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Abstract

It is known that non-hyperbolic robustly transitive sets A, have all a dominated splitting
and contain generically periodic points of different indices. We show that for a C'-dense open
subset of diffeomorphisms ¢ the indices of periodic points in a robust transitive set A, form
an interval in N. We also proof that the homoclinic classes of two periodic points in A, are
robustly equal. Finally, we describe what kind of homoclinic tangencies can appear in A, by
analyzing the dominated splittings of A.

1 Introduction

When a diffeomorphism ¢ is hyperbolic, i.e., it verifies the Axiom A, the Spectral Decomposition
Theorem of Smale says that its limit set (set of non-wandering points) is the union of finitely many
basic pieces satisfying nice properties: they are invariant, compact, transitive (there is a dense
orbit), pairwise disjoint and isolated (each piece is the maximal invariant set in a neighborhood of
itself). Moreover, by construction, a basic piece is the homoclinic class of a hyperbolic periodic
point, i.e., the closure of the transverse intersections of its invariant manifolds.

Even if the dynamics is non-hyperbolic, the homoclinic classes of hyperbolic periodic points
seem to be the natural elementary pieces of the dynamics, satisfying many of the properties of the
basic sets of the Smale’s theorem: invariance, compactness, transitivity and density of hyperbolic
periodic points. Recent results in [BDs], [Ar] and [CMP] show that, for C!-generic diffeomorphisms
(i.e., those belonging to a residual subset of Diff' (M)) two homoclinic classes are either disjoint or
equal and they are maximal transitive sets (i.e., every transitive set intersecting a homoclinic class
is contained in it). Let us observe that, in general, the homoclinic classes fail to be hyperbolic,
isolated and pairwise disjoint.

In [BDP] it is shown that, for C1-generic diffeomorphisms, a homoclinic class is either contained
in the closure of an infinite set of sinks or sources, or satisfies some weak form of hyperbolicity
(partial hyperbolicity or, at least, existence of a dominated splitting). The first situation (called
the Newhouse phenomenon) can be locally generic (in the residual sense): there are open sets in
Diff" (M) where the diffeomorphisms with infinitely many sinks or sources are (locally) residual for
the C"-topology, see [N] for r > 2 for surface diffeomorphisms, [PV] for » > 2 in higher dimensions,
and [BD;] for 7 = 1 in dimensions greater or equal than 3. Certainly, the Newhouse phenomenon
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exhibits very wild behavior and it is conjectured that (in some sense) diffeomorphisms satisfying
this phenomenon are very rare (for instance, for generic parametrized families of diffeomorphisms,
the Lebesgue measure of the parameters corresponding to diffeomorphisms satisfying the Newhouse
phenomenon is zero), see [Pal.

We focus here on the opposite behavior, more precisely, on the so-called robustly transitive sets
introduced in [DPU] as a non-hyperbolic generalization of the basic sets of the Spectral Decom-
position of Smale: a robustly transitive set A of a diffeomorphism ¢ is a transitive set which is
locally maximal in some neighbourhood U of it and such that, for every C'-perturbation 1) of the
diffeomorphism ¢, the maximal invariant set of ¢ in U is transitive. From the results in [Ms], [DPU]
and [BDP] every robustly transitive set A admits a dominated splitting, say TAM = E1 & --- & Ey,
and by [BDsy], Cl-generically, it is a homoclinic class. An invariant set may admit more than one
dominated splitting. The reason is that, in some cases, one can sum some bundles of a dominated
splitting, obtaining a new dominated splitting with less bundles, or, conversely, split some bundle
of the splitting in a dominated way. So it is natural to consider the finest dominated splitting of the
set A (i.e., one of which it is not possible to split any bundle of the splitting to get a new dominated
splitting).

In this paper we study the interplay between the dominated splittings (especially the finest one)
of a robustly transitive set A and its dynamics, answering questions about the indices (dimension
of the stable manifold) of the periodic points of A, the possible bifurcations (saddle-node and
homoclinic tangencies) occurring in this set as well as its dynamical structure.

In order to present our results we need to give some precise definitions.

In what follows, M denotes a compact, closed Riemannian manifold and Diff' (M) the space of
C!'-diffeomorphisms of M endowed with the usual topology.

Let A be a compact invariant set of a diffeomorphism ¢. A ¢.-invariant splitting TaM = E® F
over A is dominated if the fibers of E and F' have constant dimension and there exists a k such

that for every x € A one has
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that is, ¢¥ expands the vectors in F uniformly more than the vectors in E. Then we say that F
dominates E and write E < F'.
An invariant bundle E over A is uniformly contracting if there exists a k such that for every

z € A one has: )

: 1
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An invariant bundle is uniformly ezpanding if it is uniformly contracting for ¢, !.

Let TAM = E1 ® E3 ® --- ® Ej, be a ¢,-invariant splitting over A such that the fibers of the
bundles E; have constant dimension. Denote by E! = @] Ej. Observe that Ef_IGBE,T is a splitting
of TAM for all k € {2,...,m}. We say that E1 ®E,@---® E,, is the finest dominated splitting of A
if Effl ® E" is a dominated splitting for each k£ € {2,...,m} and every Ej, is indecomposable (i.e.,
it does not admit any (nontrivial) dominated splitting). See [BDP] for the existence and uniqueness
of the finest dominated splitting.

Consider a set V' C M and a diffeomorphism ¢: M — M. We denote by A,(V) the mazimal
invariant set of ¢ in V, i.e., Ay(V) = ez " (V). Given an open set U of M the set A, (U) is
robustly transitive if Ay (U) is equal to Ay (U) and is transitive for all ¢ in a C'-neighbourhood of



. We say that a tp-invariant closed set K is transitive if there is some z € K having a positive
dense orbit in the whole set K.

If a robustly transitive set Ay(U) is not (uniformly) hyperbolic then, by a C!-small perturbation
of ¢, one can create non-hyperbolic periodic points, and thus hyperbolic periodic points with
different indices in Ay(U) (see [M3]). Our first two results describe the possible indices of the
periodic points of Ag(U), in terms of the finest dominated splitting of A4 (U):

Theorem A. Let U be an open set of M and M(U) a C'-open set of Diff' (M) such that A,(U)
is robustly transitive for every ¢ € M(U). Then there is a dense open subset N(U) of M(U) such
that, for every p € N'(U), the set of indices of the hyperbolic periodic points of A,(U) is an interval
of integers (i.e., if P and Q are hyperbolic periodic points of indices p and q, p > q, of A,(U),
e N(U), and j € [q,p], then Ay,(U) has a hyperbolic periodic point of index j).

In the next result we use the arguments in [M3] to relate the uniform contraction or dilatation
of the extremal bundles of the finest dominated splitting of a robustly transitive set with the indices
of the periodic points of this set.

Theorem B. Consider an open set U of a compact manifold M and an integer g € N*. Let U be
a Ct-open set of Diff' (M) such that for every ¢ € U the mazimal invariant set Ay(U) satisfies the
following properties:

1. the set Ay(U) is contained in U and admits a dominated splitting Ey ® Fy, Ey < Fy, with
dim Ey(z) = q,

2. the set Ag(U) has no periodic points of index k < q.
Then the bundle Ey is uniformly contracting for every ¢ € U.

We can summarize the two results above to get a characterization of the set of indices of the
periodic points of the set Ay(U), as follows.

Let U be an open set of M and ¢ a diffeomorphism such that A,(U) is robustly transitive with
a finest dominated splitting of the form T} ()M = E1 @ -+ @ Ej(y), Ei < Eji+1. Denote by E* the
sum of all the uniformly contracting bundles of this splitting and let E, be the first non-uniformly
contracting bundle, ie., £ = E; @& --- @ FEy_ 1. In the same way, denote by E" the sum of all
the uniformly expanding bundles of the splitting and let Eg be the last non-uniformly expanding
bundle, i.e., E* = Eg1 & -+ @ Ey,). Let U be a C'-neighborhood of ¢ such that for every 1) € U
the set Ay (U) has the same properties as A,(U) (i.e., robustly transitive and the number k(1)) of
bundles of the finest dominated splitting is equal to k(p)) and the dimensions of bundles E* (1),
Eq (), Eg(1) and E*(¢), defined in the obvious way, are constant in ¢/ and equal to corresponding
bundles for ¢.

Corollary C. With the notation above, there are a C'-open and dense subset V of U and locally
constant functions i,7: YV — N* such that

i(y) € [dim(E*), dim(E®) + dim(E,)] N N*,
() € [dim(EY), dim(EY) + dim(E)] N N*,

and, for every 1 € V, the set of indices of the hyperbolic periodic points of Ay (U) is the interval
[1(4), dim (M) — j(¥)] N N*.



The first known examples of non-hyperbolic robustly transitive sets had a one-dimensional cen-
tral direction, see [M;] and [Sh]. As a consequence, these examples do not present homoclinic
tangencies (non-transverse homoclinic intersections between the invariant manifolds of some pe-
riodic point). Let us observe that if a periodic point has a homoclinic tangency then, after a
perturbation of the diffeomorphism, one create a Hopf bifurcation (a periodic point whose deriva-
tive has a pair of conjugate nonreal eigenvalues of modulus one), see [YA] and [R], and hence points
whose central direction has dimension at least two. Currently examples of robustly transitive sets
having a central direction of dimension two or more are known, see [BD;], [B] and [BV]. Moreover,
in some cases these sets exhibit homoclinic tangencies, see [B] and [BV]. Our next result explains
what kind of dominated splitting of a robustly transitive set prevents homoclinic bifurcations.

We say that a robustly transitive set A,(U) is Ct-far from homoclinic tangencies if there are
no homoclinic tangencies in Ay (U) for any 1 in a C'-neighbourhood of ¢.

Theorem D. Given an open set U of M let P(U) C Diff'(M) be an open set of diffeomorphisms
@ such that:

1. The set A, (U) is robustly transitive and the minimum and the mazimum of the indices of the
hyperbolic periodic points of A,(U) are constant in P(U). Denote these numbers by is and
i¢, respectively.

2. The set Ay(U) is Ct-far from homoclinic tangencies.

Then there is an open and dense subset O(U) of P(U) such that, for every ¢ € O(U), the set
Ay(U) has a dominated splitting Ty () = E° ® By & -+ & E, ® E¥, such that

e FE7 is uniformly contracting and has dimension is > 1,
e E“ is uniformly expanding and has dimension dim(M) — i, > 1,

e r =i, — 15 and the bundle E; has dimension one and is not uniformly hyperbolic for every
1=1,...,r.

Actually, from the proof of this theorem we get somewhat more: given any robustly transitive
set Ay (U) the dimensions of the non-hyperbolic bundles of its finest dominated splitting determine,
for diffeomorphisms in a C'-neighbourhood of ¢, the ranks of the homoclinic tangencies (that is,
the index of the periodic point exhibiting the tangency) that can occur in Ay(U). The precise
statement of this result is in Section 6, see Theorem F.

Finally, for robustly transitive sets which are far from homoclinic tangencies, we prove that the
(relative) homoclinic classes of two periodic points of this set are equal in a C'-robust way. More
precisely, let P, be a hyperbolic periodic point of a diffeomorphism ¢. We denote by Hp, the set of
transverse intersections of the invariant manifolds of P,. Observe that the homoclinic class of P,
is the closure of Hp,. Given an open set U, the relative homoclinic class of P, in U is the closure
of the set Hp,(U) of transverse homoclinic points of P, whose orbits are contained in U.

Theorem E. Let U be an open set of M and S(U) C Diff' (M) an open set of diffeomorphisms ¢
such that the set A,(U) is robustly transitive and there are no homoclinic tangencies (in the whole
manifold) associated to periodic points of A, (U).



Consider any pair of hyperbolic periodic points P, and Q, of A,(U) with indices p and q whose
continuations are defined for every 1 in S(U). Then there is an open and dense subset D(U) of
S(U) such that

Hp,(U) = Hq,(U)
for every ¢ in D(U).

Unfortunately, in the theorem above we cannot ensure that the relative homoclinic classes of
Py and Qy are equal to Ay (U), although by the results in [BD»] this is true for a residual subset
of S(U).

Let us now say a few words about the proofs of our results. One of the main tools is the notion
of heterodimensional cycle. Given a diffeomorphism ¢ with two hyperbolic periodic points Py and
Q4 with different indices, say index(P;) > index(Qg), we say that ¢ has a heterodimensional cycle
associated to Py and Qg, denoted by I'(¢, Py, Qq), if W*(FPy) and W*(Q4) have a (nontrivial)
transverse intersection and W*(Py) and W*(Qg4) have a quasi-transverse intersection along the
orbit of some point z, ie., T,W"(P,) + T,W?(Qy) is a direct sum. Observe that in this case
dim(M) — dim(T, W"(Py) + T, W*(Qy)) is equal to index(Py)— index(Qy), this number being the
codimension of the cycle.

The proof of Theorem A has two main ingredients. The first is Theorem 3.1, which implies
that, by unfolding a heterodimensional cycle associated to points of indices ¢ and p as above, one
gets hyperbolic periodic points of some index in between ¢ and p (a priori, we do not know the
index of such a point). The second ingredient of the proof is the Connecting Lemma of Hayashi
(see Theorem 2.1 and [H]) which allows us to create (after a C'-perturbation) heterodimensional
cycles associated to any pair of periodic points of a robustly transitive set.

Two other important tools are the constructions in [Mz] and in [BDP], specially the periodic
linear systems with transitions of [BDP]. In this paper we need to introduce transitions between
points of different indices in the same homoclinic class, generalizing the construction in [BDP], in
which only transitions between points with the same index were considered.

Finally, to prove Theorem E, the main ingredient, besides the Connecting Lemma, is the propo-
sition below concerning the structure of the homoclinic classes of hyperbolic points having a het-
erodimensional cycle.

We say that a hyperbolic periodic point Ry is C L_far from tangencies if there is a C'-neighbour-
hood W of ¢ in Diff' (M) such that every 1 € W has no homoclinic tangencies associated to Ry.
A heterodimensional cycle I'(¢, Py, Q) is C'-far from homoclinic tangencies if the points Py and
Q4 in the cycle are C Lfar from homoclinic tangencies.

Finally, we say that two points z and y are transitively related for ¢ if there exists a transitive
set of ¢ containing x and y. The points  and y are transitively related in an open set U if there
exists a transitive set of ¢ contained in U that contains = and y.

Proposition 1.1. Let U be an open set, ¢ a diffeomorphism and P, and Q, a pair of hyperbolic
periodic points of ¢ of indices p and q = p — 1, respectively. Consider a neighbourhood W C
Diff' (M) of ¢ of diffeomorphisms v such that,

e the continuations of Py and Qy are defined and C'-far from tangencies,

e the points Py, and Qy are transitively related in U.



Then there is a Ct-open subset W, of W whose closure contains ¢ such that the relative homoclinic
classes of Py and Qy in U are equal for every ¢ € W,,.

[DR, Theorem A] guarantees that given any heterodimensional cycle I'(¢, Py, Q) of codimen-
sion one far from homoclinic tangencies, there is a C'-open set, whose closure contains ¢, of dif-
feomorphisms ¢ such that P, and @, are transitively related. Thus, for any diffeomorphism ¢
with a heterodimensional cycle which is far from homoclinic tangencies, there are diffeomorphisms
@ arbitrarily close to ¢ satisfying the hypotheses of the proposition. The proof of Proposition 1.1
follows from the results in [DR] and the Connecting Lemma of Hayashi.

This paper is organized as follows. In Section 2 we get some results concerning heterodimen-
sional cycles, robustly transitive sets and homoclinic classes using the Hayashi’s Connecting Lemma.
In Section 3 we prove Theorem A. For that we need to study the creation of periodic points in the
unfolding of heterodimensional cycles (of any codimension). In Section 4 we prove Theorem B, for
that we recall some folklore results concerning dominated splittings and remember and reformulate
some results in [Mz]. In Sections 5 and 6 we study the interplay between the finest dominated split-
ting of a robustly transitive set and the creation of homoclinic tangencies inside this set. Finally,
in Section 7 we prove the results concerning (relative) homoclinic classes.

2 Transitively related points

We begin the proofs of our results by recalling the Hayashi’s Connecting Lemma and deducing
some consequences from it.

2.1 Connecting lemma and transitively related points

Theorem 2.1. (Hayashi’s Connecting Lemma, [H]) Let P, and Q, be a pair of hyperbolic
periodic points of a C'-diffeomorphism o such that there are sequences of points x,, and of natural
numbers ky such that the sequences x, and @ (z,) accumulate on Wi (Q,) and on W (P,),
respectively.

Then there is a diffeomorphism 1 arbitrarily C'-close to ¢ such that W*(Qy) and W*(Py) have
a nonempty intersection.

Remark 2.2. Every pair of hyperbolic periodic points P, and Q, which are transitively related
satisfy the hypotheses of the Connecting Lemma (Theorem 2.1).

Proof of the remark: Consider a transitive set A containing P, and @, and a point z of
A whose positive orbit is dense in A. Then there are sequences of natural numbers m,, and r,,
Mp, Ty — 00 a8 n — 00, such that ™ (z) = P, and ¢ (x) — Q,. Then it is immediate to get
new sequences m!, and !, with m! , ! — oo, such that ¢™= () and @' (z) converge to some point
of Wi (P,) and of W} (Q,), respectively. Taking subsequence’s, if necessary, we can assume that
rl = m], + ky for some k, > 0. Now it suffices to take z,, = ¢ (z) and consider the sequences z,

and k,,. O



2.2 Homoclinic relative classes and robustly transitive sets

By [BD3, Theorem B] there is a residual subset of Diff! (M) consisting of diffeomorphisms such that
the homoclinic classes of any pair of transitively related hyperbolic periodic points are equal. The
proof of this result is based on the Hayashi’s Connecting Lemma. Using the relative version of the
connecting lemma we get a relative version of [BDy, Theorem B] whose prove we omit here.

Theorem 2.3. (Relative version of [BD3, Theorem BJ]). Given an open set U of M there
is a residual subset G(U) of Diff'(M) such that for every ¢ € G(U) a pair of hyperbolic periodic
points P, and Q, of ¢, are transitively related in U if and only if the relative homoclinic class in
U of P, and Q, are equal, i.e., Hp,(U) = Hq,(U).

Let A(U) be an open set of Diff' (M) such that A,(U) is robustly transitive for all . By the
Pugh closing lemma (see [Pu]) and a Kupka-Smale argument, there is a residual subset R(U) of

A(U) of diffeomorphisms ¢ such that the hyperbolic periodic points form a dense subset of A, (U).
Taking T (U) = G(U) NR(U), where G(U) and R(U) are as above we get the following:

Proposition 2.4. Let U and A(U) be open sets of M and of Diff'(M), respectively, such that
A, (U) is robustly transitive for all ¢ € A(U). Then there is a residual subset T4(U) of A(U) such
that

Hp,(U) =A,(U)
for every ¢ € T4(U) and every hyperbolic periodic point P, of A,(U).

2.3 Heterodimensional cycles

We will use the following lemma which is a consequence of the Connecting Lemma and an argument
of transversality:

Lemma 2.5. Let P, and Q) be a pair of hyperbolic periodic points of a diffeomorphism ¢ of indices
p and q, p > q. Suppose that Py and Qy are transitively related for every 4 in a neighbourhood V
of p. Then there is a dense subset W of V such that every ¢ in W has a heterodimensional cycle

L'(¢, Py, Qg) of codimension (p — q).

Proof: Consider any ¢ € V, since Py and @y are transitively related, by Remark 2.2, we can
apply Theorem 2.1 to get ¢ arbitrarily close to ¢ (hence ¢ is in V) such that W*(P:) NW*(Q¢) # 0.
Since

dim(W* (P%)) + dim(W"(Q¢)) = p + (dim(M) — q) > dim(M),

we can assume that this intersection is transverse.

Since £ belongs to V the points P; and ()¢ are transitively related. Thus, again by Remark 2.2,
we can apply Theorem 2.1 to get ¢ arbitrarily close to ¢ (¢ in V) such that W?*(P,) and W*(Qg)
have (non empty) transverse intersection and W*(Py) N W*(Q4) # 0. After a new perturbation,
if necessary, we can assume that the last intersection is quasi-transverse, obtaining a heterodimen-
sional cycle I'(¢, Py, Q) of codimension (p — ¢), ending the proof of the lemma. O

Let us state two remarks of the proof above that we will use in Section 7.



Remark 2.6. Let P, and Q, be a pair of hyperbolic periodic points of a diffeomorphism ¢ of indices
p and g, p > q. Suppose that Py and QQy are transitively related for every v in a neighbourhood
V of ¢. Then there is a dense and open subset D of V such that W*(Py) and W*(Qy) have a
nontrivial transverse intersection for every v in D.

If in Theorem 2.3 one assumes that the points P, and (), have the same index, one has the
following stronger version of it:

Remark 2.7. Let P, and Q, be a pair of hyperbolic periodic points of the same index of a diffeo-
morphism ¢ and U an open set containing the orbits of P, and Q,. Suppose that Py, and Qy are
transitively related for every 1 in a neighbourhood V of . Then there is a dense and open subset
O of V such that, for every v in O, the relative homoclinic classes of Py and Qy in U are equal.

3 Proof of Theorem A: unfolding heterodimensional cycles

3.1 Transitions for heterodimensional cycles

We begin this section stating a somewhat technical result introducing the notion of transition
between periodic points of different indices.

Theorem 3.1. Let P and @ be two hyperbolic periodic points of a diffeomorphism ¢ of indices p
and q, p > q, and periods n(P) and n(Q), respectively. Denote by Mp and Mg the linear maps

ot NPy TpM — TpM  and M V(Q): Ty — ToM.
Assume that there are dominated splittings
TpM = E\(P) ® E2(P)® E3(P) and ToM = E1(Q) @ Ex(Q) ® E3(Q),

with dim(E,(P)) = dim(E1(Q)) = q and dim(E3(P)) = dim(E5(Q)) = dim(M) — p, which are
invariant by Mp and Mg, respectively. Assume, in addition, that there is a heterodimensional
cycle T'(p,U, P,Q) in some open subset U of M.

Then, fixed any € > 0, there are matrices Ty and 11 and 0 > 0 such that, for every n and m > 0,
and every family matrices (I;),i =0,...,(n+m)+2, d-close to identity, there is a diffeomorphism
Y e-Cl-close to ¢ having a periodic orbit R of period n(R) such that the linear map Mp = zpf(R)
1§ conjugate to

LnymyooTiolpimiro Mgolyymo---olpa0MgolyyyoTyolyoMpol, yo---0lioMpol.

Moreover, n(R) = t; +t2 +n-n(P) + m-n(Q), where t; and ty are constants depending only on
the choice of Ty and T7.

The maps Ty and T} are called transitions (from P to @) and from @ to P, respectively). These
maps are a generalization of the transitions introduced in [BDP] for hyperbolic periodic points
which are homoclinically related.

Theorem 3.1 is the main step in the proof of Theorem A. Taking appropriate n and m and
assuming that index(P) > index(Q) + 1, using the theorem one gets that the index of R is in



Figure 1: A heterodimensional cycle

between the indices of P and @, see Corollary 3.6. This construction will also allow us to get points
R corresponding to saddle-node bifurcations.

Proof: For simplicity let us assume that P and @ are fixed points. Notice that F1(Q) is the stable
direction of @), E1(P) is the strong stable direction of P, E3(Q) is the strong unstable direction of
@ and Ej3(P) is the unstable direction of P.

We now perform a Cl'-perturbation of the diffeomorphism ¢ to get appropriate linearizing
coordinates of the cycle. The properties of this linearization are summarized in the next lemma:

Lemma 3.2. Let ¢ be a diffeomorphism satisfying the hypotheses of Theorem 3.1. Then there is
¢ arbitrarily C*-close to ¢ having a heterodimensional cycle T'(¢,U, P,Q) such that:

1. There are smooth linearizing charts
Up, Ug =~ [-1,1]7 x [~1,1]P9 x [~1, 1]dim(M)—p

defined on neighbourhoods of P and QQ where ¢ is a linear map such that, for every x €
Up N ¢~ (Up) or z € Ug N ¢~ (Ug), one has:

(a) In these charts P and Q correspond to the point {0}4™(M) gnd ¢, (P) = @.(P) and
$«(Q) = 9. (Q),

(b) The foliation by q-planes parallel to [—1,1]9 x {0}P~7 x {0}4(M)=P (cqiled strong stable
foliation, F?) is locally invariant and corresponds to the smaller (in modulus) eigenvalues
of the linear maps induced by ¢ in Up and Ug.

(¢) The foliation by (p — q)-planes parallel to {0} x [—1,1]P~=9 x {0}4m(M)=P (cqlled central
foliation, F€) is locally invariant.

(d) The foliation by (n — p)-planes parallel to {0} x {0}P~9 x [=1, 1]4™() =P (cglled strong
unstable foliation, F*) is locally invariant and corresponds to the bigger (in modulus)
eigenvalues of the linear maps induced by ¢ in Up and Ug.



2. There are points Xo € (W™(Q) h W(P))NUqg and Yy = ¢*(Xo) € Up, ko > 0, such that, in
these coordinates, Xo € {0}9 x [—1,1]P=% x {0}4m(M)=P (the local center-unstable manifold
of Q, denoted by W£(Q)) and Yy € {0}9 x [—1,1]P~% x {0}4m(M)=P (ihe local center-stable

manifold of P, denoted by WSS (P)).

loc

8. There are points X1 € (W*(Q) NW*(P)) NUp and Yy = ¢"(X;) € Ug, k1 > 0, such that,
in these coordinates, X1 € {0} x {0}P~4 x [—1,1]4m(M)=P (the local unstable manifold of P,
W .(P)) and Y1 € [—1,1]9 x {0}P~9 x {0}4m(M)=P (the local stable manifold W (Q) of Q).

4. There are small cubes Cy C Ug and Cy1 C Up centered at Xo and X1, respectively, such that
(a) ¢k0(00) Cc Up and ¢k1 (Cl) C UQ,

(b) the restrictions Ty = ¢*|c, and Ty = ¢*|c, are affine maps which preserve the strong
stable, central and strong unstable foliations above.

Proof: To get a point of the heteroclinic intersection W*(Q) h W#(P) in the central direction
just observe that, generically, there are points X of such an intersection which are not in the strong
unstable manifold of ) nor in the strong stable manifold of P. Thus, after an arbitrarily small
perturbation of ¢, we can assume that this is our case. Considering a point X with this property
and using the domination, we have that the backward orbit of X approaches to the center-unstable
manifold of Q). Similarly, the forward iterates of X approach to the center-stable manifold of P.
Now by two local small C'-perturbations one gets the announced points X, and Yy = ¢*o(Xp).
Observe that we can perform these two perturbations without breaking the cycle (i.e., preserving
the non-transverse intersection between W*(Q) and W*(P)). Observe now that the points X; and
Y1 = ¢*(X1) in the lemma are directly given by the intersection W*(Q) N W¥(P).

After a new perturbation, we can assume that ¢ is linear in small neighbourhoods of P and of
Q and that ¢*o and ¢* are both affine in small neighbourhoods of X, and X;. The only difficulty
is to see that these affine maps can be chosen preserving the foliations (strong stable, central and
strong unstable). This fact follows along the lines of the proof of [BDP, Lemma 4.13] using the
domination. Let us explain all that in details.

In our linearizing charts there are foliations ¢ (resp., F*) tangent to the sum E; @ Es of the
stable and central directions (resp., the sum Fy @ F3 of the central and unstable directions). By
genericity, we can assume that the images by ¢ of the foliations F*, F¥, F¢, F° and F are in
general position. Now, one checks that the forward iterates of the images by ¢ of the leaves of
F become close to the center-unstable leaves in Up. Replacing the initial kg by kg + £, for some
big positive ¢, and doing a small perturbation, one gets an invariant center-unstable foliation.

To get the invariance of the strong stable foliation we consider negative iterates of the foliations
in the neighbourhood of Yy. By the previous construction, the center-unstable foliation is preserved
by negative iterations. So the negative iterates of the strong stable foliation are transverse to the
center-unstable one. As above, the backwards iterates of the strong stable leaves approach to the
leaves of the strong stable foliation in Ug. So we can replace X by some (large) negative iterate
of it, say —¢', and perform a small perturbation (preserving the center unstable foliation) in such
a way the transition map ¢k0+£+£’ from a neighbourhood of Xy to a neighbourhood of Y preserves
the strong stable and center-unstable foliations.
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To get the invariance of the strong unstable and center foliations (keeping the invariance of the
strong stable one) one repeats all the arguments above inside the center-unstable foliation. We
omit the details of this construction. This gives the transition 7.

The transition 7} is obtained using the same arguments, so we do not go into the details. The
proof of the lemma is now complete. O

Definition 3.1. Consider a dim(M)-cube C = I° x I¢ x I*, where I® is a q-cube, I¢ a (p — q)-cube
and I a (dim(M) — p)-cube, where there are defined coordinates (z°,x¢, z") as above.

A subset A of C is s-complete if, for every Z = (2°,2°2%) € A, the horizontal q-cube I° X
{(2%,2")} is contained in A. Similarly, a subset A of C is u-complete if, for every point Z € A,
the vertical (dim(M) — p)-cube {2*%,2¢} x I is contained in A.

By shrinking, if necessary, the size of the neighbourhood Uy in the strong unstable direction and
taking an appropriate cube C around X, we can assume that the image by 73 of any u-complete
disk A of C} (contained in a leaf of the strong unstable foliation) is a u-complete disk of Ug.

For simplicity let us denote by A and B the restrictions of ¢ to Ugp and Up, respectively.

Lemma 3.3. There is £y > 0 such that:

1. Consider any Z € W .(Q) and any s-complete disk A° of Cy (contained in a leaf of the strong
stable foliation) containing Z. Then the connected component of A~"(A®*) NUq containing
AT™(Z) is a s-complete disk in Ug for all n > ¢y.

2. Consider any u-complete disk A" of Cy (in a leaf of the strong unstable foliation). Then the
intersection between A" and Ty *(Wj,.(P)) is a unique point W. Let AY, be the connected
component of (B™oTy(A"))NUp containing B™oTy(W'). Then Al NCy is a complete u-disk
(in Cy) for every m > ¥y.

Proof: For instance to see the first item just observe that A~! expands the s-direction and recall
the A-invariance of the foliations. The second item follows using that B expands in the u-direction
and the B-invariance of the foliations. O

We are now ready to end the proof of Theorem 3.1. Given € > 0 there is an e/2-perturbation
¢ of ¢ satisfying Lemmas 3.2 and 3.3. We will now obtain the final diffeomorphism considering
a perturbation of ¢ obtained by composing the transition 77 with a small translation 7T, in the
direction of a vector v parallel to the central direction (in Ug). Let us now explain the details of
this construction.

In our coordinates, Xy = (0%, z§,0"). Consider now the su-disk

A= ([—1, 19 x {26} x [~1, 1]dim<M>—p) nCo.

With the terminology above, the disk A is v and s-complete in Cj.

Given n and m bigger than ¢y, £y as in Lemma 3.3, let A™™ and A{ be the connected components
of A7 (A)NUg containing A~ (Xy) and of (B"oTy(A))NUp containing B"(Ty(Xy)), respectively.
Let AT = AjNC;. Write A™ = T7(A}). By Lemma 3.3 and the observation before, A~ and A"
are a s-complete and u-complete disks in Ug and C, respectively.

11
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Figure 2: A periodic orbit

Observe that there is a unique vector v parallel to the central direction such that the intersection
between T),(A™) and A™™ is not empty. Moreover, since these sets are both su-disks of Ug, such
an intersection is a sub-rectangle R intersecting completely A™™ in the u-direction and A" in the
s-direction. Here by a complete intersection in the u-direction we mean that, for every Z € R, the
leaf F"(Z) of the strong unstable foliation containing Z is such that the connected components of
FY(Z)N R and of A™™ N F*(Z) containing Z are equal. The definition of complete intersection in
the s-direction is totally analogous (considering strong stable leaves).

Now a classical argument of hyperbolicity implies that the map T'=T, oT; o B" 0o Ty o A™ has
a fixed point W in A™™. Observe that the derivative of T" at W is Ty o B"oTyo A™ (where T; is
the linear part of the affine map Tj;).

So it remains to see that the size of the translation 7, can be taken smaller than £/2. For that
first observe that the disks A™™ and A" can be taken passing arbitrarily close to the heteroclinic
intersection Y7, for that it is enough to take n and m large enough. Thus there is ng such that the
distance between A~ and A" is less than £/2 for every n and m greater ng. Fixed such an ny
and replacing Ty by Ty o A™ and T7 by T7 o B™, we get that for every positive n and m there is a
translation T, v = v(n,m), such that the modulus of v is less than £/2.

The diffeomorphism v in the statement of the theorem is obtained from ¢ by composing 7} with
T,. By construction, ¥ has a periodic point R of period nr = tg + t1 + n + m, where tg = kg + ng
and t; = k1 + n1, such that

YR(R) =Ty o B"oTyo A™.
Observe that ty and ¢; depend exclusively on the transitions Ty and 77. The theorem now follows
from the definition of A and B and the lemma below, that allows us to perform any small per-

turbation of the derivative of a diffeomorphism along the orbit of a periodic point in a dynamical
way.

Lemma 3.4. ([F], [M3]) Consider a C'-diffeomorphism ¢ and a p-invariant finite set ¥.. Let A
be an e-perturbation of v, along X (i.e., the linear maps A(x) and p.(x) are e-close for all z € ).
Then for every neighbourhood U of ¥ there is a diffeomorphism ¢ C'-e-close to ¢ such that

12



e p(z)=¢(z) ifreX orifz g U,
o ¢.(x) = A(z) for all z € T.

The proof of Theorem 3.1 is now complete. U

We end this subsection by stating a lemma that follows from the proof of [BDP, Lemma 4.13]:

Lemma 3.5. Let Mp and Mg be linear maps as in the statement of Theorem 3.1. Suppose that
Mp and Mg preserve the dominated splittings Tp M = Ellp DD Ef; and ToM = Eb ®---@EE,
where dim(E%) = dim(EiQ) for everyi. Then one can choose the matrices Ty and Ty in Theorem 3.1
such that

Ty(EL) = Eb and Tl(Eéz) = Eb,  for everyi € {1,... k}.

3.2 Periodic points in the unfolding of heterodimensional cycles

Using Lemma 3.4 we get the following two corollaries of Theorem 3.1. First we use the notation
C(p,U, P,Q) to localize a cycle, that is, if we are only concerned with the intersection between the
invariant manifolds of P and ) whose orbit is contained in U.

Corollary 3.6. Consider a heterodimensional cycle T'(p,U, P, Q) associated to the hyperbolic peri-
odic points P and @ of indices p and q, where p > q, having positive real eigenvalues of multiplicity
one. Then, for every integer £ € [q,p], there is a diffeomorphism ¢ arbitrarily close to ¢ with a
hyperbolic periodic point of index £ in Ag(U).

Proof: This corollary is trivial when £ = p or g. So let us fix some ¢ €]q,p[. Define the matrices

Mp and Mg as in the statement of Theorem 3.1 and denote by )\},, e ,)\(;,im(M) the eigenvalues
of Mp, where 0 < AL < --+ < )xdplm(M), and by A5, ,A%lm(M) the eigenvalues of Mg, where

1 dim(M)
0<>\Q<---<>\Q .

For each i € {1,...,dim(M)} let E*(P) and E*(Q) the eigenspaces corresponding to A} and
Ay respectively. We now consider the invariant splittings (of Mp and Mg) given by

E\(P)=E'(P)®.--E"Y(P), Ey(P)=EYP), E3P)=EY"(P)®... EimM)(p)
E(Q) =E Q) E"HQ), E:(Q)=FEYQ), E3(Q) =E"Q)&- - EmM(Q).

Observe that, by the hypotheses on the eigenvalues of P and @, the splittings E;(R), E5(R) and
E3(R), R = P,(), are dominated (for Mp and M), thus they satisfy the hypotheses of Theorem 3.1.

Since ¢ < £ < p we have that )\fg <1l< )\6 Thus there are constants Cand C', 0 < C <1 < (',
and arbitrarily big natural numbers ny and mg such that

(B G )™ < O < (G (W)™ < € < (™ (™.

Applying Theorem 3.1 to the matrices Mp and Mg, n = ng, m = mg, and the matrices Iy, ..., Iy ymy2
equal to the identity, we get transitions Ty and 77 and a diffeomorphism ¢ close to ¢ having a pe-
riodic point R € Ay(U) of period n(R) ~ ng + mg such that gb:f(R) is conjugate to

MR:TloMgO oTyo Mp°.
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By Lemma 3.5 we can suppose that T, and T} preserve the splittings £ & Eo @& E3. Hence the
(*_eigenvalue )\% of Mp is such that

¢ A% < ko O

k1

where k7 is the product of the norms of TO_1 and T1_1 and ko is the product of the norms of Ty and

Ty. Observe that a priori we can not guarantee that this eigenvalue is positive (we do not know if

the transitions preserve the orientation). Thus, taking ng and mg big enough, we can assume that
|log(A\%)1/(no + my) is arbitrarily close to zero.

Applying now Lemma 3.4 to the derivative of ¢ along the orbit of R, we can assume that the

eigenvalues AL, ... ,)\%m(M) of (j)Z(R)(R) satisfy
0< Nkl <o < PFH < 1= PGl < PR < < AT, (1)
After a final perturbation, we have that R has index ¢, ending the proof of the corollary. U

Finally, a minor modification of the proof of Corollary 3.6 gives the following:

Corollary 3.7. Consider a heterodimensional cycle I'(p, U, P, Q) satisfying the hypothesis of The-
orem 3.1. Moreover suppose that there is a dominated splitting F1 @ --- @ F; ®--- ® Fy, over A,(U)
such that the moduli of the Jacobians of ¢ restricted to F; along the orbits of Q) and P are strictly
bigger and less than one, respectively.

Then there is a diffeomorphism ¢ arbitrarily C'-close to ¢ with a hyperbolic periodic point
R € Ay(U) such that the modulus of the Jacobian of ¢" ) over F; at R is equal to one.

Proof: Counsider the dominated splittings
Eyz=F&®---oF 1, E=F E=F.1® - &F.

Just observe that by Lemma 3.5 we can choose the transitions 7; preserving the dominated splitting
E, ® Ey ® E3. The result follows arguing as in Corollary 3.6. O

3.3 End of the proof of Theorem A

We need the following lemma,

Lemma 3.8. ([BDP, Lemma 5.4]) Let V be an open set of M and R, a hyperbolic periodic
point of a diffeomorphism ¢ such that its relative homoclinic class in 'V, Hg,(V'), is non trivial.

Then there is a diffeomorphism ¢ arbitrarily C-close to ¢ such that HR¢(V) contains a hyperbolic
periodic point of the same index of Ry whose eigenvalues are all real, positive and of multiplicity
one.

Under the hypothesis of Theorem A, this lemma allows us to assume that, after perturbing the
original diffeomorphism and replacing the initial points P, and @, by other points of A, (U) of the
same index, we can assume that the points P, and Q, of A,(U) have real positive eigenvalues of
multiplicity one. To see why this is so just observe that, by Theorem 2.3, after a C'-perturbation
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of ¢ we can assume that Hp, (U) = Hq,(U) C A,(U), thus these two relative homoclinic classes
are non-trivial. Hence we can now apply Lemma 3.8 to such homoclinic classes to get the periodic
points (of indices p and ¢) in A,(U) with real positive eigenvalues of multiplicity one. So we lose
no generality assuming that the points P, and (), in Theorem A have real positive eigenvalues of
multiplicity one. Using Lemma 2.5 and Corollary 3.6 one gets:

Lemma 3.9. Given p > q and ¢ €lq,p] let ¢ € M(U) be a diffeomorphism with two hyperbolic
periodic points P, and Q, in A,(U) of indices p and q having positive real eigenvalues of multiplicity
one. Then there is ¢ € M(U) arbitrarily C'-close to ¢ having a hyperbolic periodic point of index
4 in A¢(U)

Proof: By hypothesis, the continuations Py and Q4 of P, and @), are transitively related for every
¢ in a neighbourhood of ¢ in M(U) (just observe that set A4 (U) is robustly transitive and P, and
Q4 belong to Ay(U)). Hence we can apply Lemma 2.5 to P, and @, to create a heterodimensional
cycle I'(¢, U, Py, Q) for some ¢ arbitrarily close to . Corollary 3.6 now gives ¢ close to 9 (thus
close to ¢) with a periodic point of index £ in Ay(U), ending the proof of the lemma. O

Given ¢ € M(U) consider a neighbourhood U, of ¢ in M(U) such that every ¢ € U, has
hyperbolic periodic points of indices ¢ and p. Let H; be the set of diffeomorphisms ) € U, having
some hyperbolic periodic point of index j in A,(U). Applying Lemma 3.9 finitely many times, one
gets that the sets H;, j € [¢,p], are dense in U,.

Theorem A now follows by observing that, for every j, the set H; is open. Now it is enough to
consider the set ﬂf;?—[j, which is a dense open subset of U,. This ends the proof of Theorem A.

4 Hyperbolicity of the extremal bundles

In this section we prove Theorem B. For that, as in the hypotheses of this theorem, consider
an open set U of a compact manifold M and ¢ € N* and let & be a C'-open set of Diff!(M)

such that for every diffeomorphism ¢ € U the set Ay(U) has a dominated splitting Ey4 @ F, with
dim(E4(z)) = g for all € Ay(U). Suppose that every ¢ € U has no periodic points of index r < g.
Then we prove that the bundle Ey is uniformly contracting for every ¢ € U.

The proof of this result follows using the arguments in [Ms] after some small technical modifi-
cations. So here we will just sketch this proof, emphasizing the main modifications that we need
to introduce.

The results in [My] are formulated in terms of families of periodic sequences of linear maps. It
is considered the family obtained by taking all the diffeomorphism ¢ in an open set of Diff'(M)
and the restrictions of the derivatives of these diffeomorphisms to their periodic orbits. He con-
sider perturbations of this system of linear maps without caring if such perturbations come from
perturbations of the initial diffeomorphism. However, a Lemma of Franks’ (see Lemma 3.4 above)
allows one to perform dynamically the perturbation of the derivative: given a diffeomorphism ¢
and a periodic point z of ¢, to each perturbation A of the derivative ¢, throughout the orbit of
x corresponds a diffeomorphism 1) C'-close to ¢ which preserves the -orbit of z and such that
A(z) = 1.(z) for all z in the p-orbit of x.

We begin by recalling some results about dominated splittings, see next section. In Section 4.2
we recall the terminology about families of periodic linear systems and some results in [Ms]. Finally,
in Section 4.3 we prove Theorem B.
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4.1 Remarks on dominated splittings

In this subsection we state precisely some folklore results on dominated splittings. Before that let
us observe that if A,(U) is a robustly transitive, then, by definition, it is a ¢-invariant compact
subset of U which is the maximal ¢-invariant set of U. This implies that, for any neighbourhood
V of A,(U) and every diffeomorphism ¢ close to ¢, the set Ay(U) coincides with Ay(U) and is
contained in V. Thus Ay(U) depends lower-semi-continuously on ¢. We say that Ag(U) is the

continuation of A,(U) for ¢.

Lemma 4.1. Let ¢ be a diffeomorphism and U an open subset of M such that A,(U) coincides with
A, (U) and admits a dominated splitting Th,anM = E®F, E < F. Then, for every diffeomorphism
Y close enough to ¢, there is a unique dominated splitting Ey @ Fy, Ey < Fy, defined over Ay(U)
such that dim(E,) = dim(E).

The splitting Ey, & Fy, above is the continuation of E ® F. Moreover, the continuations Ey, and
Fy, depend continuously on . This lemma also holds for dominated splitting with an arbitrary
number of bundles.

Proof: Let us just sketch the proof of the lemma. By the definition of domination, there is a
strictly ¢.-invariant continuous cone field C* defined over A, (U) such that the bundle F is obtained
as the intersection of the forward (,-iterates of the cones of C*. Similarly, there is a strictly (¢ !)-
invariant continuous cone field C~ defined over A, (U) such that the intersections of the backward
iterates of C~ define E. These cone fields can be extended continuously to invariant cone fields CO+
and C, defined on a compact neighbourhood V' of A, (U).

Observe that every 1 close to ¢ let invariant the cone fields Cj” and C; and recall that A, (U) C
V. We now define the bundles E; and Fy, as the intersection of the (backward and forward,
respectively) iterates by ., of the cones of C; and C(')" , respectively. By construction, the splitting
Ey, ® Fy is dominated and satisfies dim Ey = dim E.

For the continuous dependence of the bundles Ey, and Fy, on the diffeomorphism ¢ we refer the
reader to [BDP, Lemma 1.4], for instance. This ends the sketch of the proof. O

Lemma 4.2. ([BDP, Lemma 1.4]). Let ¢ be a diffeomorphism and ¥ a ¢-invariant set having a

dominated splitting E @ F. Then this splitting can be extended (in a dominated way) to the closure
of 3.

Remark 4.3. Let ¢ be a diffeomorphism, K a transitive p-invariant compact set, Tk M = E; &
Ey®---® Ey, the finest dominated splitting of p over K, and ¥ C K a p-invariant dense subset of
K. Then the finest dominated splitting of @ over X is given by the restriction to X of the bundles
E;.

Proof of the remark: We argue by contradiction, suppose that there is a dominated splitting
over Y which refines the splitting given by the restrictions to X of the bundles E;. Then, by
Lemma 4.2, such a splitting can be extended to the whole K, contradicting that the splitting
EL® - ® E,, is the finest one. O

Let us state a final result whose proof we omit.

Remark 4.4. Let ¢ be a diffeomorphism and E a @.-invariant bundle defined on a @-invariant
compact set K1. Consider any p-invariant dense subset Ko of Ki. Then we have the following:
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o The bundle E is uniformly hyperbolic over Ky if and only if its restriction to Ko is uniformly
hyperbolic.

e The diffeomorphism ¢ contracts (resp. expands) uniformly the volume in E over Ky if and
only if it contracts uniformly (resp. expands) the volume in E over K.

4.2 Families of periodic sequences of linear maps and dominated splittings

We begin this section by recalling some definitions in [Ms].

Definition 4.1.

1. A periodic sequence of a linear maps is a periodic map &: Z — GL(N,R), n — &,, such
that the sequence of norms ||&,| and ||€;Y]| are uniformly bounded (independently of n). We
denote this family by {&,}.

2. A periodic sequence of linear maps {&,} of period n is called contracting if the product &, 1 o
-0 &y is an uniform contraction, i.e., all its eigenvalues have modulus strictly less than 1.

3. A family E = {§(a)}a€A of periodic sequences of linear maps is robustly contracting® if there
is € > 0 such that any family © = {0} 4c4 having the same period function n(c) and e-close
to 2 (i.e., |05 — &Y < e for all o € A and n € Z) is contracting.

The example of family of periodic sequence of linear maps that will be play a key role in the
proof of Theorem B is obtained as follows. Let ¢ € U, U as in Theorem B, and § > 0 such that
every diffeomorphism ¢ which is 20-C'-close to ¢ belongs to U. Now let Ay be the set of pairs
a = (z,1) such that 1 is §-close to ¢ and the 1p-orbit of z is contained in U and periodic. Consider
now some trivialization of the bundles Ey (as in Theorem B) over the set of periodic points (by
choosing an orthonormal basis of Ey(z)) and for each o = (z,1) € Ay define £ by the restrictions
of the differential ¢, to {Ey(¢*(z))}icz. We now have that Z, = {€%}aca, is a family of periodic
sequences of linear maps.

Lemma 4.5. The family Z4 defined above is robustly contracting.

Proof: The proof if by contradiction. Otherwise, there are (z,7) € Ay and a linear map v
corresponding to a perturbation of the restriction of the differential of ¢ to Ey along the periodic
w-orbit of z, having an eigenvalue of modulus bigger or equal than one, i.e.,

v (2)) 0o v(a): By(z) = Byle)

has an eigenvalue A such that |A| > 1, where n(z) is the ¢-period of z.
Using Lemma 3.4 we get a diffeomorphism ( close to v, thus in U, such that x is a periodic

point of A¢(U) and

(@) = (PN 01 Gula) = v (@) 0 - 0 w(a).

!This notion is called wniformly contracting in [Ms], but we rename it to avoid ambiguity with the now usually
accepted notion of uniform hyperbolicity or uniform contraction.
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Thus the restriction of ¢y’ @) (z) to E¢(x) has at most (¢ — 1) eigenvalues of modulus (strictly) less
than one. On the other hand, by the domination Ey; < Fy, the eigenvalues of the restriction of

Co () (z) to F¢(z) are all strictly bigger than one in modulus. This implies that there is a periodic
point  in A¢(U) of index (strictly) less than ¢, contradicting the definition of /. This contradiction
ends the proof of the lemma. O

We now borrow the following lemma from [Ms].

Lemma 4.6. ([M,, Lemma IL.7]). Let {¢£(® o € A} be a robustly contracting family of periodic
sequences of isomorphisms of RV . Then there exist K >0, 0 < X\ < 1 and m € N* such that:

a) if « € A and £* has minimum period n > m, then

k—1|lm—1
ITI T &5 < &A%,
j=0 |l i=0

where k is the integer part of n/m;

b) for alla € A

m—1
lim sup — Z log ( i+mgj
1=0

n—-+0o0o

) <o

Applying Lemma 4.6 to the family Z; defined above we get the next proposition which is a
reformulation of [My, Proposition II.1]:

Proposition 4.7. Let ¢ € U (U as in Theorem B). Then there are a neighborhood V of ¢ and
constants K >0, m € N* and 0 < A < 1 such that for every g € V and every periodic point x of ¥
whose orbit is contained in U one has:

a) If x has minimum period n > m then

HH ™)+ ™ (@), i

‘<K>\’°

where k is the entire part of n/m.

b) Moreover,

fmsup 3 log (lo™- @ @), i

r—+oo T i—0

) <o.

Theorem B will be a consequence of Proposition 4.7 and the Mané’s Ergodic Closing Lemma,
that we now recall, for completeness:

Theorem 4.8. (Ergodic Closing Lemma, [M;, Theorem A]). Consider a diffeomorphism ¢
defined on a compact manifold. Then there is a ¢-invariant set (@) (named set of well closable
pointsof ¢) such that:
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1. The set X(¢p) has total measure (i.e. p(X(p)) = 1 for every ¢-invariant probability measure
).

2. For every © € X(¢) and € > 0 there is a diffeomorphism 1, which is e-close to ¢ in the
C'-topology, such that x is periodic for v and the distance dist(¢'(x),*(z)) < e for all
i € [0,n(z,1)], where n(x,)) is the period of = for 1.

4.3 End of the proof of Theorem B

The proof of the theorem now follows almost exactly as the proof of [Mg, Theorem B], see pages
520-524. Let us recall the main steps of this proof and point out the changes we need to introduce.

Proof: Let ¢ € U. By compactness of the set Ay(U), as in [My] to get the uniform contraction
of the bundle Ey it is enough to see that

lim inf |67, || = 0.

We argue by contradiction. If ¢, is not uniformly contracting on Ej over A¢(U) then there are a

constant £ > 0, point x € Ay(U) and ng € N such that

|05 By ()| > £ >0

for every n > ng. We now choose a sequence j,, j, — +00, such that the sequence of probabilities
Wn defined by
Jn—1

= 3 6(6™ ()
In 50

converges (in the weak topology) to a probability u, where 6(z) is the Dirac measure at the point
z and m is as in Proposition 4.7.

Let ¢? = log ||¢7*|E,||- By Lemma 4.1 the bundle Ey is continuous on Ay (U), so ¢? is continuous
on A¢,(U). By the choice of z, one has f<p¢ dpy > 0 for every large enough n, so f<p¢ dp > 0.

Using the Birkhoff’s Theorem and the Ergodic Closing Lemma we get a point p € Ag(U) N X(¢)
such that

B
nll,rfoo n ; log (|41 i, (gmi oy | = 0

By item (b) of Proposition 4.7, the point p is not periodic. Now, by Theorem 4.8, there is 1
arbitrarily C'-close to ¢ (so 1 € V CU, V as in Proposition 4.7) such that p is a periodic point of
1 of period n(p) and the distance dist(¢’(p), 4" (p)) is less than an arbitrarily small € > 0 for every
i € [0,n(p)]. Observe that since p is not periodic for ¢, the period n(p) goes to infinity as € goes to
zero, i.e., ¥ tends to ¢.

Since the fibers Ey(y) vary continuously with (y,), recall Lemma 4.1, the function

o (y) = log 197" | g, ()l

is continuous. Now for A as in Proposition 4.7 take Ay and ny € N* such that A < A\y < 1 and for

every n > ng one has
n—1
1

=Y (@) 2 % log(X\o).

1=0
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We can also assume that KA < \j for every n > ng. So if 1 is close enough to ¢ then

" (8 () — (@ 0))] < |5 log(ho)

for every i € [0,n(p)]. Moreover, the entire part k of n(p)/m is greater than ng. Thus

R‘Ir—t

k—

1
Z (™ (p >10g(>\0)>Elog(K)\k),
=0

contradicting item (a) of Proposition 4.7. This contradiction ends the proof of Theorem B. g

5 Proof of Theorem D

5.1 Perturbation of the derivative at periodic points

In this section we recall some results from [BDP]. These results are formulated in terms of families
of periodic linear systems, that is, considering the differential of the diffeomorphism as an abstract
linear cocycle over the set A,(U) and perturbations of this cocycle, without caring if such perturba-
tions come from perturbations of the diffeomorphism. However, as in Section 4, Lemma 3.4 allows
us to perform dynamically the final abstract cocycle. Let us explain these results in a detailed way.

Given a diffeomorphism ¢ and a hyperbolic periodic point P, of ¢ of index p denote by Xp,
the subset of H (P@, U) of hyperbolic periodic points R of index p homoclinically related to P, ie.,

WE(R) h W¥(P,) # 0 and W"(R) h W*(P,) # 0. Observe that in our setting we can assume that
¥p, is not trivial (different to the orbit of P,).

As above, given z € ¥p, denote by M, the matrix M, = gof(x) (x): TyM — T,M, where
n(x) is the period of z. The first important property formalized in [BDP] is that the matrices
M, corresponding to different points of Xp, (the derivatives of ©™*) at these points x) can be
essentially multiplied how many times as one wants, and the resulting product corresponds to a
matrix of the system at some different point. More precisely,

Lemma 5.1. Let ¢ be a diffeomorphism and P, a hyperbolic periodic point of . Consider any
pair of periodic points of x and y of ¢ in Xp, and € > 0. Suppose that M, and M, let invariant
dominated splittings

T.M=E,® - ®E}, E(z)=<Eii(z), and T,M=E, & - @E}, E(y) < Ei1(y),

such that dim(E!) = dim(E;) for every i. Then there is § €]0,¢[ satisfying the following property:
Gwen any pair of d-perturbations M, and My of My and M,, respectively, My: T,M — T,M
and My: TyM — T, M, there are linear maps

Ty: T,M — T,M and Ty: TyM — T,M

preserving the dominated splittings above (i.e., T1(EL) = E;/ and TQ(E;) = E! for every i) such
that, for any n > 0 and m > 0, there are a periodic point z € Xp, and an e-perturbation of .
along the orbit of z,

At ()M_>T1,+l()M ’iZO,...,n(Z)—l,

20



such that .
M, =A"D"1o. .0 A% .M = T,M

is conjugate to the product Ty o M, o Ty o M.

Remark 5.2. In fact, in [BDP] it is shown that Lemma 5.1 holds for any finite number of orbits
T1,--., 2k of Xp,. This allows us to get linear maps T;: Ty, M — Ty, . M preserving a dominated
splitting such that, for every ni,...,ng, there are a point z € ¥p, and perturbations A* of the
derivative of @, at ©'(z) such that M, = A" ~1o...0 A% is conjugate to Ty oMyko---oTyoMyp2o
T1 o M;}ll .

The maps T; correspond to the so called transitions, recall also Theorem 3.1. The fact that the
transitions can be taken preserving a dominated splitting has been proved in [BDP, Lemma 4.13].
This property is the basis of the proof of the following result:

Lemma 5.3. Let By, & -+ ® Ey, E; < Eii1, be the finest dominated splitting of TM over ¥p,
of p«. Then, for every € > 0, there are a dense subset X of Xp, and an e-perturbation Ac of .
preserving the splitting F1 @ - - - ® E,, such that, for every R € X, the restriction of the linear maps

M. (R) = A(¢"7 () 0+ 0 Ac(p(@) 0 Ac(2)

to E;(R) is a homothety.
Moreover, if there are © € {1,...,m} and Q € Xp, such that the modulus of the Jacobian of

the restriction of wf(Q) to E;(Q) is one then R can be taken such that the restriction of Ma_(R) to
E;(R) is identity.

This lemma is a consequence of [BDP, Propositions 2.4 and 2.5]. To see that these propositions
can be applied in our context, one just needs to observe that the restriction of ¢, to each bundle
E; (over ¥p,) defines a periodic linear system with transitions. For that it is enough to recall that
the transitions of ¢, can be chosen preserving the bundles £; of the dominated splitting (see [BDP,
Section 4]).

Given a hyperbolic linear map A of an Euclidean space (i.e., without eigenvalues of modulus
equal to 1) the index of A is the number of eigenvalues of A of modulus less than 1, counted with
multiplicity.

Lemma 5.4. ([BDP, Lemma 4.16]) Given ¢ > 0 there evist x € ¥p, and an e-perturbation of
@y along the orbit of x such that the corresponding matriz M, has index p, p = index(P,), and all
the eigenvalues of M, are real, positive and with multiplicity 1.

5.2 Tangencies and codimension one heterodimensional cycles

The existence of non-real eigenvalues in the central direction of the saddles in a (codimension one)
heterodimensional cycle produces homoclinic tangencies. That is formalized in the following result
we export from [DR].

Let A be a linear map of an n-dimensional Euclidean space E, we say that a non-real eigenvalue
A € (C\R) of A has rank ¢ if there are (£ — 1) eigenvalues (counted with multiplicity) of A of
modulus strictly less than |\| and (n — £ — 1) eigenvalues of modulus strictly bigger than |A]. A
periodic point P of a diffeomorphism ¢ has a non-real eigenvalue of rank £ if its derivative goZ(P) (P)
has a a non-real eigenvalue of rank /.
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Lemma 5.5. Let I'(¢, U, Ré,Ri) be a codimension one heterodimensional cycle associated to hy-
perbolic periodic points of indices (r + 1) and r. Suppose that Rglb (resp. R?b) has a non-real
eigenvalue of rank r (resp. r—+1). Then there is 1 arbitrarily close to ¢ with a homoclinic tangency
associated to R?/} (resp. Rllp) in Ay (U).

Proof: Just observe that if Ré has a non-real eigenvalue of rank r then the unstable manifold
of Ri spiralizes around W“(Ré’) Now unfolding the cycle I'(¢, U, R}b,Ré) one gets a homoclinic
tangency associated to the continuation of Ré. See [DR, Section 8.1] for details. O

5.3 Proof of Theorem D

Consider ¢ € P(U) and its finest dominated splitting E1(¢) @ -+ @ Ey,,) (@) over Ay(U). By
Lemma 4.1, the continuation of this splitting over A,(U) is uniquely defined for every ¢ close to
¢. Denote such a continuation by E1(¢) @ -+ ® Ey,(y)(¢). By Lemma 4.1, the the number m(y) of
bundles of the finest dominated splitting of A,(U) is lower semi-continuous, thus locally constant
in an open and dense subset P (U) of P(U). Moreover, the dimensions of the bundles of the finest
dominated splitting are also locally constant in P; (U). So there is an open and dense subset O(U) of
P(U) where m(y) and the dimensions of the bundles of the finest dominated splitting are continuous
functions. This set O(U) is the open and dense subset of P(U) announced in Theorem D.

Observe that it is enough to prove the theorem for a connected component of O(U). So from
now on we restrict our attention to a fixed connected component Oy of O(U).

Given ¢ € Oy consider the finest dominated splitting of A, (U), say Ta )M = E1(p) ® Ea(p) ®
@ Epyp)(p), as the dimensions and the number of bundles of the splitting do not depend on
¢ € Op from now on we will omit such a (in)dependence.

Let us now introduce some notations. For simplicity write p = i, and ¢ = i5 (the maximum and
minimum indices of the hyperbolic periodic points of A,(U)). Given 4 and j in {1,...,m}, with
1< 7, let _

EZJ =FE,®E1® - 0L

Denote by d; and dg the dimensions of F; and El] , respectively, thus dg = ‘,i:i dr. We define 4,
and i, by the relations

del <g<de and dPT' <p<dr.
To prove Theorem D it is enough to see the following:

(A) dy = qand d",, = dim(M) — p,

(B) d; =1 and the bundle E; is not uniformly hyperbolic for all j € {ig +1,...,4p},

(C) E}* and B, are uniformly contracting and expanding, respectively.

In Lemmas 5.6, 5.7 and 5.8 we will prove these items.

Lemma 5.6. (Proof of (A)). diq = q and di’ ; = dim(M) —p.
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Proof: Let us prove the first part of the lemma. The proof is by contradiction, assume that
dlf > ¢, then, by definition of dllq, one has

& <g<gri<di=di + 4,
thus
d;, > 2. 2)

By Proposition 2.4 and the definition of Oy, there is a diffeomorphism ¢ € Oy with a hyperbolic
periodic point @, of index g such that X, is dense in A,(U). By Remark 4.3, the finest dominated
splitting of ¢ over X, is the restriction to Y, of the bundles E;.

By equation (2), E;, is undecomposable and has dimension d;, equal or bigger than 2. Applying
Lemma 5.3 to the set ¥X¢_ and the bundle E; , we get R, € Xq,, of period n(R,) and a perturbation
A of ¢, throughout the p-orbit of R, such that

Ma(Ry)) = A" )7 (Ry)) o~ 0 A(p(Ry)) 0 A(R,)

is a homothety in E; (R,). We observe that the perturbation A of ¢, can be obtained (and we do
so) such that its restrictions to the bundles Ej(R,), k # iq4, coincide with ¢,. Thus, since all points
of ¥, have index g, one has that, for every T,, € Xq_, the bundles F;(T,), j > i4, correspond

(Te)

to expanding eigenvalues of ¢y ' . Hence the number of contracting eigenvalues of M A(Ry) is at

most dy’.

First, if the ratio of this homothety (the restriction of Ma(R,) to E; (R,)) is bigger or equal
than one, using Lemma 3.4, one gets ¢ close to ¢ (¢ € Op) with a hyperbolic periodic point
Ry € Ay(U) having at most dlqul contracting eigenvalues. By hypothesis, clzl‘r1 < ¢q, thus the
index of Ry is strictly inferior than ¢, contradicting the definition of ¢ (minimality of the index of
the points of Ay4(U), ¢ € P(U)).

So we can assume that the ratio of the homothety MA(R(P)|Eiq (R,) 18 less than one. As the

restriction of gof(R“") to each F;(R,), i > ig4, has expanding eigenvalues, the index of Ry is exactly
dy'. Now, the definition of p implies that d}’ < p.

Write £ = d}" < p. Since all the eigenvalues of the restriction of gbf(R“") = Mu(R,) to E;, (Ry)
are equal and dim(E; (Ry4)) > 2, using again Lemma 3.4, one gets a diffeomorphisms v close to ¢
such that R,, has index ¢ and U:}(R”) (Ry) has a contracting non-real eigenvalue of rank (£ — 1).

By Theorem A, since ¢ < £ — 1, there is a diffeomorphism ¢ close to v with a periodic point
S¢c € A¢(U) of index (¢ — 1). Using Lemma 2.5, we obtain 7 close to ¢ with a codimension one
heterodimensional cycle in U associated to R, and S,, say I'(n,U, R, S;). Since n can be taken
arbitrarily close to v we can assume that R, has index ¢ and a non-real eigenvalue of rank £ —1 and
that S, has index (¢ —1). Finally, by Lemma 5.5 there is a diffeomorphism ¢ € Oy arbitrarily close
to 1 with a homoclinic tangency in A¢(U) associated to the point S¢ of index (£ — 1), contradicting
the definition of P(U). This ends the proof of the first assertion in the lemma.

Using the same arguments one gets that i, = (dim(M) — p), so we omit this proof. O

Lemma 5.7. (Proof of (B)). The bundle E; is one dimensional and non-uniformly hyperbolic
forallie {ig+1,...,4p}.
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Proof: Given k € {i;+1,--- ,i,} let £ = d¥ = dim(E¥). Observe that by, Lemma 5.6, ¢ < £ < p.

The bundle Ey is not uniformly hyperbolic: We argue by contradiction. Otherwise, since Ej
is undecomposable, it would be either uniformly contracting or expanding. In the first case, using
the domination of the splitting, one has that every periodic point of A,(U) has index bigger or
equal than ¢ > ¢, contradicting the definition of ¢q. In the second case, again by the domination
of the splitting, every periodic point of A, (U) has index strictly less than ¢ < p, contradicting the
definition of p.

The bundle Ey, is one-dimensional: The proof is by contradiction, assuming that dim(Ey) =
dp > 2. By Theorem A and Proposition 2.4, there is ¢ € Oy having a hyperbolic periodic point
R, € A,(U) of index £ such that ¥, is dense in A,(U). By Lemma 5.3, there are a perturbation
A of ¢, and a point S, € ¥g, such that the restriction of Ma(S,) to Ex(S,) is a homothety.
Moreover, as above we can take A such that its restrictions to the bundles F;(S,), ¢ # k, coincide
with the one of ¢,.

Suppose, for instance, that the ratio of such a homothety is bigger than one. From S, € X and

the definition of ¥, the restrictions of gof(s“’) to the bundles E;(S,), ¢ > k, have only expanding
eigenvalues. Thus the matrix M4(S,) has exactly r = d’f_l contracting eigenvalues, where

quiqu’fflzrgdip_l<dip:p and r<r+4+dy<r+4+2<p.

Using Lemma 3.4, we get ¢ € Oy with a hyperbolic periodic point Sy € Ay(U) of index  such that
the restriction of ¢, to Ey(Sy) is equal to A. After a new perturbation, if necessary, we can assume
that ¢Z(S¢)(S¢) has a expanding non-real eigenvalue of rank (r + 1).

As in the proof of Lemma 5.6, by Theorem A and Lemma 2.5, there is 1) € Oy close to ¢ with
a periodic point Ty, € Ay (U) of index (r + 1) < p and a heterodimensional cycle I'(1, U, Ty, Sy),
where Sy, has index r and a (expanding) non-real eigenvalue of rank (r+1). Finally, by Lemma 5.5,
there is £ € Oy close to ¢ with a homoclinic tangency associated to Tg, contradicting the definition
of Op. This ends the proof of the lemma in this case. If the homothety given by the restriction of

MA(S,) to Ej has ratio less than one the proof follows similarly.
U

Lemma 5.8. (Proof of (C)). The bundles Eiq and Ei" | are uniformly volume contracting and
volume expanding, respectively.

Proof: This lemma follows from Theorem B. To see, for instance, that £ = Eiq is uniformly con-
tracting just observe that the set O and the dominated splitting Eiq @E{;‘ 1 satisfy the hypotheses
of Theorem B, recall that, by Lemma 5.6, ¢ = d} = dim(E}*).

The uniform expansion of EZ’Z 1 follows analogously. This completes the proof of the lemma
and of the theorem. O

6 Homoclinic tangencies

We now analyze the dimensions of the bundles of finest dominated splitting of a robust transitive
set to deduce the different types of homoclinic bifurcations that that this set may exhibit.
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We consider an open set U of M and an open set of diffeomorphisms A (U) such that, for every
@ € N(U), the set A,(U) is robustly transitive and

e the maximum and the minimum of the indices of the periodic points of A,(U) are constant,
equal to p and ¢, respectively,

e the dimensions of the bundles of the finest dominated splitting of A,(U) do not depend on
p e N(U).

Let us observe that in this section we do not assume that there are no homoclinic tangencies in
A,(U), as in the previous section.

We use the notation introduced in Section 5.3 for the dimensions of the bundles of the finest
dominated splitting. Recall that, with this notation and by definition, ¢ < dzlq and p < dlf’ .

We say that a robustly transitive set A,(U) has a homoclinic tangency of rank r if there is a
periodic point R, € A,(U) of index r having a homoclinic tangency and such a point of tangency
belongs to A, (U).

Theorem F. Let U, N'(U), p and q as above. Consider any ¢ € N (U).

o If dzf >q then there is ¢ arbitrarily close to ¢ such that Ay(U) has a homoclinic tangency of
rank (dy —1).

o If dlf’ > p then there is ¢ arbitrarily close to ¢ such that Ay(U) has a homoclinic tangency of
rank (dlf’_1 +1).

o Ifdj > 2 for some j € {ig+1,...,iy} then, for every k € [d{_1 +1, d{), there is ¢ arbitrarily
close to ¢ such that Ag(U) has a homoclinic tangency of rank k.

This theorem is a generalization of the result [DPU, Corollary G] for three dimensional robustly
transitive sets, which says that the existence of an undecomposable bundle of dimension strictly big-
ger than one leads to the creation of homoclinic tangencies in a (non-hyperbolic) robustly transitive
set.

The proof of Theorem F follows from a small modification of the the proofs of Lemmas 5.6 and
5.7 and involves heterodimensional cycles.

Denote by Ti(U), k = 1,...,dim(M) — 1, the subset of N (U) of diffeomorphisms ¢ such that
A4(U) has a homoclinic tangency of rank k. Theorem F now follows from the next two lemmas.

Lemma 6.1. Under the hypothesis of Theorem F, we have the following
o If dzf > q then T, | (U) is dense in N'(U).
1

o If dzf’ > p then T -1, (U) is dense in N (U).
1

+1
Proof: First, observe that, by definition, if dlf’ > q (resp. dzf’ > p) then d;, > 1 (resp.' di, > 1).
To prove the first part of the lemma it is enough to see that if o € N (U) and dlf > ¢ then

there is v arbitrarily close to ¢ such that A, (U) has a homoclinic tangency of rank (d;* — 1). Let
us recall that in the proof of Lemma 5.6, under the assumption that ¢ = dzlq > q, we got v close
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to ¢ having a hyperbolic periodic point R, € A,(U) of index ¢ with a non-real eigenvalue of rank
(£—-1).

Since ¢ < £—1 < p, by Theorem A and Lemma 2.5, after a C'-perturbation of v, we can assume
that v has a periodic point S, of index (¢ — 1) and a (codimension one) heterodimensional cycle
[(v,U, Ry, Sy) (R, of index £ with a non-real eigenvalue of rank (£ — 1)). By Lemma 5.5 there is
§ close to v with a homoclinic tangency associated to Sg. This ends the first part of the lemma.

The second part of the lemma follows similarly. O

Lemma 6.2. Under the hypotheses of Theorem F, suppose that dj > 2, j € {ig +1,...,4, — 1}.
Then, for every k € [d2™" +1,d?), the set Tr(U) is dense in N'(U).

Proof: As in the previous lemma, given any ¢ € N(U) with d; > 2 and k € [d]l‘*1 + 1,d{) we
will obtain ¢ arbitrarily close to ¢ such that A,(U) has a homoclinic tangency or rank k. By
Theorem A and since ' . .
g<d'<dj <drt <p,

after perturbing ¢, we can assume that ¢ has a pair of hyperbolic periodic points S,, T, € A, (U)
of indices ¢ and d{_l, respectively.

By Lemma 2.5, there is ¢ close to ¢ with a heterodimensional cycle I'(1, U, Sy, Ty). Observe
that the modulus of the restriction of the Jacobian of zpf(TW to E;(Ty) is bigger than one and the

modulus of the restriction of the Jacobian of wf(Sw) to E;j(Sy) is less than one. By Corollary 3.7,
unfolding this cycle, we get ¢ close to ¢ with a hyperbolic periodic point Ry € Ag(U) with index
r,TE [d{;l, d{], such that the modulus of the Jacobian of ¢Z(R¢) to E;(Ry) is exactly one.

By Proposition 2.4, after a perturbation of ¢, we can assume that X, (¢) is dense in Ay(U).
Since Ej(Rg4) is undecomposable and has dimension equal or bigger than 2, arguing exactly as in
the proof of Lemma 5.7, but now applying the final part of Lemma 5.3, we get ¢ (arbitrarily close
to ¢) with a periodic point A¢ € A¢(U) such that the restriction of ff(Ag) to Ej(Ag) is the identity.

Take now any k € [d{_1 +1, d{), after a perturbation of { we can assume that the index of A is
k — 1, and that ¢ (4e) (A¢) has an expanding non-real eigenvalue of rank k. Again, by Theorem A,
we can assume there is a periodic point By € A¢(U) of index &, where k£ > ¢. Finally, by Lemma 2.5,
there is 7 close to & with a codimension one cycle I'(n, U, B, 4;), A, of index (kK — 1) and with an

expanding non-real eigenvalue of rank & and B, of index k. Now the lemma follows from Lemma 5.5.
O

7 Proof of Theorem E

As we have mentioned in the introduction, Theorem E follows from Proposition 1.1. So before
proving the proposition let us deduce the theorem from it.

Recall that U and S(U) are open sets of M and Diff' (M) such that for every diffeomorphism
@ € S(U) the set A,(U) is robustly transitive and has no homoclinic tangencies (in the whole
manifold). By Theorem D, there is an open and dense subset Z(U) of S(U), such that if ¢ belongs
to Z(U) and A, (U) contains periodic points on indices ¢ and p, ¢ < p, then A,(U) contains points
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of every index in between ¢ and p. So it is enough to prove the theorem for the subset Z(U) of
S(U).

Consider the maps i*,i”: Z(U) — N* that associate to each ¢ € Z(U) the maximum and
the minimum of the indices of the hyperbolic periodic points of A,(U), respectively. These two
functions are semi-continuous, so they are continuous in an open and dense subset Zy(U) of Z(U).
Now it is enough to fix a connected component Zy of Z(U) where i and i~ are both constant and
to prove the theorem for this set. Suppose that i*(¢) = p and i~ (¢) = ¢ for all p € Iy, ¢ < p.

Let us assume that ¢ < p (the case ¢ = p follows from Remark 2.7, so we omit it). Let
Q, and P, be points of indices ¢ and p of A,(U). For notational simplicity let us assume that
their continuations are defined in the whole Zy. Since P, and @), are transitively related in Zo,
by Remark 2.6, there is an open and dense subset Z; of Zy such that W*(Py) and W"(Q4) have
nonempty transverse intersection for all ¢ € Z;. So it is enough to prove the theorem for 7;.

For each j > 0 with ¢ + j < p, let A(j) be the subset of Z; of diffeomorphisms 1) such that
Ay (U) contains hyperbolic periodic points jo, R}zj, - ,R‘zp such that

. index(Rfﬁ) =q+1,

. HRg(U) = HR;(U) = .- = Hp; (U) for every ¢ in a neighbourhood of v
©
To end the proof of Theorem E it is enough to see the following.
Lemma 7.1. The set A(j) is open and dense in Iy for every j € (0,7], r =p—q.

Before proving this lemma let us end the proof of the theorem.
Observe that by Lemma 7.1, A(r) is open and dense in Z; and for every % in A(r) there are
hyperbolic periodic points RE;) and pr of Ay(U) of indices ¢ and g + r = p such that

Hy, (U) = Hps (0).

As above, for notational simplicity, let us assume that the continuations of jo and pr are
defined in the whole A(r). The points @, and jo have index ¢ and are transitively related in A(r).
Thus, by Remark 2.7, there is an open and dense subset D; of A(r) of diffeomorphisms ¢ such that
the relative homoclinic classes of @y, and Rg, in U are equal. Similarly, there is an open and dense

subset Dy of A(r) of diffeomorphisms ¢ such that the relative homoclinic classes of P and R}, in
U are equal. Thus, for all { € Dy NDs, one has that

Hp (U) = Hg: (U) = HRg(U) = Hq (U).

Since D; N D, is open and dense in A(r), thus in Z;, this ends the proof of the theorem.

Proof of the lemma: The proof of Lemma 7.1 is by induction. To see that A(1) is open and
dense in Z; it suffices to see that given any ¢ € Z; there is an open subset Ay of Z; such that

e ¢ belongs to the closure of A¢,

e for every ¢ € Ay there is a hyperbolic periodic point R}/) € Ay (U) of index (g + 1) such that
Hq,(U) = HRi(U) (here we take Rg} =Qy).
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Since ¢ is in Z; there is a periodic point Ré € Ay(U) of index (¢+ 1). Observe that Q4 and Ré are
transitively related and index(Qy) + 1 = index(R}l)). Thus, by Lemma 2.5, after a perturbation of
¢, we can assume that ¢ has a (codimension one) cycle I'(¢, U, Ré, Q4)- By hypothesis, this cycle
is far from homoclinic tangencies. Thus, by Proposition 1.1, there is an open set B, whose closure
contains ¢, such that Hg (U) = H Ré(U) for all ¢ € Bg. The first inductive step follows taking
Ay =By N1.

Suppose now defined inductively the open and dense subsets A(1), A(2),..., A(j—1), ¢+Jj < p,
of 7 satisfying the properties above. Then the set

A(G—1) =A10)N---NAG—1)

is open and dense in Z;. Now it is enough to get an open and dense subset A(j) of A'(j — 1) with
the announced properties. For that we argue exactly as in the step 7 = 1.

Consider any ¢ € A'(j —1). Since ¢ € I the set Ay(U) contains a hyperbolic periodic point
RZ) of index (g + 7). As in the first step of the induction, using Lemma 2.5, we can assume (after a
perturbation of ¢) that ¢ has a (codimension one) cycle I'(¢, U, Ré, R{;l), where Rgfl is the point
of index (¢ + j — 1) in the inductive step (j — 1). By hypothesis, this cycle is far from homoclinic
tangencies. Thus, by Proposition 1.1, there is an open set B, C A'(j — 1) containing ¢ in its closure
such that

HRé—l (U) = HR%‘(U)

for all ¢ € By. Since By C A'(j — 1), we have

for all ¢ € By, ending the proof of the lemma. O

7.1 Proof of Proposition 1.1

Suppose now that (as in the hypotheses of Proposition 1.1) the indices of P, and Q, are p and ¢
with p = (¢ +1). By [BDP, Lemma 5.4], we can assume that the robustly transitive set A,(U)
contains a pair of hyperbolic periodic points of indices ¢ and p 4+ 1 having only real eigenvalues
with multiplicity one and different modulos. For notational simplicity, let us assume that @, and
P, verify these hypotheses. In particular, these points verify the hypotheses of Corollary 3.6. By
(1) in the proof of the corollary, after a small perturbation, we can assume that ¢ has a saddle-
node periodic point (a point with an eigenvalue equal to one) with ¢ contracting eigenvalues and
(dim(M) — g — 1) expanding eigenvalues. After a new perturbation, by unfolding the saddle-node,
we can assume that ¢ has a pair of periodic points A, and B, of indices p and ¢, respectively,
such that there is a curve 7y whose extremes are A, and B, and whose interior is contained in
W?(A,) h W*(B,). By Remark 2.7, we can assume that there is an open set V containing ¢ in its
closure such that Hp,(U) = Ha,(U) and Hq,(U) = Hp,(U) for all 4 in V.

By Remark 2.6, there is a sequence of diffeomorphisms ¢y, ¢, — ¢ in the C'-topology, such that
¢y, has a codimension one heterodimensional cycle I'(¢y, U, Ay, , By, ). By construction, these cycles
are connected ones, i.e., W*(Ay,, ) i W"(B,,) has a periodic connected component whose extremes
are contained in the orbits of Ay, and B, (here the connected component is the continuation of
the curve ~y above).
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Figure 3: Homoclinic points

The proposition now follows directly from [DR]. For completeness let us state these results.

Lemma 7.2. Let ¢ be a C'-diffeomorphism with a codimension one connected heterodimensional
cycle T'(C,U, A¢, Be) as above. Then given any C'-neighbourhood A of ¢ there is a C'-open subset
U(C) of A such that Ha,(U) = Hp, (U) for every ¢ € U(().

By the lemma, for each @) as above there is an open set U(pr) C V containing ¢y in its
closure, such that, for every 1 € U(py), one has Ha,(U) = Hp,(U). Since ¢ € V, we have that

Hy,(U) = Hp,(U) and Hg,(U) = Hp, (U). Proposition 1.1 now follows taking W, = {J, U(¢k).

Proof of the lemma: Observe that the cycle I'(¢, U, A¢, B¢) is connected and far from homoclinic
tangencies. In [DR], see the comments after Theorem A, it is proved that given any neighbourhood
U of ¢ there is an open subset Uy of U such that every 1 € Uy has a transitive set Ay containing Ay,
and By, such that Ay, C H(By). The main step to prove this result is the fact we will state below.

Let us first observe that, by construction, there is a multiplicity one contracting eigenvalue
Ac € R of the derivative of ¢ at A¢ such that 1 > |A\.| > |A| for every contracting eigenvalue A of
A¢ different from A (see condition (CE) in [DR, Section 3.1]). Thus for every ¢ close to { the
(codimension one) strong stable foliation F;, of W¥(Ay) is defined. Similarly, we have that the
(codimension one) strong unstable foliation F; of W*(Ay) is defined. Now the lemma will follow
form the following fact.

Fact: Let A be as in Lemma 7.2.

o Let u = (dim(M) —p) be the dimension of the unstable bundle of A¢c. There is an open subset
Ao of A of diffeomorphisms 1 such that W?*(By) meets transversely every (u + 1)-disk 3
transverse to F.

o Let s be the dimension of the stable bundle of Ac. There is an open subset Ay of A of
diffeomorphisms 1 such that W"(Ay) meets transversely every (s + 1)-disk ¥ transverse to
Fl.

(4
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This fact is a non-technical reformulation of [DR, Proposition 3.6 (b)]. Let us observe that
(due to the context) in [DR] this proposition is stated for parametrized families of diffeomorphisms
unfolding a connected cycle corresponding to a first bifurcation. But, as mentioned in [DR, Section
6], it holds in a much more general setting (including the case under consideration).

To see, for instance, that H,, (U) is contained in Hp, (U) we use the first part of the fact. Take
any = in Hy,,(U). By the cycle configuration W*(Ay) is contained in the closure of W*(By), thus
there is a sequence z,, — & with z,, € W*(Ay) h W*(B,) for all n. Associate to each x, we have a
(u+1)-disk X, of diameter less than 1/n which is contained in W"(B,,) and transverse to W?*(Ay)
at z, (see figure). The fact implies that for each n there is z, € W*(By) th X,. By construction
zn € Hy, (in fact one can take z, € HBw(U)) and lim z, = limz,, = z.

The inclusion Hp,(U) C Hp,(U) follows similarly using the second part of the fact. This ends

the sketch of the proof of the lemma. O
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