depend
on r we write Q¢ = Q¢,. Note that Qr = (¢°, qt,q"), where ¢ < 0 if and only ift > 0,
see Figure 10.

4.1.3 End of the proof of Theorem 4.1 (saddle-node case)

Next proposition implies Theorem 4.1 when the strong homoclinic intersection is associated to
a saddle-node:

Proposition 4.3. For every small t > 0 and r such that —6 + r € (qt,0), the diffeomorphism
fir has a robust heterodimensional cycle associated to the hyperbolic set Ay (of index u+1) and
the hyperbolic saddle Ps (of index u).

Proof: First, note that F}, coincides with ¢ on {0°} x [—1,1] x {0*}. By definition of ¢, this
implies that W*(F5, f; ) meets transversely W*(P, fi,) C W"(Ay, fi,) along the center curve
{0°} x (=4,0) x {0“} bounded by the periodic points P and Pj (see Figure 10). Note that this

intersection is robust.
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To get a (robust) heterodimensional cycle associated to Ps and Ay, it remains to prove that
W(Ps, frr) meets W*(Ay, frr) in a robust way. Observe that this property cannot be obtained
from a transversality argument: the sum of the dimensions of these manifolds is s+u < s+u—+1
(the dimension of the ambient manifold). We will use here that, for any small ¢ > 0, the set
A is a blender and the unstable manifold of Ps transversely meets the characteristic region of
the blender (see [BDVg, Chapter 6.2] for a discussion of the notion of blender). Let us explain
this point more precisely. We begin by recalling the meaning of blender. A simple argument in
[BDV] proves the following:

Lemma 4.4 (The lemma in page 717 in [BDV]). For every small t > 0 and every p; and py
with ¢ < p1 < p2 < 0 there is a backward iterate by Fy, of the local stable manifold of P which
meets transversely the vertical strip {x®} X (p1,p2) X [—=1,1]*%, for any x° € [—1,1].

Let A; be the maximal invariant set A; of F}, in the cube C'(§). This set is hyperbolic and
has index (u+1). Observe that the local stable manifold of P is contained in W} (A4, Fy,). An
immediate consequence of Lemma 4.4 now is the following:

Corollary 4.5. For every small t > 0, the stable manifold of A intersects any vertical disk
{(z%,2)} x [-1,1]" with z° € [-1,1)° and = € [g,0].

Keeping in mind these results we prove Proposition 4.3. We first see that F}, has a het-
erodimensional cycle associated to the hyperbolic set A; and Ps. By item 2 in Remark 4.2, the
vertical disk {(¢g°, =6 + 1)} x [—1,1]" is contained in the unstable manifold of Ps for F,. Since,
by hypothesis, —§ + r € (¢, 0), Corollary 4.5 gives a heterodimensional cycle associated to Ay
and Ps for every fi,.

Let us now explain why this heterodimensional cycle is robust. This follows from the proof
of [BD;, Lemma 1.11] (in fact, the proof of Lemma 4.4 is a simplified version of the arguments
in [BD;]). We will outline this proof in the next paragraphs.

For every diffeomorphisms h which is C'-close to ft.r, one considers almost vertical strips S,
that is, (u + 1)-disks such that:

e they are tangent to a small cone field around the center-unstable direction £°@® E" and are
foliated by u-disks tangent to a small unstable cone field around the unstable direction;

e they cross the cube C(§) from the bottom to the top.

The central width w(S) of an almost vertical strip S is (roughly) defined as follows: w(S) is the
minimum size of a curve tangent to the central direction going from one vertical boundary of
the strip S to the other vertical boundary of the strip (the vertical boundary of S is the part of
the boundary of S tangent to the unstable cone field).

Finally, if the vertical strip S is in between the local stable manifolds of the continuations
of the saddles P and Q¢, we say that the strip is in the characteristic region of the blender.

Given a map 1 close to f, considering the restrictions of 1»™®) and )™ to the cubes Cy(4)
and C3(J), one gets a map ¥ which is C'-close to F;,. One proves the following,

There is k > 1 such that, for every vertical strip S in the characteristic region, either the image
by ¥ of S intersects the local stable manifold of the continuation of P or it contains a vertical
strip 8" in the characteristic region whose central-width satisfies w(S") > kw(S).
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As the central widths of the vertical strips in the characteristic region are uniformly bounded
from above, there is some iterate by W of the initial strip S which meets the local stable manifold
of the continuation of P. This completes the outline of the proof. For further details and precise
definitions, see the proof of [BDy, Lemma 1.11]%. a

4.2 Proof of Theorem 4.1: the flip case

The first step of this case is analogous to the saddle-node one: the goal is to get an affine flip
cycle after a perturbation of a flip point with a strong homoclinic intersection. These flip cycles
generate saddle-node cycles:

Remark 4.6. In the case that the diffeomorphism f has a flip with a strong homoclinic intersec-
tion, one can perform perturbations similar to the ones in Section 4.1.1. The only difference is
that, in the flip case, in item (A1) one has (—id) in the central direction instead of the identity.
As a consequence, the resulting associated map F' in item (A6) is now of the form (F**, —id).

Using the horseshoe ¥g in item (A5) and considering periodic points of even period in this
horseshoe, one immediately gets (after an arbitrarily small perturbation) a saddle-node with a
strong homoclinic intersection.

The flip case follows now from the saddle-node case in the previous section. The proof of
Theorem 4.1 is now complete.

5 Cycles with non-real central eigenvalues

The aim of this section is to prove the following theorem:

Theorem 5.1. Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Then every Cl-neighborhood U of f contains a diffeomorphism g with a co-index one
cycle with real central eigenvalues. Moreover, the new cycle can be taken associated to saddles
Pé and Q; homoclinically related to the continuations Py and Q4 of P and Q.

This result concludes the proof of Theorem 1: every co-index one cycle generates (by a
Cl-perturbations) cycles with real central eigenvalues, Theorem 2.1 now gives robust heterodi-
mensional cycles.

The organization of this section is the following. In Section 5.1, we see that every co-index
one cycle associated to a pair of saddles with non-trivial homoclinic classes generates cycles
with real central eigenvalues, (see Theorem 5.3). In Section 5.2, we see that if f has a co-index
one cycle associated to a pair of saddles P and @) such that the central eigenvalue of the cycle
associated to P is non-real, one can assume (after a perturbation) that the homoclinic class of
@ is non-trivial (see Proposition 5.7). Using these preparatory results, in Section 5.3 we prove
Theorem 5.1 for cycles whose central eigenvalues are all non-real. Finally, in Section 5.4, we
consider cycles having only one real eigenvalue.

Indeed, this robust intersection between vertical strips and a local stable manifold of a hyperbolic set is called
distinctive property of blenders in [BDV2].
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5.1 Cycles associated to saddles with non-trivial homoclinic classes

We begin this section with a definition.

Definition 5.2 (Periodic points with real multipliers). Let f be a diffeomorphism and P a
periodic point of f. We say that P has real multipliers if every eigenvalue \ of Df™F)(P) is
real and has multiplicity one and every eigenvalue o of D f™F)(P) with o # X satisfies |\| # |o|.

Theorem 5.3. Let f be a diffeomorphism with a co-index one cycle associated to periodic points
P and Q. Suppose that the homoclinic class of P is non-trivial. Then every C'-neighborhood U
of f contains a diffeomorphism g € U having a hyperbolic periodic point Pé such that:

e there is a co-index one cycle associated to Pé and the continuation Q4 of Q;
e the saddle Pé has real multipliers and is homoclinically related to Py.
The main step for proving Theorem 5.3 is the following;:

Proposition 5.4. Let K be a non-trivial hyperbolic basic set of a diffeomorphism f. Assume
that f has a heterodimensional cycle associated to a pair of periodic points P and @, where
P c K. Then every C'-neighborhood U of f contains a diffeomorphism g such that:

o The continuation K4 of K contains a periodic point Pé with real multipliers and homo-
clinically related to Py.

o The diffeomorphism g has a heterodimensional cycle associated to the continuations Py
and Qg.

Proof: Consider the set X of periodic points of K. As K is a basic set, the periodic orbits in 3
are homoclinically related. With the notation in [BDP, Section 1.4], the derivative of f induces
on X a periodic linear system with transitions. [BDP, Lemmas 4.16 and 1.9] now imply that, for
any € > 0, there are a periodic orbit v = {Y,..., ff¥)=1(Y)} of K and an e-perturbation A of
the derivative Df (considered as a linear cocycle) along 7 (i.e., |[Df(f/(Y)) — A(f/(Y))| < e,
for every 0 < j < mw(Y) — 1) such that the eigenvalues of the linear map

A(y) = A(fTTHY)) 00 A(Y),
are all real and different in modulus and have multiplicity one. We need the following lemma:

Lemma 5.5 (Franks’ Lemma, [Fr], [Mag]). Consider a C*-diffeomorphism f and an f-invariant
finite set 3. Let A be an e-perturbation of the derivative Df of f along . Then, for every
neighborhood V of %, there is a diffeomorphism g C'-e-close to f such that

e g(x) = f(x), ifreXorife gV,
o Dg(x) = A(x), for all x € .

This lemma allows us to consider a C''-perturbation g of f, supported on an arbitrarily small
neighborhood V' of the orbit  of Y, such that (i) g is equal to f outside V' and over the orbit
v and (ii) Dg(X) = A(X), for every X € «. As the perturbation g of f is arbitrarily small, the
periodic point Y of g is homoclinically related to P (the orbit of P is not modified). Taking
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P, =Y, one has Dg”(Pé)(Pg’) = A(y)). Thus the periodic point P; has real multipliers. For
the details of the previous construction see, for instance, [AD, Lemma 3.4] which is a just a
dynamical reformulation of [BDP, Lemmas 4.16 and 1.9].

To conclude the proof of the proposition it remains to check that the diffeomorphism g can
be taken having a cycle associated to @), and P,. As the initial f has a heterodimensional cycle,
there are heteroclinic points X1 € W*(Q, f) N W#(P, f) and Xo € W5(Q, f) N W¥(P, f). Since
the neighborhood V' of the orbit v above can be chosen arbitrarily small, we can assume that it
is disjoint from the orbits of the heteroclinic points X7 and X, (note that the distance between
the closure of the orbits of X; and X and + is strictly positive). As a consequence, X; €
W (Qg,9) NW?(Py,g) and Xo € W¥(Qg,9) "N W"(Py, g) (note that in the previous construction
we have P, = P and Q4 = Q). Thus the diffeomorphism g has a heterodimensional cycle
associated to P, and Q. a

Proof of Theorem 5.3: Suppose that the indices of P and ) are u and u+ 1. Fix heteroclinic
points X1 € W¥(Q, f)NW?*(P, f) and Xo € W*(Q, f) N W¥%(P, f). Up to a C'-perturbation,
one may assume that the intersection at X is transverse.

Since the homoclinic class of P is non-trivial, it contains a non-trivial basic set K containing
P. By Proposition 5.4, we can assume (after a C''-perturbation of f) that K contains a periodic
point P’ homoclinically related to P and whose multipliers are real. Therefore, for every g close
to f, Py and Pg/ are homoclinically related and the multipliers of Pg/ are real. Thus to prove the
theorem it is enough to find g close to f with a cycle associated to Q)4 and Pé.

The A-lemma and the fact that P and P’ are homoclinically related imply that W*(P’, f)
C'-approaches any compact disk in W*(P, f), thus W*(P’, f) meets transversally W*(Q, f) in a
point X close to X;. Therefore, for every g close to f, W*(Py, g) meets transversally W*(Qg, g).

As P’ and P are homoclinically related there are a sequence of points (Y;); and a sequence
of natural numbers (m;); such that (Y;); converges to some point Y € W*(P’, f) and (f™(Y;));
converges to Xo € W9(Q, f) N WH*(P, f). This implies that the saddles P’ and @ satisfy the
hypotheses of the lemma below (taking P’ = Ay and Q = By):

Lemma 5.6 (Hayashi’s Connecting Lemma, [Ha]). Let f be a C-diffeomorphism and As and
By a pair of hyperbolic saddles of f. Suppose that there are sequences of points T; and of natural
numbers n; such that T; accumulates to Wi (Ays, f) and f"(T;) accumulates to W?*(By, f).
Then there is g arbitrarily C'-close to f such that W*( Ay, g) N W*(By,g) # 0.

This lemma implies that there is g arbitrarily close to f such that W*(P;, g)NW*(Qy, g) # 0.
Since W*(Py, g) N W"(Qy,g) # 0, the diffcomorphism g has a co-index one cycle associated to
Q4 and Pé. By construction, this cycle satisfies the conclusions of the theorem. O

5.2 Non-real central eigenvalues and homoclinic intersections

In this section, we see that every diffeomorphisms having a co-index one cycle with some non-
real central eigenvalue can be approximated by a diffeomorphism with a cycle involving a saddle
whose homoclinic class is non-trivial.

Proposition 5.7. Let f be a diffeomorphism with a a co-index one cycle associated to saddles
P and Q. Assume that the central eigenvalue of P is non-real. Then every C'-neighborhood of
f contains a diffeomorphism g having a co-index one cycle associated to the saddles Py and Q)
and such that the homoclinic class of Qg is non trivial.
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Proof: For fixing the ideas, assume that the indices of P and @) are u and u + 1, respectively.
We write, n = s+ 14 u, n is the dimension of the ambient manifold. First, after a perturbation,
we can assume that W*(P, f) N W*(Q, f) contains some transverse intersection point X and
that W*(P, f) N W*(Q, f) contains some quasi-transverse intersection point Y.

By a Cl-perturbation in a small neighborhood of P (preserving the quasi-transverse and
transverse heteroclinic points ¥ and X), one can assume that there are local coordinates
[—1,1]*~! x [-1,1]®> x [-1,1]* at P such that the expression of f™*) in those coordinates is
of the form

fﬂ(P)($571,xc7$u) — (Asfl(xsfl)7AC(J:C)’Au(xu)’

where A5~1: RS71 — R¥71 A¢: R? —» R2 and A%: R* — R% are linear maps with |45~ < 1,
|A¢|| < 1, and [|(A*)~!|| < 1. Moreover, the linear map A€ is the composition of a homothety
and a rotation, that is,

A — ( cos2mfh —sin2wf

sin27@ cos2mw0 >’ 0<la| <1, aeR

One also can assume that the angle § € [0, 1] is irrational. This step is analogous to (S2) in
Definition 3.5 of simple cycle. The next steps are analogous to (S3) and (S4).

N
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RQ Ve

/V (A D)

Figure 11: Creation of homoclinic points
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By a Cl-perturbation of f in a neighborhood of the quasi-transverse heteroclinic point Y,
we can assume that W*(Q, f) contains an s-disk A® containing a backward iterate f~%(Y") of Y,
for some large i > 0, of the form (in the local coordinates at P)

A% = [-1,1)°7 x [-1,1] x {0} x {y"}.

Similarly, by a C!-perturbation of f in a neighborhood of the transverse heteroclinic point
X, one can assume that W*(Q, f) contains a (u + 1)-disk containing a forward iterate f7(X) of
X, for some large j > 0, of the form (in local coordinates)

A= {071} x I x [—1,1]%,

where I is a segment in [—1, 1]2. Furthermore, we can assume that I is transverse to the radial
vector field z1 6%1 + 29 aim.

Since the rotation angle # of A€ is irrational, there is some & > 0 such that (A€)*(I) intersects
transversely the segment [—1,1] x {0}. This implies that f**(7)(Au+1) intersects transversely
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A®. Since A C W*(Q, f) and ATt € W¥(Q, f), this gives some transverse homoclinic point
of Q). Thus the homoclinic class of @) is non-trivial. This ends the proof of the proposition. O

Scholium 5.8. Under the notation of the proof of Proposition 5.7, it follows that the curve
v = {0571} x I x {0%} contained in the transverse intersection of W*(P, f) and W™(Q, f) is
contained in the homoclinic class of Q).

Consider any Z € vy, Z = (0571,2,0%), z € I, and any open sub-interval J of I containing
z. Since rotation 6 of A° is irrational, there are infinitely many k; > 0 such that (A°)%(J) N
[—1,1] x {0} # 0. As A" is an expansion, for any neighborhood V*(J) of J in W*(Q, f) there is
some large k; such that f¥(V¥(J)) intersects A® transversely. This gives transverse homoclinic
points of Q arbitrarily close to {0571} x J x {0%}. As J can be taken arbitrarily small, one gets
transverse homoclinic points of QQ arbitrarily close to Z. This completes the argument.

5.3 Cycles with non-real central eigenvalues

Next lemma implies Theorem 5.1 for cycles whose central eigenvalues are all non-real.

Lemma 5.9. Let f be a diffeomorphism having a co-index one cycle associated to saddles P and
Q. Suppose that the central eigenvalues of the cycle associated to P and Q) are both non-real.
Then every C'-neighborhood U of f contains a diffeomorphism g having a having a co-index one
cycle associated to saddles P, and Q; such that

o the saddles P, and Q) have real multipliers, and
. Pé is homoclinically related to Py and Q’g is homoclinically related to Q.

Note that since P!; and Q’g have real multipliers, the co-index one cycle given by the lemma
has real central eigenvalues.

Proof: Applying twice Proposition 5.7 (interchanging the roles of P and @), we get a diffeo-
morphism ¢ close to f with a cycle associated to the saddles P, and )4 and such that the
homoclinic classes of P and Q4 are both non-trivial.

Since the homoclinic class of P, is non-trivial, by Theorem 5.3, there is a diffeomorphism
@ close to ¢ (thus close to f) with a cycle associated to @, and a periodic point Pglo which
is homoclinically related to P, and has real multipliers. Note that since ¢ is close to ¢, the
homoclinic class of @, is non-trivial

Finally, applying again Theorem 5.3, now to PS’D and @, (which has a non-trivial homoclinic
class), we get a diffeomorphism g close to ¢ (thus close to f) with a co-index one cycle associated
to P, and a saddle @}, with real multipliers which is homoclinically related to Q. The lemma
follows noting that, for g close to ¢, the saddle Pé has real multipliers and is homoclinically
related to P. O

5.4 Cycles having only one real central eigenvalue

In this section, we consider cycles having only one real central eigenvalue. We prove that these
cycles generate (by perturbations) new heterodimensional cycles associated to saddles with non-
trivial homoclinic classes.
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Lemma 5.10. Let f be a diffeomorphism having a co-index one cycle associated to saddles P
and Q. Suppose that cycle has only one real central eigenvalue. Then every C'-neighborhood U
of f contains diffeomorphisms g with a co-index one cycle associated to the saddles Py and Qg
and such that the homoclinic classes of P, and Q4 are both non-trivial.

Using Theorem 5.3 and arguing as in the proof of Lemma 5.9, Lemma 5.10 implies Theo-
rem 5.1 for cycles having only one real central eigenvalue.

Proof: Let us assume, for instance, that the indices of P and @ are u and (u + 1) and that
the central eigenvalue of the cycle corresponding to P is non-real (thus the central eigenvalue
corresponding to @ is real). By Proposition 5.7, we can assume that the homoclinic class of @ is
non-trivial. Thus to prove the lemma we need to generate simultaneously homoclinic points of
P and a heterodimensional cycle (associated to the continuations of P and ). This is done by
considering local perturbations preserving prescribed compact parts of the invariant manifolds
of P and . Thus we need to control some compact parts of these invariant manifolds after the
perturbations.

5.4.1 Local coordinates

The first step is to select local coordinates and consider perturbations such that the resulting
dynamics is linear or affine. This step is analogous to the definition of simple cycles (Defini-
tion 3.5): after a series of perturbations, one can assume that the cycle is in linear form in
neighborhoods of P and @ (see conditions (1)-(9) below). We next explain this construction.
The elements in our construction are depicted in Figure 12. First, for notational simplicity, let
us assume in what follows that P and @ are fixed saddles (7(P) = 7(Q) = 1).

Dynamics in a neighborhood of P. Arguing exactly as in Proposition 5.7, we fix local
coordinates [—1,1]571 x [~1,1]? x [~1, 1]* at P such that after a perturbation the following holds
(item (2) follows from W*(P, f) N W*(Q, f) # () and item (3) from W¥*(P, f) N W*(Q, f) # 0):

1. The local expression of f is
f(iCsil,.Z‘c,ZCu) —_ (Asfl(xsfl)’Ac(xc)’Au(xu)) ’

where A5~1: RS~ — Rs71 A¢: R? — R? and A%: R* — RY are linear maps with
AL 1A, 1(A®) 7Y < 1 and A€ is the composition of a homothety and a rotation
of irrational angle 6.

Using these coordinates, we define the local stable and unstable manifolds of P,
Wie(P, f) = [=1,17" x [=1,1 x {0} and Wi (P, f) = {(0°7",0,0)} x [-1,1]".
2. The stable manifold W*(Q, f) contains a s-disk of the form
A% = [=1,1P7 % [=1,1] x {0} x {y"} = [-1,1]* x {0} x {y"},

where Y = (0°,0,0,y") € W (P, f) N W?*(Q, f) is a heteroclinic point. Moreover, we can
assume that the disk A% is contained in a fundamental domain of W*(Q, f) and thus it is
disjoint from all its iterates.
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3. The unstable manifold W*(@Q, f) contains the (u + 1)-disk
A= {071 x I x [-1,1]%,

where I is a segment in [—1,1]? transverse to the radial vector field. By the proof of
Scholium 5.8, the heteroclinic segment

7= {0771 x I x {0") €AY AWE(P, f)

is contained in the homoclinic class of (). Thus, we can assume that disk A® in (2) contains
some transverse homoclinic point of Q)
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Figure 12: Heteroclinic intersections
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Dynamics in a neighborhood of (). As in the case of cycles with real central eigenvalues
in Section 3.1, after a perturbation, we can choose coordinates [—1,1]* x [—-1,1] x [-1,1]" at @
such that:

4. The expression of f is of the form
f@®,z,2%) = (B*(2°), Bz, B*(2"))

where § > 1 and B®: R® — R® and B*: R* — R" are linear maps with ||B*|| < 1 and
(B~ < 8.

Using these coordinates, we define the local stable and unstable manifolds of @ as above.
We also define the local center unstable manifold of @ by

Wige(@, f) = {07} x [=1,1] x {0%}.
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5. Let 7 be the heteroclinic segment in (3). There are (arbitrarily) large > 0 and an interval
[a,b] C (0, 1] such that

7 () ={0%} x [a, 0] x {0"} € Wige(Q, f)

In order to put f~"(y) within W4(Q, f) note that, after shrinking + and perturbing
locally the dynamics, we can assume that there is some backward iterate of v intersecting
transversely the strong unstable foliation of ). Thus the negative iterates of v C''-approach

WEHQ, f). Finally, after a new perturbation, we can put some large backward iterate of

7 inside W2A(Q, f).
6. In the local coordinates at @, we can assume that the (s + 1)-disk Y51 satisfies
Tt = [=1,1]° x [a,b] x {0} € W*(P, f).
Moreover, using now the coordinates at P,
FrO0F) C =11 5 {0} = Wike(P. f).

Note that f7(Y**!) contains the heteroclinic curve 4. Furthermore, by shrinking the
local chart at @, we can assume that f(Y**!) is disjoint from this local chart for every
i € {1,...,7 —1}. Thus, since f"(T**1) C Wg (P, f), the whole forward orbit of T+ is
disjoint from the local chart of Q.

Homoclinic and heteroclinic intersections. Consider the local coordinates at P and the
s-disk A% C W5(Q, f) in (2) in the local chart of P. Since the rotation angle of A€ is irrational
there are infinitely many k > 0 such that f~¥(A*) (we consider iterations in the local chart of
P) meets transversely the (u+1)-disk A% ¢ W*(Q, f) in (3) (recall Scholium 5.8). We choose
large k and a transverse intersection point H € f~%(A%) N A**l. The transverse homoclinic
point H of @) can be taken arbitrarily close to «. Thus, now in the local coordinates at @, the
point C' = f~"(H) = (0°,¢,c") is close to f~"(y). Thus we can assume that ¢ € (a,b) (recall the
definition of r» and f~"(v) in (5)) and ¢* close to 0“ (for that it suffices to take large k). This
construction can be summarized as follows:

7. In the local coordinates at @, the stable manifold of () contains the the s-disk

I’ =[-1,1° x {(¢c,c")} c W3(Q, f),

where ¢" is close to 0% and ¢ € (a,b) (here [a,b] is the interval in (5)). The point C' =
(0°,¢,c") is a transverse homoclinic point of Q). Moreover, the disk I'* can be chose
satisfying the following properties:

(i) There is a small s-disk T'® € f~*(A®) containing H such that I'* = f~7(I'*). Thus
fH7 (%) © AS. Moreover, we can assume that I, f(I'®),..., f¥(I%) c A® are
contained in the local chart of P and are disjoint from W} (P, f). Thus the disk
frHi(T®) = f1(T*) is contained in the the local chart of P and disjoint from W (P, f)
for every i =0,1,..., k.

(ii) Since f7*(T'*) is disjoint from W% (P, f) the heteroclinic point Y € WY (P, f) N
W*(Q, f) in item (2) does not belong to f+*(I'*).
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(iii) The disk f(I'*) is disjoint from the local chart of Q, for every i € {1,...,r — 1}.

8. Consider the heteroclinic point Y € Wi (P, f)NW?3(Q, f), Y € A%, in item (2). Let £ > 0
be the smallest integer such that

X = fAY) = (2°,0,0) € [-1,1]° x {(0,0")} = Wi (Q, /).

By shrinking the local chart at @, we can assume that f*(A®) does not intersect this chart
for every 0 < i < £ —1. Since A* C W} (Q, f) and contains Y, we can assume that
FAA%) C WE(Q, f). Note that X € f£(A®) and thus X € W _(Q, f).

9. There is a u-disk I'* € W*(P, f) in the local chart of @ containing X of the form
I = {(&*,0)} x [-1,1]"

and such that I'* is disjoint from all its iterates (i.e., the disk I'* is contained in a funda-
mental domain of W*(P, f)) and f~4(I'*) € W.(P, f). Moreover, {X} = T“NW; (Q, f).

5.4.2 Local perturbations

We will perform a local perturbation of f in a neighborhood of the disk T'* in (9) to get a
diffeomorphism g such that there are (simultaneously) transverse homoclinic points of P, and
intersections between W"(P,,g) and W*(Qg,g). Since for every g close to f the invariant
manifolds W*(P,, g) and W"(Qg, g) have transverse intersections, it follows that g has a het-
erodimensional cycle associated to P, and ()4 such that the homoclinic class of P, is non-trivial.
Since the homoclinic class of ()4 is non-trivial (see items (3) or (7)), this will imply the lemma.

A transverse homoclinic point of P will be obtained as an intersection of the (s + 1)-disk
Y5t C WH(P, f) in (6) and some positive iterate of T* C W¥(P, f). The perturbation is such
that, for the resulting diffeomorphism g, the saddles P and Q are not modified, Y**1 c W*(P, g)
and I'* C W*(P, g). So such an intersection will provide a point in H(P,g). The heteroclinic
intersection between W*(P,g) and W*(Q, g) is obtained as the intersection of some positive
iterate of I'* (in fact, the same as before) and the s-disk I'* in (7). Once more, for the resulting
g one also has I' € W*(Q, g).

The main difficulty for performing this perturbation is to modify the positive orbit of I'*
without altering the fact that I'* and Y*+! are contained in the stable manifolds of @ and P,
respectively. For solving this difficulty, we claim that:

Claim 5.11.

e The closure of the forward orbit of Y5t is disjoint from T™.

e The closure of the forward orbit of I'® is disjoint from I'".

Proof: The first assertion follows noting that, by construction, the positive iterates of Y51 are
disjoint from the local chart at @ (item (6)) while I'* is contained in this local chart (item (9)).
The second part of the claim follows from the observations below:

e The iterates fi(I'*), i € {1,...,r + k} are disjoint from the local chart at Q (item 7(iii)
implies the assertion for i =0,...,(r — 1) and item 7(i) for ¢ =r,...,r + k). Hence, since
' is contained in the local chart of @ (recall (9)), these iterates are disjoint from T'*.
Moreover, f7*(I'*) is contained in (A% \ W (P, f)) (see (7(i) and 7(ii)).
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e As frTR(I®) C A%, item (8) implies that the iterates f"T++(I'*) C fi(A%), i€ {1,...,0—
1}, are disjoint from the local chart at Q). Thus, by (9), these iterates are disjoint from
I'*. Furthermore, by item 7(ii),

Y ¢ frJrk(FS)

and, by item (8),
JrRHT) € FUA%) © Wik(@, f).
Recalling that, by (9),

X =f(Y) g T and {X}=T"NWi.(Q, 1),

one has that
T N = 0.

e We claim that the positive iterates of f"**T¢(T%) c f*(A*®) do not meet the point X € I'".
Assume, by contradiction, that X = f4(Y) € frHh+i(Ts) ¢ f+(A®) for some i > 0.
Since X = f4(Y) € fYA®) (item (8)) this implies that f*(A%) N AS # () for some i > 0,
contradicting that A® is disjoint from its forward iterates (item (2)).

The claim now follows from the comments above recalling that f™*+4(I'*) ¢ W (Q, f) and
that {X} =T"NW;_.(Q, f) (item (9)). O

Bearing in mind the previous comments, we are now ready to perform the announced per-
turbation of f. By Claim 5.11, we can choose a small neighborhood V' of I'* disjoint from the
closures of the positive orbits of I'* and of Y*T1. Let f; be a diffeomorphism which coincides
with f outside V' and such that, in the local coordinates at @), satisfies

ft(l,ij’xu) - f(xsuxc7$u) + (087t7 Ou)a

for every (z°,x,z") in a small neighborhood U of T'* (contained in V). The definition of the
perturbation and the choice of V imply that Y51 c W#(P, f;) and T'* € W*(Q, f2).

Let ¢ € (a,b) be as in item (7). Then for every ¢t = 7™ ¢, large m > 0, the diffeomorphism
fi is C'-close to f. If m is big enough, using the expansion in the u-direction, one has

Li(m) = {((B°)"(2%), )} x [=1,1]"  f"(T™) € WH(P, [z).

As ¢ € (a,b), the segment I'¥(m) meets transversely the disk Y51 = [~1,1]® x [a,b] x {0“}.

Since Y5+ c W*(P, f;) this implies that the homoclinic class of P (for f;) is non-trivial.
Similarly, we have that I'}(m) intersects the disk I'* = [—1,1]° x {(¢,c")}. Since I'* C

W#(Q, ft), this implies that W*(P, f;) meets W*(Q, f). This ends the proof of the lemma. O

6 Applications to generic dynamics

The aim of this section is to prove Corollaries 2 and 3 and Theorems 2, 3, and 4 about C*-generic
dynamics. We begin by collecting some properties of chain recurrence and homoclinic classes of
C'-generic diffeomorphisms we will use systematically.
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6.1 Homoclinic and chain recurrence classes of C'!'-generic diffeomorphisms

There is a residual subset R of Diff! (M) such that every diffeomorphism f € R satisfies the
following properties:

G1) The chain recurrence set and the non-wandering set of f coincide. Moreover, these sets
are equal to the closure of the hyperbolic periodic points of f. See [BC, Corollaries 1.2].

G2) Every chain recurrence class C(f) of f containing a periodic point P; is the homoclinic
class of Py. See [BC, Remarque 1.10]. In particular, since the recurrence classes define a
partition of the chain recurrence set, two homoclinic classes of f € R which are non-disjoint
coincide (this result was previously stated in [CMP]).

G3) Every homoclinic class of f containing saddles of indices a and b, a < b, also contains a
saddle of index ¢ for every ¢ € (a,b) NN. See [ABCDW, Theorem 1].

G4) Every isolated chain recurrence class C(f) of f is robustly isolated: there are neighborhoods
U of f in Diff' (M) and V of the class C(f) in M such that, for every h € U, the intersection
R(h) NV is a unique chain recurrence class of h. See [BC, Corollaire 1.13]. Note that, by
item (G1), every isolated chain recurrence class of f is a homoclinic class.

G5) Given any pair of saddles Py and Q of f, there is a neighborhood Uy of f in R such that
either H(Py,g) = H(Qq,g) for all g € Uy, or H(P,,g) N H(Qg,g) = 0 for all g € Uy. This
follows from the arguments in [BC] and a genericity argument. For an explicit formulation
of this result (and its complete proof) see [ABCDW, Lemma 2.1].

6.2 Proof of Theorem 2

In this section, we prove Theorem 2: There is an open and dense subset O of the set of tame
diffeomorphisms such that every f € O either it satisfies the Axiom A plus the no-cycles con-
dition or it has a C'-robust heterodimensional cycle. Theorem 2 is a direct consequence of the
following local version of it:

Proposition 6.1. Let U be an open subset of Diff' (M) and V' and open subset of M such that,
for every diffeomorphism g € U, the intersection of the chain recurrence set R(g) of g and the
closure of V is a unique chain recurrence class C(g). Then there is an open and dense subset
Uy of U such that, for every g € Uy, the chain recurrence class C(g) is either a hyperbolic basic
set or it has a robust heterodimensional cycle.

We postpone the proof of this proposition and prove Theorem 2 assuming it.

Proof of Theorem 2: We first observe the following:

Lemma 6.2. Let f € R be a tame diffeomorphism. Then for every chain recurrence class C(f)
of f there are meighborhoods V of C(f) in M and Uy of f in Diff'(M) such that, for every
g € Uy, the intersection of the chain recurrence set of g and V' is a chain recurrence class C(g)
of g. Moreover, the chain recurrence class C(g) is a homoclinic class.

Remark 6.3. Lemma 6.2 means that we can apply Proposition 6.1 to chain recurrence classes
of tame diffeomorphisms.
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Proof: This lemma follows from the generic conditions (G1)-(G5) above. Consider a chain
recurrence class C(f) of a tame diffeomorphism f € R. By (G1), the chain recurrence class C(f)
contains a periodic point, say P;. By (G2), C(f) is the homoclinic class of Ps. Finally, since f
is tame, the chain recurrence class C(f) is isolated. By (G3), C(f) is in fact robustly isolated.
This completes the proof of the first part of the lemma.

Putting these results together and noting that every homoclinic class is contained in some
chain recurrence class, one has that for every tame diffeomorphism f € R homoclinic classes
and chain recurrence classes coincide and are robustly isolated. This implies the lemma. a

The theorem now follows from Proposition 6.1. Suppose that f is a tame diffeomorphism
that cannot be C''-approximated by diffeomorphisms with robust heterodimensional cycles. By
Lemma 6.2 and Proposition 6.1, each chain recurrence class of f is a hyperbolic basic set. Thus
the chain recurrence set of f (consisting of finitely many chain recurrence classes which are basic
sets) is hyperbolic. This implies that the diffecomorphism f is Axiom A.

We claim that f also verifies the no-cycles condition. Suppose, by contradiction, that f has a
cycle associated to two basic sets (chain recurrence classes), say C1(f) and Ca(f), of the spectral
decomposition of its non-wandering set. Then, using this cycle, one has that, for any arbitrarily
small neighborhoods Vi of C1(f) and V4 of Co(f), there is a diffeomorphism g arbitrarily close to
f having a periodic point (), whose orbit intersects V1 and V5. Thus the intersection of the chain
recurrence set of g containing (), and V; is not a chain recurrence class contained in V;. Since
the neighborhood V; of Ci(f) can be taken arbitrarily small, the chain recurrence class Ci(f)
of the tame diffeomorphism f does not satisfy the conclusion of Proposition 6.1, contradicting
Remark 6.3. The proof of Theorem 2 is now complete. O

We are left to prove Proposition 6.1.

Proof of Proposition 6.1:  Given open sets & and V as in the proposition, consider a
diffeomorphism g € U and its chain recurrence class C(g) contained in V. By (G1), after a
perturbation, we can assume that the chain recurrence class C(g) contains a hyperbolic periodic
point D,. By (G2), we can assume that C(g) is the homoclinic class H(Dy, g) of D,. Since this
proposition is local, we can assume that the continuation Dj, of D, is defined for every h € U.
Now, according to [Mas], either C(g) is hyperbolic or there is a perturbation h of g such that
h has a non-hyperbolic periodic point in V. After a new perturbation, we can assume that h
has two saddles with different indices in V' (the non-hyperbolic point splits into two hyperbolic
periodic points of different indices). The hypotheses of the proposition imply that the orbits of
these two periodic points are both contained in V' and belong to the same chain recurrence class
C(h). By (G2), we can assume that C(h) = H(Dp, h).

Since hyperbolic periodic points persist by C'-perturbations, the arguments above give a
dense open subset U; of U,

Uy = Upyp H Us,
such that

e the set Uy, is open and, for every g € Uy, the chain recurrence class C(g) is hyperbolic;
e the set Uy is open and every g € Us has two periodic saddles of different indices in C(g).

To prove the proposition it remains to see that, for every diffeomorphism g € Uy, the chain
recurrence class C(g) is a basic set (Lemma 6.4) and that the diffeomorphisms of Uy having
robust cycles are dense in Uy (Lemma 6.6).
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Lemma 6.4. Let g € Upy,. Then the chain recurrence class C(g) is a basic set equal to H(Dy, g).

Proof: Just note that the hypotheses of the proposition imply that C(g) = H(Dy, g) robustly.
Using now that the chain recurrence set has associated a filtration”, it follows that C(g) is the
maximal invariant set in some neighborhood of it. Since C(g) is hyperbolic and is a homoclinic
class (thus it is transitive and the periodic points are dense in the class), one immediately has
that C(g) is a basic set. 0

We now state a well known consequence of the Hayashi’s Connecting Lemma (Lemma 5.6)
that we will use repeatedly in this section. For completeness, we will include its proof:

Lemma 6.5. Let U be an open set of Diff'(M) such that, for every f € U, there are saddles
P; and Qy with different indices depending continuously on f. Suppose that there is a dense
subset D of U such that H(Py, f) = H(Qy, f), for all f € D. Then there is a dense subset H of
U consisting of diffeomorphisms f having a heterodimensional cycle associated to Py and Q.

Proof: Suppose that the indices of Py and Q¢ are p and ¢, p < ¢q. Take f € D and note that
the homoclinic class of Py is a transitive set. Thus there is € H(Py, f) whose forward orbit
accumulates to Py and ()y. Hence there are sequences of natural numbers k; and m; such that

e f™i(x) converges to some point of W} (Qy, f),
o f%i(z) converges to some point of Wi (P, f),
o Lk, —m; > 1.

Taking in Lemma 5.6 T; = f™(z), n; = k;—my;, Py = By, and Q = Ay, we get a diffeomorphism
h arbitrarily close to f such that W*(Qp, h) intersects W*(Py,h). Let n be the dimension of
the ambient manifold. As the sum of the dimensions of W*(Qp,, h) and W#(Py, h) is

g+ (n—p)=n+qg—p>n,

we can assume (after a new perturbation, if necessary) that the intersection between W*(Qp,, h)
and W#(Py, h) is transverse. This implies that there is an open and dense subset 7 of U such
that, for all g € Z, W*(Qg, g) and W?*(P,, g) have a non-empty transverse intersection.
Consider now a diffeomorphism f in the set Z N D (which is a dense subset of U). Since
H(Ps, f)=H(Qy, f) we can argue as above and apply again Lemma 5.6 to the saddles Py and
Qs. Now Py plays the role of Ay and Q) the role of By. This gives a diffeomorphism h arbitrarily
close to f (thus h € 7) such that W (P, h) intersects W*(Qp, h). As W*(Py, h)NW*(Qp,h) # 0
(recall that h € 7), one has that h has heterodimensional cycle. As h can be chosen arbitrarily
close to f € ZN D and the previous arguments hold for all f € Z N D, this completes the proof
of the lemma. O

Lemma 6.6. There is an open and dense subset Upcy. of Us such that every diffeomorphism
f € Ureye has a robust heterodimensional cycle.

"There are two submanifolds with boundary M; and Ms of the same dimension as the ambient manifold M
such that M2 C My, g(M;) is contained in the interior of M;, i = 1,2, and W = (M; \ M2) is a neighborhood of
C(g) such that C(g) is the maximal invariant set of g in W (see [Co] for details).
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Proof: Recall that Theorem 1 claims that every co-index one cycle generates robust heterodi-
mensional cycles. Thus to prove the lemma it is enough to see that the diffeomorphisms having
a co-index one cycle are dense in Uy. We first see that the diffeomorphisms g € Uy such that
the chain recurrence class C(g) contains saddles having consecutive indices form a residual (thus
dense) subset of Uy. Thereafter, using Lemma 6.5, we will get the density of diffecomorphisms
having co-index one cycles in Us.

By (G2) there is a residual subset Gy of Uy such that, for every f € Go, C(f) = H(Dy, f) for
some periodic point Dy. Using (G4), we can assume that for every f € Gy the indices of the
periodic points of H(Dy, f) form an interval of N. Thus, by (G2) and the definition of Us, we
can assume that there are saddles Py and @Q; with index(Ps) = index(Qf) — 1 such that

C(f)=H(Py,f)=H(Qy, f), forall feG.

Thus we can apply Lemma 6.5 to the open set Us, the dense (in fact, residual) subset Gy of Uo,
and the saddles Py and Q. This gives a dense subset Dy of Uy consisting of diffeomorphisms
f with a heterodimensional cycle associated to Py and ;. Noting that this heterodimensional
cycle has co-index one, we conclude the proof of the lemma. O

Let Uy.cyc the subset of Uy of diffeomorphisms with a robust heterodimensional cycle. By
Lemma 6.6, this set is open and dense in 5. By Lemma 6.4, to prove the Proposition 6.1 it is
enough to take Uy = Upyp [ [ Urcye- O

6.3 Proof of Corollary 3

Recall that Corollary 3 claims the following: There is a residual subset R of Diff* (M) such that,
for every diffeomorphism f € R and every isolated chain recurrence class C(f) of f, there are
two possibilities: either C(f) is hyperbolic or it has a robust heterodimensional cycle.

This corollary is a direct consequence of Proposition 6.1. Consider the residual subset R of
Diff' (M) satisfying properties (G1)-(G5) above. By (G4), C'-generically isolated chain recur-
rence classes are robustly isolated. Hence any isolated class C(f) of f € R verifies Lemma 6.2.
Thus we can apply Proposition 6.1 to C(f), proving the corollary.

6.4 Proof of Theorem 3

Consider the residual subset R of Diff' (M) satisfying (G1)-(G5). We prove the following result
which implies Theorem 3.

Consider a diffeomorphism f € R and a chain recurrence class C(f) of f containing two saddles
P and Qy of different indices. Then there are diffeomorphisms arbitrarily close to f having
robust heterodimensional cycles.

Note that, by (G2), C(f) = H(Py, f) = H(Qy, f). Thus, by (G5), for every g € R close
to f, one has C(g) = H(Py,9) = H(Qg4,g). Since the saddles Py and @), have different indices,
condition (G3) implies that there are saddles A, and By in C(g) = H(Py, g9) = H(Qy,g) having
consecutive indices. Moreover, again by (G5) and (G2), for every h € R close to g, one has

C(h) = H(Py,h) = H(Qp, h) = H(Ap, h) = H(Bp, h).

Lemma 6.5 now gives ¢ arbitrarily close to h (thus arbitrarily close to f) with a co-index
one cycle associated to A, and B,. By Theorem 1, this co-index one cycle generates robust
heterodimensional cycles. The proof of the result is now complete.
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6.5 Proof of Theorem 4

Recall that Theorem 4 claims that every diffeomorphism with a co-index 1 cycle is in the closure
of an open set of Diff' (M) of diffeomorphism which do not satisfy the shadowing property. The
proof of Theorem 4 follows using the arguments in [AD, Theorem 1] (on its turn, these arguments
are an adaptation of the ones in [BDT, YY]). Let us sketch these arguments.

The main step of the proofs in [AD, BDT| can be summarized as follows. Suppose that a
diffeomorphism f has co-index one cycle with real central eigenvalues as follows. The cycle is
associated to saddles Py and @y, of indices u and w + 1, and there are a neighborhood of the
cycle V and a partially hyperbolic splitting over V of the form E*® & E° & E“, where E¢ is
one-dimensional and dim(E“*) = u. Then there is a C'-open set A’ whose closure contains f
such that for every g € N the unstable manifold of P, accumulates to W _(Qg,g) nicely: there
are a small unstable cone field around E"*, a sequence of points z,, € W*(Fy, g) converging to
some point x € W} (Qyg,9), and a sequence of u-disks D,, such that

e the disks are contained in the unstable manifold of Fy;
e every disk D, is tangent to the unstable cone-field; and

e the disk D, is centered at z,, and its size is uniformly bounded from below (it contains a
u-ball centered at x,, of uniform size).

Then, given g € N, we first select large m in such a way x,, is close to x € W} (Qq,9).
Thereafter we take large n such that ¢g"(x) is close to Q4 and g~ " (zy,) is close to P, (recall that
T € W*(Py,g). We now consider the following finite pseudo-orbit of g with three-jumps:

Znt1 = Qg, 2k = gk(x), if 0 <k <n, 2L = gk($m), if —n <k <0, Z_p_1 =Py

The partially hyperbolic assumption prevents this pseudo-orbit from being shadowed by a true
g-orbit (this is proved in [AD, Lemma 3.12], see also [BDT, YY] where the similar arguments
are used). Therefore N is an open set of diffecomorphisms which do not satisfy the shadowing
property.

We are now ready to finish the proof in our case. Suppose that f has a co-index one
cycle. Then, by a perturbation of f, one gets a diffeomorphism h with a simple cycle (first,
using Theorem 5.1, one obtains a cycle with real central eigenvalues and thereafter one uses
Proposition 3.6). We now can apply the arguments above.

We note that the accumulation property above (W*(FP,, g) accumulates nicely to W} .(Qy, g9))
can be obtained directly using the arguments in Proposition 4.3.

6.6 Proof of Corollary 2

In this section, we prove Corollary 2: existence of robust cycles implies approximation by co-index
one cycles.

Suppose that ¢/ is a C'-open set of diffeomorphisms f having robust heterodimensional
cycles, say associated to hyperbolic transitive sets I'y and X ¢. Suppose that the indices of these
sets are p and ¢, p < ¢, respectively. Thus the set I'; is contained in the homoclinic class of a
saddle P; of index p and the set X is contained in the homoclinic class of a saddle Qs of index
q. Note that the saddles P; and @y depends continuously on f.
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Lemma 6.7. Under the hypotheses above, there a residual subset G of U such that, for every
f € G, the homoclinic classes of Py contains saddles of indices p,p+1,...,q.

Proof: We first see that there is a residual subset G of U such that the homoclinic classes of
Py and Qy are equal for all f € G. Therefore, by (G3) (we can assume that G is contained in
R), the homoclinic class H(Py, f) = H(Qy, f) contains saddles of indices p,p+1,...,¢q. Thus
to prove the lemma it is enough to get the generic equality of these homoclinic classes.

Using the that U is an open set of diffeomorphisms with robust cycles and that the sum of
dimensions of W*(Py, f) and W*(Qy, f) is greater than the dimension of the ambient manifold,
one immediately gets an open and dense subset V of U of diffeomorphisms f such that W*(Py, f)
and W*(Qy, f) have a non-empty transverse intersection. The A-lemma now implies that,

W*Y(Py, f) C closure (W*(Qy, f)), for every f e V.

Consider f € V. We claim that every heteroclinic point x € W*(I'y, f) N W*(Xy, f) is non-
wandering. Fix x € W*(T'y, f) N W#(Xy, f) and a neighborhood U of . By the A-lemma, one
has that W*(Qy, f) and W*(Py, f) intersect U. The A-lemma also implies that

W Qy, f) C closure (Up>of"(U)) .

As W*"(Py, f) is contained in the closure of W*(Qy, f), one has that W* (P, f) is contained in
the closure of the forward orbit of U. As W¥(Py, f)NU # 0, there is k > 0 with f*(U)NU # 0.
Since this holds for every neighborhood U of x, this point is non-wandering.

Consider the residual subset G = RNV of U. By (G1), the previous construction implies
that, for every f € G, every x € W*(I'y, f) N W*(Xy, f) is a chain recurrent point. It is now
immediate to see that the points Py, Q¢, and x are in the same chain recurrence class. By (G2),
one has H(Py, f) = H(Qy) for all f € G. The proof of the lemma is now complete. O

We have that, for every f € G, the homoclinic class H(Py, f) = H(Qy, f) contains a saddle
of index p + 1. Fix now f € G and a saddle Ry of index p+ 1 in H(P, f). By (G5), for every
g € G close to f the saddle R, belongs to H(P,,g). By (G2), H(Ry,h) = H(Py,h), for every
h € G close to g. Lemma 6.5 gives ¢ arbitrarily close to g (thus to f) with a cycle associated
to P, and Ry. By construction, this heterodimensional cycle has co-index one. This ends the
proof of the corollary.
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