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Abstract

We prove that the shadowing property does not hold for diffeomorphisms in an open and
dense subset of the set of C1-robustly non-hyperbolic transitive diffeomorphisms (i.e., diffeo-
morphisms with a C1-neighbourhood consisting of non-hyperbolic transitive diffeomorphisms).

1 Introduction

Numerical simulations of dynamical systems generally produce approximate orbits (or pseudo-
orbits) rather than actual orbits of the system. In order for such simulations to be relevant, it is
important to ensure that sufficiently precise computations produce pseudo-orbits which are followed
– or shadowed – by true orbits. This property – called the pseudo-orbit shadowing property – is
therefore of fundamental importance to applications of dynamics.

Moreover, shadowing of pseudo-orbits plays a central role in the general theory of dynamical
systems. Every basic set of every hyperbolic dynamical system (in this paper all dynamical systems
are given by iterations of diffeomorphisms) displays the shadowing property, as proved by Anosov
and Bowen [An, Bo]. The shadowing property in turn is fundamental to the stability of hyperbolic
diffeomorphisms. Indeed, shadowing and stability/hyperbolicity are so closely intertwined that it
is generally believed that shadowing and hyperbolicity are in some sense equivalent. This equiv-
alence is of course not strictly true: there are examples of systems which are not hyperbolic and
nevertheless do exhibit the shadowing property ([YY], for instance, mentions several such examples
which are very fragile). But it is reasonable to expect that, for most systems in some sense, the
shadowing property and hyperbolicity are indeed equivalent. The goal of this paper is to show
that, if most systems is taken to mean C1-generic or C1-open and dense diffeomorphisms, then the
equivalence between shadowing and hyperbolicity does hold in some important contexts.

Let us begin by setting our context and recalling some standard definitions:

∗This paper was partially supported by CAPES, CNPq, and Faperj (Brazil). The first author was supported by
a PRODOC/CAPES fellowship.
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Throughout the paper M denotes a compact boundaryless manifold whose dimension d is greater
than or equal to 3. The space of C1 diffeomorphisms on M , endowed with the usual C1 topology, is
denoted by Diff1(M). Given δ > 0 and f ∈ Diff1(M), a sequence (xn)n∈N in M is a δ-pseudo-orbit
of f if the distance between f(xn) and xn+1 is less than δ for all n. Given ε > 0, the pseudo-orbit
(xn) is ε-shadowed by a true orbit (fn(x))n∈N of f if the distance between xn and fn(x) is less
than ε for all n.

An invariant set Λ of a diffeomorphism f ∈ Diff1(M) has the shadowing property if for every
ε > 0 there is some δ > 0 such that every δ-pseudo-orbit of points in Λ is ε-shadowed by some orbit
of f in Λ. A diffeomorphism f ∈ Diff1(M) has the shadowing property or is shadowable if M has
the shadowing property for f . So for a set or diffeomorphism not to have the shadowing property
means that there is some ε > 0 such that for every δ > 0 there is some δ-pseudo-orbit which is not
ε-shadowed by any actual orbit. Finally, given an open set U ⊂ M , then f is nonshadowable in
U if there is some ε > 0 such that for every δ > 0 there is some δ-pseudo-orbit in U which is not
ε-shadowed by any actual orbit in all of M .

Given f ∈ Diff1(M), an f -invariant compact set Λ is transitive if there is some x ∈ Λ such
that the ω-limit set ωf (x) of x coincides with Λ. The diffeomorphism f is transitive if M is a
transitive set for f ; the diffeomorphism f is C1-robustly transitive if there is a neighborhood Uf

of f in Diff1(M) such that every g ∈ Uf is transitive. We denote by T the subset of Diff1(M)
of C1-robustly transitive diffeomorphisms. We also consider the open subset RNT of T of C1-
robustly non-hyperbolic transitive diffeomorphisms of M , that is diffeomorphisms f ∈ T having a
neighbourhood Vf consisting of non-hyperbolic diffeomorphisms.

A transitive set Λ is an attractor if there is an open neighborhood V of Λ in M such that
the closure of f(V ) is contained in V and

⋂
n∈N

fn(V ) = Λ; such a neighborhood V is called an
attracting block of Λ. The basin of Λ is the set B(Λ) ≡ {x ∈ M : ω(x) ⊂ Λ}. It is easy to verify
that if V is an attracting block of Λ then B(Λ) =

⋃
n∈N

f−n(V ); in particular the basin B(Λ) is
an open subset of M . An attractor Λ is C1-robust if there are an attracting block V of Λ and a
neighborhood U of f in Diff1(M) such that if g ∈ U then Λg ≡

⋂
n∈N

gn(V ) is an attractor of g; in
this case Λg is said to be the continuation of Λ relative to g.

A transitive set Λ is isolated if there is an open neighborhood V of Λ, called an isolating
block of Λ, such that Λ =

⋂
n∈Z

fn(V ). An isolated transitive set Λ is C1-robust if there are an
isolating block V of Λ and a neighborhood U of f such that given g ∈ U , then the continuation
Λg ≡

⋂
n∈Z

gn(V ) of Λ is also a transitive set.
Finally, let us recall some terminology concerning residual sets and genericity. Given an open

subset U of Diff1(M), a subset R of U is residual in U if R contains the intersection of a countable
family of open and dense subsets of U ; in this case R is dense in U . A set R ⊂ Diff1(M) is said
to be residual if it is residual in all of Diff1(M). A property (P) is residual or generic in U if (P)
holds for all diffeomorphisms which belong to some residual subset of U ; the property (P) is said
to be residual or generic if it is residual in all of Diff1(M).

1.1 Statement of the results

Motivated by previous definitions in [Ki, Yo], Yuan and Yorke introduced in [YY] a strong type
of non-shadowing property called absolute non-shadowability . Let us recall their definition. Fix a
diffeomorphism f ∈ Diff1(M) and a point x ∈ M . Consider the set Ωx,δ of δ-pseudo-orbits starting
at x. Now, given an element xn of a δ-pseudo-orbit starting at x, the successor xn+1 of xn in the
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pseudo-orbit can be any one of the points in the open ball Bδ(f(xn)). Let us assume the uniform
probability distribution on Bδ(f(xn)). In this way, the set Ωx,δ constitutes a Markov chain having
each δ-pseudo-orbit as a sample sequence. The point x is said to be absolutely non-shadowable if
there is some ε > 0 such that, for all δ > 0, almost every δ-pseudo trajectory (xi)

∞
i=0 (i.e., a set of

full measure of the space of δ-pseudo trajectories) is ε-shadowed by no true orbit.
For the sake of concision, we will say that an attractor Λ is absolutely non-shadowable if every

point in the basin B(Λ) of Λ is absolutely non-shadowable. In [YY] the intersection of the following
three conditions is shown to be sufficient for an attractor Λ of a map f to be absolutely non-
shadowable:

y1) dimension variability : the attractor Λ contains saddles P and Q having different indices (i.e.,
dimension of the unstable manifold), say index(P ) < index(Q);

y2) the attractor Λ is the closure of the unstable manifold of the saddle P of lower index; and

y3) there is a dominated splitting E ⊕ F (see Definition 2.7) over Λ such that the dimension of
F coincides with index(P ).

We observe that, a priori, these properties are quite fragile: in general, they can be destroyed
after arbitrarily small perturbations of the map. Yorke and Yuan [YY], however, construct some
examples for which the hypotheses (y1), (y2), and (y3) hold robustly: these examples include some
non-invertible maps on the two-dimensional torus (following [KKGOY]) and some diffeomorphisms
on S

3 ×S
1 (following [Sm] and modifying [KKGOY]). It follows that these examples are absolutely

non-shadowable in a robust way.
Our first result follows from verifying that the three hypotheses from [YY] – and hence the

absolute non-shadowability condition – hold for generic robustly transitive non-hyperbolic diffeo-
morphisms (in this case, the attractor is the whole manifold):

Theorem 1. Generically in the set RNT of robustly non-hyperbolic and transitive diffeomor-
phisms, the whole ambient manifold is absolutely non-shadowable.

At this point we note that, as far as the authors know, all of the known robustly non-hyperbolic
transitive diffeomorphisms (see [Sh, Mñ1, Ca, BD1, BV]) satisfy the aforementioned conditions (y1)
and (y3) given in [YY]. Condition (y2) always holds for generic robustly transitive diffeomorphisms
(this is a consequence of the Connecting Lemma of Hayashi, [Ha], see Lemma 2.5). Indeed, it seems
possible that all robustly non-hyperbolic transitive diffeomorphisms – not just C1-generic ones –
are absolutely non-shadowable. Unfortunately, we do not know how to prove this at this point.

We can, however, prove that C1-open and densely every robustly non-hyperbolic transitive
diffeomorphism does not have the shadowing property.

Theorem 2. There is an open and dense subset N of the set RNT of robustly non-hyperbolic
transitive diffeomorphisms consisting of non-shadowable diffeomorphisms.

This theorem was proved in [BDT] for diffeomorphisms of dimension three under the additional
hypothesis on the global dynamics of the existence of a dominated splitting having three non-trivial
directions. Naively speaking, the proof of Theorem 2 consists in showing that this global hypoth-
esis can be obtained locally. This fact and an argument we import from [DR] about invariant
manifolds of saddles involved in partially hyperbolic heterodimensional cycles allow us to get an
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analogue of condition (y2) in [YY]. Our proof also involves the transitions associated to heterodi-
mensional cycles introduced in [BDPR] following [BDP] (see the sketch of the proof at the end of
this introduction).

Theorem 2 is in fact a corollary of the following more general result (whose proof is essentially
the same as above, with the addition of certain generic arguments):

Theorem 3. Given an isolated transitive set Λ of a generic diffeomorphism f , then either:

a) Λ is a hyperbolic set; or

b) there are a neighborhood U of f in Diff1(M) and arbitrarily small isolating blocks V of Λ such
that every g ∈ U is non-shadowable in the neighborhood V .

This result easily yields the following corollary, of which Theorem 2 is a special case:

Corollary 1.1. Let Λ be a C1-robust attractor of a diffeomorphism f , with continuations Λg defined
for all diffeomorphisms g in some open neighborhood U ⊂ Diff1(M) of f . Assume that Λg is non-
hyperbolic for every g ∈ U . Then there is an open and dense subset U0 of U such that for every
g ∈ U0 there is an arbitrarily small isolating block Vg of Λg in which g is non-shadowable.

From Theorem 3, which is a “semilocal” result, we immediately obtain not just Theorem 2 but
also an interesting “global” result. It was explained in [Ab1] that generic diffeomorphisms come
in one of two types: tame diffeomorphisms, which have a finite number of homoclinic classes and
whose nonwandering sets admit partitions into a finite number of disjoint transitive sets; and wild
diffeomorphisms, which have an infinite number of (disjoint and different) homoclinic classes and
whose nonwandering sets admit no such partitions.

Theorem 4. There is a residual set R ⊂ Diff1(M) such that if f ∈ R is tame, then the following
two conditions are equivalent:

a) f is hyperbolic (i.e., Axiom A without cycles)

b) f is shadowable

The result above motivates the following conjecture:

Conjecture 1. Generically hyperbolicity and shadowability are equivalent. That is, there is a
residual set R ⊂ Diff1(M) such that f ∈ R is shadowable if and only if it is Axiom A without
cycles.

In view of Theorem 4 above, which settles the conjecture in the tame case, Conjecture 1 above
is reduced to the following:

Conjecture 2. Every wild generic diffeomorphism is non-shadowable.

We remark that this last conjecture at first seems easy to prove, by constructing pseudo-orbits
which “jump” from one homoclinic class to the other, but in fact this naive idea does not work by
itself, so that this is a much more subtle problem than might appear at first sight.
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1.2 Further comments

We also stress that while our results above show that “typically” (i.e. C1-generically or C1-open
and densely, at least in some contexts) hyperbolicity and shadowability are equivalent, it may very
well be that in a statistical sense shadowability is quite abundant: that is, it may be that many
nonhyperbolic systems exhibit the pseudo-orbit property for most (but not all) pseudo-orbits. In
the appendix to [KH] Katok and Mendoza have shown that given a C1+α-diffemorphism f which
preserves a hyperbolic measure µ, then “most” pseudo-orbits near the support of µ are shadowed
by actual orbits. The work in progress [ABC] shows that C1-generic transitive difeomorphisms
exhibit hyperbolic measures whose supports coincide with the whole ambient manifold. If Katok’s
techniques (which rely on a weak form of Pesin theory) can be adapted to the C1-generic context,
then this would imply that generic (including generic nonhyperbolic) transitive diffeomorphisms do
have the shadowing property, modulo sets of arbitrarily small measure.

It is worthwhile to compare the previous results with [PP], which claims that shadowing is
generic in the C0-topology. See also the papers [AHK, Mz, Od].

We close this part of the introduction with some comments concerning shadowing and hyper-
bolicity. Different notions of weak shadowing have been introduced in recent years (for the various
types of shadowing and their properties we refer the reader to the books [Pa, Pi]). One of them is
the first weak shadowing property, (f.w.s.p), see [CP, Sa2], meaning that, for every ε > 0, there is
δ > 0 such that every δ-pseudo trajectory is contained in an ε-neighbourhood of a true orbit (in
our context this definition automatically is verified: the diffeomorphisms are transitive and thus
the ε-neighbourhood of a dense orbit is the whole manifold). [Sa2] states that the C1-interior of
the surfaces diffeomorphisms verifying the f.s.w.p are structurally stable (so hyperbolic).

For results in the same spirit of [Sa2], relating shadowing and hyperbolicity, see [Sa1] and [PRS].
We observe that the existence of robustly transitive diffeomorphisms, see [Sh, Mñ1, Ca, BD1,
BV], in dimensions greater than or equal to three shows that this result does not hold in higher
dimensions. In fact, the main difference between dimension two and higher dimensions arises from
the dimension variability, which is forbidden in dimension two (in the context of diffeomorphisms).
Finally, recently [Cr, Corollary 1.10] states that there is a generic subset of C1-diffeomorphisms
satisfying a stronger formulation of the f.w.s.p. formulated above.

1.3 Ingredients of the proofs

Let us describe the broad outlines of the proofs of our main results. These proofs have two main
ingredients: the properties of the dominated splittings of homoclinic classes and robustly transitive
diffeomorphisms obtained in [DPU, BDP, BDPR] and the analysis of the dynamics arising from
partially hyperbolic heterodimensional cycles, see [DR].

Theorem 1, as was previously mentioned, follows from checking that conditions (y1), (y2), and
(y3) of [YY] hold for any generic non-hyperbolic robustly transitive diffeomorphism. Condition
(y1), dimension variability, follows from combining the Connecting Lemma of Hayashi [Ha] (which
extends the previous work of Mañé [Mñ2] on the stability conjecture) with some standard C1-generic
arguments. Not being hyperbolic implies that non-hyperbolic periodic points may be created via
small C1-perturbations. This implies that saddles having different indices may be created. Since
hyperbolic saddles are persistent, it follows that the existence of points of different indices is an
open and dense property in RNT .

Condition (y2), existence of a periodic point (of appropriate index) whose unstable manifold is
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dense in the manifold, is guaranteed generically by combining Pugh’s General Density Theorem
[Pu] with a result from [BD2] which in turn is a consequence of the aforementioned Connecting
Lemma. Indeed, this combination proves that generically the unstable manifold of every periodic
point in the attractor is dense in the manifold (see Lemma 2.5).

Condition (y3), existence of a dominated splitting E ⊕ F such that the dimension of F is the
index of a saddle in the manifold whose index is not maximal, is the toughest of the three to check.
The existence of a dominated splitting is a straightforward consequence of the results in [BDP].
Showing that there is a dominated splitting with an appropriate dimension, however, requires more
subtlety. We employ an argument by contradiction using techniques from [BDPR], a paper which
extends some of the ideas in [BDP].

For the sake of clarity we first prove Theorem 2 and later (in Subsection 3.3.4) show how this
proof can be modified in order to obtain the more general Theorem 3. In fact, the proof of Theorem
3 only differs from that of Theorem 2 in that it requires some extra, “soft”, generic arguments; the
core of both results are the arguments found in the proof of Theorem 2.

The proof of Theorem 2 relies on the C1-generic machinery generated by the Connecting Lemma
and on the analysis of the dynamics arising from the unfolding of partially hyperbolic heterodimen-
sional cycles. In our context, the creation of a heterodimensional cycle follows immediately from
the Connecting Lemma and the robust transitivity (see Remark 2.4). But here it is essential to
have some local domination around the cycle: we need to create partially hyperbolic heterodimen-
sional cycles. To get these cycles we use the machinery developed in [BDP, BDPR] on dominated
splittings of homoclinic classes.

Heterodimensional cycles, introduced by Newhouse-Palis in [NP] in the seventies and recently
developed in the series of papers of the second author and Rocha, see for instance [D1, D2, DR],
consist of cycles between two (or more) hyperbolic periodic saddles which have different indices.
That is, there are two saddles P and Q, with index(P ) 6= index(Q), such that the stable manifold
of P intersects the unstable manifold of Q and vice-versa.

In case the indices of P and Q are consecutive integers, however, the use of the blenders
studied in [BD2, DR] does allow the creation of C1-robust quasi-heterodimensional cycles: here
the invariant manifolds of P and Q are not required to intersect each other, but rather to (C1-
robustly) accumulate (in a dominated way) on each other, see Theorem 3.9. This is the main step
to construct arbitrarily fine pseudo-orbits which cannot be shadowed by actual orbits. That is, the
presence of a dominated quasi-heterodimensional cycle is an obstruction to the shadowing property,
and so the presence of a robust dominated quasi-heterodimensional cycle is a robust obstruction to
the shadowing property.

Let us now explain how such a partially hyperbolic heterodimensioanl cycle is created. As
in the proof of Theorem 1, the lack of hyperbolicity of the attractor generates (modulo C1-small
perturbations) dimension variability, that is, two periodic saddles of different indices. The argu-
ments from [BDPR] show that the indices of the periodic points form a non-trivial interval in N; in
particular, the manifold contains two periodic points P and Q with consecutive indices. Moreover,
using [BDP] (see also Lemma 3.4) we see that this cycle can be associated to saddles P and Q

whose multipliers are all real, positive and have multiplicity one. Unfolding this cycle we obtain
a partially hyperbolic saddle-node (Proposition 3.5). Unfolding this saddle-node one gets two new
saddles of different indices bounding a segment where the dynamics is locally partially hyperbolic.
Finally, the Connecting Lemma allows us to create a partially hyperbolic heterodimensional cycle
associated to these saddles.
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Finally, we note that the proof of [YY, Theorem 2.2] shows that their conditions (y1), (y2),
and (y3) essentially imply the existence of a quasi-heterodimensuonal cycle (actually, this type of
quasi-cycle condition is considered in [CK] in the context of homeomorphisms). The main point
is how to obtain such quasi-cycles. So, despite the substantial differences in terms of vocabulary
and technique between this paper and [YY], we in fact rely on the same type of mechanism, which
can be summed up by the phrase dimensional variability, local domination and transitivity imply
no shadowing.

This paper is organized as follows. In Section 2, we recall the C1-generic machinery that allows
us to create cycles after perturbations and state the main facts about dominated splittings of
robustly transitive diffeomorphisms and homoclinic classes. Using these facts, we prove Theorem 1.
In Section 3, we prove Theorems 2 and 3 (in Section 3.3.3 and 3.3.4, respectively). In Section 3.1, we
explain how partially hyperbolic heterodimensional cycles are produced in the robustly transitive
setting. This construction relies on the creation of partially hyperbolic saddle-nodes. In Section 3.2,
we prove that the diffeomorphisms having partially hyperbolic heterodimensional cycles are dense
in RNT . Finally, in Section 3.3, we explain how the constructions in [DR] implies the persistence
of dominated quasi-cycles in the set of robustly transitive diffeomorphisms. Using this fact, we
construct non-shadowable pseudo-orbits.

2 Generic non-hyperbolic robustly transitive diffeomorphisms

In this section we prove Theorem 1. Recall that RNT denotes the set of C1-robustly non-hyperbolic
transitive diffeomorphisms of M , that is, diffeomorphisms f having a neighbourhood Uf in Diff1(M)
such that every g ∈ Uf is non-hyperbolic and transitive. Denote by Y the subset of RNT consisting
of diffeomorphisms f such that:

(y1) there are (hyperbolic) saddles Pf and Qf of f such that index(Pf , f) < index(Qf , f);

(y2) the ambient manifold M is the closure of the unstable manifold of the saddle Pf ;

(y3) there is a (non-trivial) dominated splitting E ⊕ F of f (see Definition 2.7) defined on the
whole manifold such that the dimension of F is equal to the dimension of the unstable bundle
of Pf .

Denote by G the set of diffeomorphisms f ∈ RNT such that either f or f−1 belongs to Y.

Proposition 2.1. The set G contains a residual subset of RNT .

For proving this proposition we need some preliminary results and definitions.

2.1 Perturbation lemmas

We need the following perturbation lemma about the creation of heteroclinic intersections:

Lemma 2.2 (Connecting Lemma, [Ha]). Let f be a C1 diffeomorphism and Λ a transitive set
of f containing a pair of hyperbolic saddles Af and Bf . Then there is g arbitrarily C1-close to f

such that W u(Ag, g) ∩ W s(Bg, g) 6= ∅, where Ag and Bg are the continuations of the saddles Af

and Bf of f for g. This lemma holds when Af = Bf .
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We state two consequences from Lemma 2.2 we use repeatedly throughout the paper. Next
remark is an immediate consequence from the lemma in the case Af = Bf :

Remark 2.3. Let f be a C1 diffeomorphism and Λ a transitive set of f containing saddle Af .
Then there is g arbitrarily C1-close to f such that W u(Ag, g) ⋔ W s(Ag, g) 6= ∅.

Remark 2.4. Let U be an open set in Diff1(M) of diffeomorphisms f having a transitive set
Λf containing a pair of (hyperbolic) saddles Af and Bf depending continuously on f and having
different indices (there is no hypotheses on the variation of the transitive set Λf ). There is a dense
subset C of U of diffeomorphisms g having a heterodimensional cycle associated to Ag and Bg.

Proof: Suppose that the p = index(Af , f) < index(Bf , f) = q. Applying Lemma 2.2 to W s(Af , f)
and W u(Bf , f), we get g close to f such that W s(Ag, g) ∩ W u(Bg, g) 6= ∅. As the sum of the
dimensions of these manifolds is greater than the dimension n of the ambient manifold M (this sum
is (n−p)+q > n−q+q = n), after a new perturbation we can assume that W s(Ag, g) ⋔ W u(Ag, g) 6=
∅. This implies that the set C0 of diffeomorphisms g ∈ U such that W s(Ag, g) ⋔ W u(Bg, g) 6= ∅ is
open and dense in U .

To finish the proof of the remark just take g ∈ C0 and apply Lemma 2.2 to W u(Af , f) and
W s(Bf , f), obtaining h ∈ C0 close to g with W u(Ah, h) ∩ W s(Bh, h) 6= ∅. As h ∈ C0, W s(Ah, h) ∩
W u(Bh, h) 6= ∅, thus h has a heterodimensional cycle associated to Ah and Bh. �

Next Lemma 2.5 is a reformulation of [BD2, Théorème 1.4] to the context of robustly transitive
diffeomorphisms and it is obtained from Lemma 2.2 using a standard argument of genericity. Let
us recall that the homoclinic class of a saddle Pf of a diffeomorphism f , denoted by H(Pf , f), is
the closure of the transverse intersections of the stable and unstable manifolds of the orbit of Pf . A
homoclinic class can be equivalentely defined as the closure of the set of saddles Q homoclinically
related to Pf (that is, the stable manifold of the orbit of Pf transversely meets the unstable
manifold of the orbit of Q and vice-versa). Note that two saddles homoclinicially related have the
same index. This implies that the periodic points of the same index as Pf are dense in the class
H(Pf , f). Finally, a homoclinic class is always transitive (for the proof of these properties see, for
instance, [Ne]).

Lemma 2.5. Let U be an open set in Diff1(M) of transitive diffeomorphisms f such that every f

has a saddle Af depending continuously on f ∈ U . There is a residual subset JA of U such that,
for all f ∈ JA, the homoclinic class of Af is the whole ambient manifold M . In particular, the
stable and unstable manifolds of Af are both dense in M .

Given a hyperbolic saddle Af of a diffeomorphism f , denote by ΣAf
the subset of the homoclinic

class H(Af , f) of Af of saddles of the same index as Af and homoclinically related to Af . The set
ΣAf

always is dense in H(Af , f). The previous lemma and an argument of transversality implies
the following.

Remark 2.6. Let U be an open set in Diff1(M) of transitive diffeomorphisms f such that every f

has a saddle Af depending continuously on f ∈ U . There is a residual subset L of U such that, for
all f ∈ L, the set ΣAf

is dense in M .
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2.2 Dominated splittings

In this section we state the main facts about dominated splittings of robust transitive diffeomor-
phisms and prove Proposition 2.1. For properties of dominated splittings see, for example, [BDV,
Appendix B].

Definitions and properties 2.7. Consider a diffeomorphism f and an f -invariant set Λ.

• Dominated splitting: A Df -invariant splitting E ⊕ F of TM over Λ is dominated if the
fibers of the bundles have constant dimension and there are a metric ||·|| and a natural number
n ∈ N such that

||Dfn(x)E || · ||Df−n(x)F || <
1

2
for all x ∈ Λ.

In this case, we say that the splitting is n-dominated.

• Extension to the closure, [BDV, Section B.1.1]: Every n-dominated splitting defined over
a set Λ can be extended to an n-dominated splitting defined over the closure of Λ.

• Extension and persistence of dominated splittings, [BDV, Section B.1.1]: Suppose
that Λ has a dominated splitting. Then this splitting can be extended in a dominated way
to the maximal invariant set of f in a neigbourhood of Λ. Moreover, every n-dominated
splitting persists under C1 perturbations: for any ε > 0 there are neighbourhoods U of Λ and
U ⊂ Diff1(M) of f such that for every g ∈ U the maximal invariant set in the closure of U has
an (n-ε)-dominated splitting1 having the same dimensions as the initial dominated splitting
over Λ.

• Finest dominated splitting: The splitting E1 ⊕ E2 ⊕ · · · ⊕ Ek is dominated if, for all i =
1, . . . , (k−1), the splitting (⊕i

j=1Ej)⊕(⊕k
j=i+1Ej) is dominated. The splitting E1⊕E2⊕· · ·⊕Ek

is the finest dominated splitting of Λ if any bundle of the splitting is indecomposable, that is
no Ei admits any dominated splitting.

• Clustering property of dominated splittings, [BDV, Proposition B.2]: Let E1 ⊕ E2 ⊕
· · · ⊕ Ek be the finest dominated splitting of Λ and E ⊕ F a dominated splitting over Λ, then
there is i such that E = ⊕i

j=1Ej and F = ⊕k
j=i+1Ej .

• Volume hyperbolicity: The dominated splitting E1 ⊕E2 ⊕· · ·⊕Ek is volume hyperbolic if
there is n such that the derivative of fn uniformly contracts the (induced) volume in E1 and
uniformly expands the (induced) volume in Ek.

Theorem 2.8. [BDP, Theorems 2 and 4] Every robustly transitive diffeomorphism f has a domi-
nated splitting. Moreover, the finest dominated splitting of f (which is well and uniquely defined)
is volume hyperbolic.

Given f ∈ RNT , denote by s−(f) and s+(f) the minimum and the maximum of the dimensions
of the stable bundles of the (hyperbolic) saddles of f (if f has no hyperbolic saddles, these numbers
are not defined). Consider also the finest dominated splitting E1(f) ⊕ · · · ⊕ Em(f)(f) of f defined
on the whole M . Denote by di(f) the dimension of the bundle Ei(f).

1meaning ||Dfn(x)E|| · ||Df−n(x)F || < 1

2
+ ε for all x.
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Theorem 2.9. ([BDPR, Theorem A and Lemma 4.1]) There is an open and dense subset I of
RNT consisting of diffeomorphisms f such that

• the numbers s+(f) and s−(f) are well defined, locally constant, and s−(f) < s+(f),

• for every i ∈ [s−(f), s+(f)] ∩ N there is a (hyperbolic) saddle of f of index i,

• the number m(f) of bundles of the finest dominated splitting and the dimensions di(f) of the
bundles of the splitting are locally constant.

The last assertion in Theorem 2.9 follows from the fact that any dominated splitting of f defined
on the whole M has a continuation for any g close to f (see, for instance, [BDP, Lemma 1.4]) and
the uniqueness of a dominated splitting fixed the number of sub-bundles, their dimensions, and the
ordering of such dimensions, (see [BDPR, Lemma 4.1]). In fact, this assertion follows essentially
from the clustering property in Definition 2.7.

We now pick f ∈ I and a small neighbourhood Uf of it where the numbers above are constant
in Uf , so we omit the dependence on g of s±(g), m(g) and di(g) on g ∈ Uf . Finally, write
rj = d1 + · · · + dj , j = 1, . . . ,m.

Let s+ − s− = k and consider saddles Q0
f , Q1

f , . . . , Qk
f such that the dimensions of the stable

bundles are s−, (s− + 1), . . . , s+ = s− + k. Since the continuations of these saddles are defined on
a neighbourhood of f , we also omit the dependence on f of them.

Lemma 2.10. Let f ∈ I and Uf be a neighbourhood of f as above (i.e., s±(g), m(g), and di(g)
are constant in Uf ). There is an open and dense subset Vf of Uf such that for every g ∈ Vf there
is i ∈ [s−, s+] such that there is g-invariant splitting E ⊕ F such that dim(F ) is the index of Qi

g.

We postpone the proof of the lemma and prove Proposition 2.1.

Proof of Proposition 2.1: Lemma 2.10 implies that the diffeomorphisms g such that either g

of g−1 verifies (simultaneously) (y1) and (y3) form an open and dense subset of I. To see how this
assertion follows note that if i ∈ [s−, s+) then it is enough to take in (y1) the saddles Pg = Q

g
i and

Qg = Q
g
i+1 and in (y3) the dominated splitting E ⊕ F given by Lemma 2.10. If i = s+ consider

g−1, the saddles Q
g

s+ and Q
g

s+−1
, and the dominated splitting F ⊕E of g−1 (we need to reverse the

ordering of the bundles to get a dominated splitting of g−1). It is now enough to take in (y1) the
saddles Pg−1 = Q

g

s+ and Qg−1 = Q
g

s+−1
and in (y3) the dominated splitting F ⊕ E. Noting that

the index of Pg−1 (for g−1) is

n − index(Qs+

g , g) = n − dim(F ) = dim(E)

we get that F ⊕ E verifies the dimension condition (y3).
Finally, the density condition (y2) follows from Lemma 2.5, which assures that (locally) gener-

ically the invariant manifolds W s(Qi
g, g) and W u(Qi

g, g) are both dense in M . This completes the
proof of the proposition. �

Proof of the lemma: As the properties in Lemma 2.10 are open, it suffices to prove the density
of the diffeomorphisms verifying the lemma. By Lemma 2.5, there is residual subset Jf of Uf such
that every g ∈ Jf has a saddle Pg whose homoclinic class H(Pg, g) is the whole manifold M . Thus
the finest dominated splittings of Df over M and over H(Pg, g) coincide. Moreover, by Remark 2.6,
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we also can assume the set ΣPg is dense in M . Since every dominated splitting defined on a set can
be extended (in a dominated way) to its closure (recall Definition 2.7), the restriction of the finest
dominated splitting of TM to ΣPg consists also of indecomposable sub-bundles. In other words,
TΣgM = E1(g) ⊕ · · · ⊕ Em(g) is a dominated splitting consisting of indecomposable sub-bundles.

For a given g ∈ Jf there are two possibilities:

Case (a): There are j < m and i = 0, . . . , (k − 1) such that s− + i = rj .

Case (b): for every j and every i = 0, . . . , (k − 1), one has rj 6= s− + i.

In Case (a) the proof is trivial: just take the saddle Qi and the g-invariant dominated splitting
E⊕F , E = E1⊕· · ·⊕Ej and F = Ej+1⊕· · ·⊕Em. By construction, Es(Qi) = E and Eu(Qi) = F ,
thus index(Qg, g) = dim(F ).

Note that s+ < rm = dim(M) (otherwise, g has a sink, which prevents the transitivity of g).
In Case (b) we have that for every diffeomorphism close to g:

there is 0 ≤ j ≤ (m − 1) such that rj < s− < · · · < s+ < rj+1 (here we let r0 = 0). (2.1)

We now need the following results we export from [BDP, Propositions 2.4 and 2.5] (we use here
the formulation in [BDPR] which is more convenient in our context) and [Fr].

Lemma 2.11. [BDPR, Lemma 5.3] . Let Pf be a saddle of a diffeomorphism f whose homoclinic
class H(Pf , f) is non-trivial. Let E1 ⊕ · · · ⊕ Em be the restriction to ΣPf

of the finest dominated
splitting of TH(Pf ,f)M of Df . Then, for every ε > 0, there are a dense subset Σε of ΣPf

and an
ε-perturbation Aε of Df preserving the splitting E1 ⊕ · · · ⊕Em such that, for every saddle R ∈ Σε,
the restriction of the linear map

MAε(R) = Aε(f
n(R)−1(R)) ◦ · · · ◦ Aε(f(R)) ◦ Aε(R)

to each bundle Ei(R) is a homothety, where n(R) is the period of the saddle R.
Moreover, if there are i ∈ {1, . . . ,m} and Q ∈ ΣPf

such that the modulus of the Jacobian of the

restriction of fn(Q) to Ei(Q) is one then R ∈ Σε can be taken such that the restriction of MAε(R)
to Ei(R) is identity.

Lemma 2.12. ([Fr], [Mñ2]) Consider a C1-diffeomorphism f and an f -invariant finite set Σ. Let
A be an ε-perturbation of the derivative Df of f along Σ (i.e., the linear maps A(x) and Df(x) are
ε-close for all x ∈ Σ). Then for every neighbourhood U of Σ there is a diffeomorphism g C1-ε-close
to f such that

• g(x) = f(x) if x ∈ Σ or if x 6∈ U ,

• Dg(x) = A(x) for all x ∈ Σ.

We are now ready to finish the proof of the lemma. Consider the bundle Ej+1, by Lemma 2.11,
there are a saddle R of g and an arbitrarily small perturbation A of the derivative of g along the
orbit of R such that the restriction of MA(R) to Ej+1 is a homothety. After a new perturbation,
we can take the ratio of this homothety different from 1. Applying Lemma 2.12, taking Σ equal to
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the orbit of R and considering the perturbation A, we get h close to g such that R is a periodic
orbit of h with Dhn(R)(R) = MA(R).

Let TRM = Es(R) ⊕ Eu(R) and note that for every vector v 6∈ Eu one has Dhm(v) → Es(R)
as m → ∞ (similarly, if v 6∈ Es then Dh−m(v) → Eu(R)). The invariance of the bundles Ei(R)
and the fact that the restrictions of Dhn(R) to the bundles Ei(R) are homotheties imply that either
Ei(R) ⊂ Es(R) or Ei(R) ⊂ Eu(R).

If the homothety MA(R)|Ej+1(R) is a contraction then Ej+1(R) is a stable bundle of R. Thus, by
the domination, every Ei(Q), i = 1, . . . , (j +1), is also contracting. Hence E1(R)⊕· · ·⊕Ej+1(R) ⊂
Es(R). Therefore the dimension of the stable bundle of R is at least rj+1. Thus rj+1 ≤ s+,
contradicting (2.1).

Similarly, if the homothety MA(R)|Ej+1(R) is an expansion then Ej+1(R) is a unstable bundle of
R. Thus, by the domination, every Ei(Q), i = (j + 1), . . . ,m, is also expanding. Hence Ej+1(R)⊕
· · · ⊕ Em(R) ⊂ Eu(R). Therefore Es(R) ⊂ E1(R) ⊕ · · · ⊕ Ej(R). Thus dim(Es(R)) ≤ rj . Hence
s− ≤ rj, contradicting (2.1). This ends the proof of the lemma. �

3 Partially hyperbolic heterodimensional cycles

In this section we prove Theorems 2 and 3.

3.1 Creation of partially hyperbolic heterodimensional cycles

Denote by P the subset of RNT of diffeomorphisms g satisfying the following conditions:

(p1) There are saddles Ag and Bg of the same period k of indices ms and ms + 1, respectively,
and an open curve γg (called connection) whose extremes are Ag and Bg such that γg ⊂
W s(Ag) ⋔ W u(Bg) and gk(γg) = γg.

(p2) There is a small neigbourhood U of the orbit of the closure of γg, γg = {Ag, Bg} ∪ γg, and a
g-invariant dominated splitting defined of U

Es
1(g) ⊕ · · · ⊕ Es

ms
(g) ⊕ Ec(g) ⊕ Eu

1 (g) ⊕ · · · ⊕ Eu
mu

(g)

such that the bundles Es
i (g) (i = 1, . . . ,ms), Ec(g), and Eu

j (g) (j = 1, . . . ,mu) are one
dimensional and

Es(Ag) = Es
1(g) ⊕ · · · ⊕ Es

ms
(g) ⊕ Ec(g),

Eu(Bg) = Ec(g) ⊕ Eu
1 (g) ⊕ · · · ⊕ Eu

mu
(g),

TγgM = Ec(g).

Theorem 3.1. The set P is open and dense in RNT .

First note that the set P is open (transverse intersections and dominated splittings are persis-
tent). Thus the point is the density of P. The proof of the theorem has three steps:

1. Consider the open subset O of RNT consisting of diffeomorphisms f having a pair of (hy-
perbolic) periodic saddles Pf and Qf such that:

(o1) index(Pf , f) + 1 = index(Qf , f),
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(o2) all the eigenvalues of Dfn(Pf )(Pf ) and Dfn(Qf )(Qf ) (n(Rf ) is the period of Rf ) are
real, have multiplicity one, and their moduli are different.

We prove that set O is dense in RNT (Proposition 3.2).

2. Lemma 3.5 claims that every f in O can be C1-approximated by some g in RNT having a
saddle-node Sg such that all the eigenvalues of Dgn(Sg)(Sg) are different and positive and have
multiplicity one. Thus the splitting given by the sum of the eigenspaces of Sg is dominated.

3. Theorem 3.1 follows by unfolding the saddle-node Sg to get a pair of hyperbolic saddles Ag and
Bg as in the theorem, considering the segment γg = (Ag, Bg) tangent to the central direction
of the saddle-node, and using that a dominated splitting is persistent (recall Definition 2.7).

Proposition 3.2. The set O is open and dense in RNT .

Proof: Since the conditions in the definition of the set O are open, it is enough to prove the
density of the set O in RNT .

Lemma 3.3. There is an open and dense subset K of RNT of diffeomorphisms f with the following
property: there are p ∈ N and saddles Pf and Qf of f of indices p and p + 1 such that H(Pf , f)
and H(Qf , f) are non-trivial.

Proof: Since the existence of a pair of saddles Pf and Qf of f of indices p and p + 1 such that
H(Pf , f) and H(Qf , f) are both non-trivial is an open property (this follows from the persistence
of hyperbolic saddles and of transverse intersections of invariant manifolds), it suffices to prove the
density of the set K in RNT .

Consider the open and dense subset I of RNT of diffeomorphisms f such that the indices of
the saddles of f form an interval in N given by Theorem 2.9. By the definition of the set RNT ,
we can assume that f has saddles Pf and Qf of indices p and p + 1 for some p. Consider a small
neighbourhood U of f where the continuations of these saddles are defined and the residual subset
J = JP ∩ JQ of U , where JP and JQ are the residual subsets of U given by Lemma 2.5, i.e.,
H(Rg, g) = M if g ∈ JR. Then every g ∈ J verifies Lemma 3.3. �

We need the following result:

Lemma 3.4 ([BDP]). Let U be an open set in Diff1(M) such that every f in U has a saddle Pf

whose homoclinic class is non-trivial (here the saddle Pf depends continuously on f).
There is a residual subset D of U of diffeomorphisms g such that the homoclinic class of Pg

contains a saddle Rg of the same index as Pg such that every eigenvalue of Dgn(Rg)(Rg) is real and
positive and has multiplicity one.

This lemma is just a reformulation of the results in [BDP], where Lemma 3.4 is formulated for
periodic linear systems (cocyles) (Σ, f, E , A) with transitions (here f is a diffeomorphisms, Σ a set
of periodic points of f , E an Euclidean bundle over Σ, and A ∈ GL(Σ, f, E) so that for each x ∈ Σ
the map A(x) is a linear isomorphism A(x) : Ex → Ef(x)). See [BDP, Section 1] for the precise
definition.

[BDP, Lemma 4.16] asserts that if (Σ, f, E , A) is a periodic linear system with transitions then,
for every ε > 0, there is a diagonalizable ε-perturbation A′ of A defined on a dense subset of Σ′

of Σ. By a diagonalizable system we mean that if x is a periodic orbit of period k then all the
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eigenvalues of the linear map MA(x) = A(fk−1(x)) ◦ · · · ◦ A(f(x)) ◦ A(x) : Ex → Ex are real and
positive and have multiplicity one. Lemma 3.4 now follows from the next two remarks:

• Let H(Pf , f) be the homoclinic class of a saddle Pf of index k. Then the derivative of f

induces a periodic linear system with transitions in ΣPf
(recall that ΣPf

⊂ H(Pf , f) is the
set of saddles of index k homoclinically related to Pf ). See [BDP, Lemma 1.9].

• By the previous item, we can apply [BDP, Lemma 4.16] to the dense subset ΣPf
of H(Pf , f)

to obtain a dense subset Σ′ of ΣPf
such that for each Rf ∈ Σ′ there is an ε-perturbation A of

Df along the finite orbit of Rf such that every eigenvalue of MA(Rf ) = A(fn(Rf )−1(Rf )) ◦
· · · ◦ A(f(Rf )) ◦ A(Rf ) is real and positive and has multiplicity one. Using Lemma 2.12, we
can perform the previous perturbation dynamically: there is g close to f such that Rf = Rg

is a periodic point of g of period n(Rg) = n(Rf ) with Dgn(Rg)(Rg) = MA(Rf ). Finally, using
that Rf and Pf are homoclinically related, one has that the same holds for Pg and Rg = Rf .
Note that in our case the fact that Rg is in the homoclinic class of Pg immediately follows
from the robust transitivity.

Lemmas 3.3 and 3.4 imply immediately Proposition 3.2. �

Let D be the subset of RNT of diffeomorphisms g having a saddle-node Sg such that:

(d1) every eigenvalue λ of Dfn(Sg)(Sg) is real and positive, and has multiplicity one,

(d2) 1 is an eigenvalue of Dfn(Sg)(Sg),

(d3) there is a pair of eigenvalues λ and β of Dfn(Sg)(Sg) with 0 < λ < 1 < β.

Proposition 3.5. The set D is dense in RNT .

Proof: For a given f ∈ O (the open and dense subset of RNT in Proposition 3.2), let Af

and Bf be the saddles in the definition of O satisfying (o1) and (o2). Let 0 < λ1 < · · · <

λp+1 < 1 < λp+2 < · · · < λn be the eigenvalues of Dfn(Pf )(Pf ) and consider the dominated
splitting TPf

M = E1(Pf )⊕ · · · ⊕En(Pf ) given by the one-dimensional eigenspaces of Dfn(Pf )(Pf ).

Similarly, 0 < β1 < · · · < βp < 1 < βp+1 < · · · < βn are the eigenvalues of Dfn(Qf )(Qf ) and
TQf

M = E1(Qf ) ⊕ · · · ⊕ En(Qf ) is the splitting given by the eigenspaces of Dfn(Qf )(Qf ). By
Remark 2.4, after an arbitrarily small C1-perturbation, we can assume that f has heterodimensional
cycle associated to Af and Bf . This cycle has a dominated structure in the saddles exactly as in
[BDPR, Theorem 3.1] (in fact, here we have even more: all the bundles of the dominated splittings
of the saddles in the cycle are one-dimensional). In fact, [BDPR, Theorem 3.1] can be read as
follows (see also the proof of [BDPR, Corollary 3.6]):

Lemma 3.6. Let f ∈ O such that the saddles Af and Bf has a heterodimensional cycle. Then
there are linear maps T1 and T2 preserving the dominated splittings of Af and Bf

T1(Ei(Pf )) = Ei(Qf ) and T2(Ei(Qf )) = Ei(Pf ), for all i = 1, . . . , n,

such that for every m and n large enough there is a diffeomorphism g close to f having a saddle
Sg of period n(Sg) ≥ n · n(Pf ) + m · n(Qf ) such that Dgn(Sg)(Sg) is arbitrarily close2 to

T1 ◦ (Dfn(Pf )(Pf ))n ◦ T2 ◦ (Dfn(Qf )(Qf ))m.

2In this statement there is an abuse of notation: we can take the saddle Sg nearby Qg in such a way that a
continuation of the dominated splitting of Qg is defined in Sg and thus the previous expression makes sense.
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As a consequence, the central eigenvalue of Dgn(Sg)(Sg) (the (p + 1)-th eigenvalue λc) is arbitrarily
close to

C · λn
p+1 · β

m
p+1,

for some constant C independent of n and m.

The last equation in Lemma 3.6 means that we can select large n and m such that C1 <

log(λc) < C2, for some constants C1 and C2 independent of n and m. Taking large n and m, this
implies that Sg can be chosen such that its (p+1)-th Lyapunov exponent is arbitrarily close to zero.
Thus, after a new perturbation, we can assume that λc = 1, thus Sg is a saddle node. For details,
see the proof of [BDPR, Corollary 3.6], specially the equation in [BDPR, page 203] and observe
that we are considering cycles whose saddles only have positive eigenvalues. This completes the
proof of Proposition 3.5. �

Remark 3.7. Proposition 3.5 implies a weaker version of Theorem 2: there is a dense subset of
RNT of non-shadowable diffeomorphisms. It is enough to take f ∈ D having a partially hyperbolic
saddle-node S with one-dimensional center-stable W cs(S) and center-unstable W cu(S) manifolds
(these manifods are tangent to the central direction and have the saddle-node as an extreme).
Consider x ∈ W cs(S) and a one-jump pseudo-orbit (zn) of the form zn = fn(x) for n = 0, . . . , k,
zk+1 = y for some y ∈ W cu(S), and zk+1+m = fm(y). Fixed any ε > 0, one gets an ε-pseudo orbit
by taking big k and y close to the saddle-node. Due to the partial hyperbolicity of the saddle-node,
this pseudo-orbit can not be shadowed.

3.1.1 End of the proof of Theorem 3.1

Given g ∈ D consider the saddle-node Sg satisfying conditions (d1)–(d3). Let 0 < λ1 < · · · < λms <

1 = λc < β1 < · · · < βmu be the eigenvalues of Dgn(Sg)(Sg). Consider the dominated splitting along
the orbit O(Sg) of Sg given by

TO(Sg)M = (Es
1(g) ⊕ · · · ⊕ Es

ms
(g)) ⊕ Ec(g) ⊕ (Eu

1 (g) ⊕ · · · ⊕ Eu
mu

(g)),

where Es
i (g), Ec(g), and Eu

i (g) are the (one-dimensional) eigenspaces associated to λi, 1, and βi.
Note that Es(g) = Es

1(g) ⊕ · · · ⊕ Es
ms

(g) is the stable bundle of Sf , Eu(g) = Eu
1 (g) ⊕ · · · ⊕ Eu

mu
(g)

is the unstable bundle of Sg, and Ec(g) is the central direction.
Using the dominated splitting of the saddle-node Sg and the fact that a dominated splitting

admits an extension (see, Definition 2.7), we can perform a local perturbation of g throughout the
finite orbit of Sg to get a diffeomorphism f verifying (p1) and (p2): it suffices to obtain the saddles
Af and Bf in a normally hyperbolic local central manifold of Sg in such a way γf is a center stable
manifold of Af and a center unstable manifold of Bf tangent to the central direction (see Figure 1).
This ends the proof of the theorem. �

3.2 Density of partially hyperbolic heterodimensional cycles in RNT

Denote by H the subset of P such that the saddles Af and Bf verifying (p1) and (p2) are related
by a heterodimensional cycle as follows:
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Sg
Af

Bf

γf

Figure 1: Unfolding a saddle-node

(p3) The unstable manifold of Af and the stable one of Bf meet throughout the orbit of a
heteroclinic point xf :

W u(Af ) ∩ W s(Bf ) ⊃
⋃

i∈Z

f i(xf ).

Considering some forward iterate of xf , we can assume that the point xf belongs to open set
U where is defined the dominated splitting in the definition of P. Moreover, the intersection
between W u(Af ) and W s(Bf ) at xf is quasi-transverse, meaning that

Txf
W u(Af ) + Txf

W s(Bf ) = Txf
W u(Af ) ⊕ Txf

W s(Bf )

and
Txf

M = Txf
W u(Af ) ⊕ Txf

W s(Bf ) ⊕ Ec(f)(xf ).

Lemma 3.8. The set H is dense in RNT .

Proof: By Theorem 3.1, it is enough to prove the density of H in P. Let f ∈ P, since f is transitive
and P is open, by Lemma 2.2, there is h ∈ P arbitrarily C1-close to f such that W u(Ah)∩W s(Bh) 6=
∅. Thus, since W s(Ah) ⋔ W u(Bh) 6= ∅, h has a heterodimensional cycle associated to Ah and
Bh. By a transversality argument, we can assume (after a new perturbation if necessary) that this
intersection occurs along the orbit of a point xh and that Txh

W u(Ah) and Txh
W s(Bh) are in general

position. A new transversality argument assures that we can assume that Txh
W u(Ah)⊕Txh

W s(Ah)
and Ec(h)(xh) are in general position, thus Thf

M = Thf
W u(Ah) ⊕ Txh

W s(Bh) ⊕ Ec(h)(xh). �

3.3 Unfolding partially hyperbolic heterodimensional cycles

Consider f ∈ H, the saddles Af and Bf (say of indices p and p + 1), the connection γf , and the
heteroclinic point xf in the definitions of the sets P and H. Take a small neigbourhood W of
the cycle as follows: consider the open set U containing the orbits of Af , Bf , and γf where the
dominated splitting Es(f)⊕Ec(f)⊕Eu(f) in (p2) is defined and a neighbourhood U0 of xf , then

W = U ∪ (∪N
i=−Nf i(U0),

where N ∈ N is such that f i(xf ) ∈ U for all |i| ≥ N (in fact, without loss of generality we can
assume that xf ∈ U and its whole forward orbit is contained in U).

Next theorem is a reformulation (in fact, a weaker version stated in a more suitable form for
our goals) of the results in [DR] on bifurcations of partially hyperbolic heterodimensional cycles.
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γh Ah
Bh

xh

Figure 2: A partially hyperbolic heterodimensional cycle

Theorem 3.9 ([DR]). Given any f ∈ H there is an open set B in Diff1(M) whose closure contains
f such that, for every g ∈ B, the unstable manifold W u(Ag, g) of Ag accumulates the local stable
manifold W s

loc(Bg, g) of Bg as follows: there are r > 0 and sequences (xn)n of transverse homoclinic
points of Ag, xn ∈ W u(Ag, g) ⋔ W s(Ag, g), and (∆u(xn))n of disks ∆u(xn) ⊂ W u(Ag, g) (of the
same dimension as W u(Ag, g)) centered at xn such that:

• (xn) converges to some point x∞ ∈ W s
loc(Bg, g), x∞ 6= Bg,

• the radius of each disk ∆u(xn) is greater than r,

• the tangent direction of ∆u(xn) is ǫ-close to Eu(g) (the number ε can be taken arbitrarily
small by reducing the sizes of B and U),

• ∆u(xn) ∩ W s
loc(Bg, g) = ∅,

• ∆u(xn) = gkn(δu(n)), where kn > 0, δu(n) is a disk contained in W u
loc(Ag) ⊂ U such that

δ(n), g(δ(n)), . . . , gkn(δ(n)) are contained in the neighbourhood W of the cycle.

[DR, Theorem A] states that if f has a (partially hyperbolic) heterodimensional cycle as the
ones above, then there is a C1-open set Uf of diffeomorphisms, whose closure contains f , such that
for every g ∈ Uf the homoclinic classes of Ag and Bg coincide. The main step to prove this theorem
is to see that the there is an open set Vf of diffeomorphisms, f ∈ Vf , such that for every g ∈ Vf the
closure of W u(Ag, g) (of dimension p) contains the whole W u(Bg, g) (of dimension (p + 1)). The
proof of this result involves a blender argument (see [BD1, DR] and also [BDV, Chapter 6.2] for
an expository explanation of blenders). The proof of this fact consists in showing the existence of
a cube C ⊂ U around a fundamental domain of the curve γg (the continuation of the connection
γf for g close to f) endowed with a cone-field structure Cu, Ccu, Ccs, and Cs, corresponding to the
bundles Eu(g), Ec(g)⊕Eu(g), Ec(g)⊕Es(g), and Es(g), such that every (p + 1)-dimensional strip
S, tangent to the cone-field Ccs and crossing the two sides of the cube C parallel to Ccu, transversely
intersects a disk ∆u (∆u ⋔ S 6= ∅) contained W u(Ag, g) ∩ C and tangent to Cu. Moreover, this
construction only involves the semi-global dynamics of g in the neighbourhood W of the cycle. The
previous statement essentially corresponds to [DR, Proposition 3.6].

We next detail the construction of the points xn and the disks ∆u(xn) in Theorem 3.9.
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3.3.1 Itineraries in the neighbourhood of the cycle

To define exactly the disks in Theorem 3.9, we need to choose carefully the neighbourhood of
the cycle. For the sake of simplicity, suppose that Af and Bf are fixed points We assume that
W u

loc(Bf , f) and W s
loc(Af , f) are contained in the neighbourhood U of γf . There is a first k0 such

that fk0(W u
loc(Af , f)) ∩ W s

loc(Bf , f) 6= ∅ and this intersection is just the heteroclinic point xf in
condition (p3) in the definition of H (we assume that xf is in the interior of fk0(W u

loc(Af , f))). We
take a small neighbourhood U0 of xf such that U0 ⊂ U and, for every g close to f , g−k0(U0) ⊂ U

and the compact sets

K0(g) = U, K1(g) = g−1(U0), K2(g) = g−2(U0), . . . , Kk0−1(g) = g−k0+1(U0)

are pairwise disjoint. There is ε1 > 0 such that

d(Ki(g),Kj(g)) > ε1 for every g close to f and i 6= j. (3.2)

We now consider the following neighbourhood W of the cycle,

W = U ∪ f−1(U0) ∪ f−2(U0) ∪ · · · ∪ f−k0+1(U0).

γf

Af
Bf

U0

U

f−1(U0)

f−k0+1(U0)

Figure 3: Neighbourhood of the cycle

Next step is to unfold the cycle associated to Af and Bf , considering g close to f such that
there is a continuation xg of the heteroclinic point xf which is a transverse homoclinic point of Ag

(see Figure 2). Take a point x ∈ W u
loc(Ag) ⊂ U and a segment of its orbit x, g(x), . . . , gm(x) in W

such that gm(x) ∈ U . We split this segment of orbit as follows: there are m1(x), . . . ,mℓ(x) such
that

• x, g(x), . . . , gm1(x)(x) ∈ U ,

• gm1(x)+1(x) ∈ g−k0+1(U0), . . . , gm1(x)+k0−1(x) ∈ g−1(U0), gm1(x)+k0(x) ∈ U0 ⊂ U ,

• gj(x) ∈ U for all j ∈ [m1(x) + k0,m2(x)].

Inductively, for i = 2, . . . , ℓ,
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• gmi(x)+1(x) ∈ g−k0+1(U0), . . . , gmi(x)+k0−1(x) ∈ g−1(U0), gmi(x)+k0(x) ∈ U0 ⊂ U ,

• gj(x) ∈ U for all j ∈ [mi(x) + k0,mi+1] if i < ℓ, if i = ℓ it holds gj(x) ∈ U for all j ∈
[mℓ(x) + k0,m].

Take points x, y ∈ W u
loc(Ag, g) and m > 0 such that the segments of orbits x, g(x), . . . , gm(x)

and y, g(y), . . . , gm(y) are contained in W but not in U , and gm(x), gm(y) ∈ U . Consider the
numbers m1(x), . . . ,mℓ(x)(x) and m1(y), . . . ,mℓ(y)(y) defined as above. The choice of x and y (i.e.,
the segments of orbits are not contained in U) implies that ℓ(x), ℓ(y) ≥ 1 and m1(x) 6= m 6= m1(y).

Lemma 3.10. Consider x and y as above. Suppose that there is j such that mj(x) 6= mj(y). Then
d(gk(x), gk(y)) > ε1 for some k ∈ {0, . . . ,m}, where ε1 is as in equation (3.2).

Proof: Take a first j with mj(x) 6= mj(y) and suppose that mj(x) > mj(y). By definition,

gmj(x)+1(x) ∈ g−k0+1(U0) ⊂ Kk0−1(g).

Since mj−1(y) = mj−1(x) < mj(x) + 1 ≤ mj(y) (if j = 1 we let m0(y) = m0(x) = 0),

gmj(x)+1(y) ∈ U ⊂ K0(g).

The lemma follows from equation (3.2). �

3.3.2 The disks ∆u(xn)

We are now ready to explain the construction of the transverse homoclinic points xn and the disks
∆u(xn). The homoclinic points xn in Theorem 3.9 have their full orbit contained in the neighbour-
hood W of the cycle. One can take these points in U0 and for each xn consider its first backward
iterate x̄n in W u

loc(Ag, g), x̄n = g−kn(xn) ∈ W u
loc(Ag, g), and the numbers m1(x̄n), . . . ,mℓ(x̄n) cor-

responding to the segment of orbit of the first kn iterates of x̄n. The set δu(n) is the set of points
z ∈ W u

loc(Ag, g) such that

• gi(z) ∈ W for all i = 0, . . . , kn,

• ℓ(z) = ℓ(x̄n) and mi(x̄n) = mi(z) for all i = 1, . . . , ℓ(x̄n).

Then
∆u(xn) = gkn(δu(n)).

3.3.3 Proof of Theorem 2

For notational simplicity, we will explain the proof of Theorem 2 when Ag and Bg are fixed points
(for the general case it suffices to take a power of g). Next remark is an immediate consequence
from the hyperbolicity of Ag and Bg. Define W

s,u
loc (Cg, g), C = A,B, as the connected component

of W s,u(Cg, g) ∩ Dδ(Cg) containing Cg, here Dδ(Cg) is the ball of radius small δ centered at Cg.

Remark 3.11. Let C = A,B. There is ε0 > 0 such that:

• if y ∈ Dδ(Cg) and y 6∈ W s
loc(Cg, g) then there is n ≥ 0 such that d(gn(y),W s

loc(Cg, g)) > ε0;
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• if y ∈ Dδ(Cg) and y 6∈ W u
loc(Bg, g) then there is n ≥ 0 such that d(g−n(y),W u

loc(Cg, g)) > ε0.

Take xn as in Theorem 3.9 close to x∞ and the one-jump pseudo-orbit (zn)n defined by:

zk = gk(xn), k ≤ 0, zk = gk(x∞), k ≥ 0.

Lemma 3.12. The pseudo-orbit (zn)n can not be shadowed by a true orbit.

Proof: The proof is by contradiction, suppose that there is a true orbit (gk(y))k that ε-shadows
(zk)k for some small ε. Remark 3.11 immediately implies that (if ε is small enough)

y ∈ W s
loc(Bg, g) and g−kn(y) ∈ W u

loc(Ag, g). (3.3)

Therefore, y ∈ W s(Bg, g) ∩ W u(Ag, g).

Remark 3.13. The fact y ∈ W s(Bg, g) ∩ W u(Ag, g) implies that if g is Kupka-Smale, then the
pseudo-orbit (zn)n can not be shadowed. The genericity of the Kupka-Smale diffeomorphisms implies
a weaker version of Theorem 2: there is a residual subset of RNT of non-shadowable diffeomor-
phisms.

We are now ready to finish the proof of Lemma 3.12, which is by contradiction. Fix ε <

min{ε0, ε1} and take a homoclinic point xn at distance less than ε from x∞. Then (zk)k is an
ε-pseudo-orbit. Assume that the g-orbit of y δ-shadows zn if δ < min{ε0, ε1}. By equation (3.3)
and the definition of kn,

g−kn(y) = ȳ ∈ W u
loc(Ag, g) and g−kn(xn) = x̄n ∈ W u

loc(Ag, g).

Consider the segments of orbits of ȳ and x̄n corresponding to the first kn iterates of ȳ and x̄n and
the numbers m1(x̄n), . . . ,mℓ(x̄n)(x̄n) and m1(ȳ), . . . ,mℓ(ȳ)(ȳ) defined as above. Lemma 3.10 implies
that ℓ = ℓ(x̄) = ℓ(ȳ) and mi(x̄) = mi(ȳ) for all i = 0, . . . , ℓ (otherwise, d(f j(y), zj) > ε1 > ε

for some j). Therefore, by the definition of δu(n), ȳ ∈ δu(n). Thus gkn(ȳ) = y ∈ ∆u(xn). Since
y ∈ W s

loc(Bg, g) and ∆u(xn) ∩ W s
loc(Bg, g) = ∅, we obtain a contradiction. �

3.3.4 Proof of Theorem 3

The proof of this theorem involves the ingredients used to prove Theorem 2 plus some generic
machinery. We now explain how the proof of Theorem 2 may be modified so as to yield Theorem 3.

Let U be an open set in M and f be a generic diffeomorphism3 such that the set Λf = Λf (U) ≡
∩i∈Zf i(U) ⊂ U is transitive and non-hyperbolic. (If Λf were hyperbolic, one would of course have
the shaowing property in a sufficiently small neighborhood of Λf .)

• By Theorem B of [Ab2] there is a neighborhood V of f in Diff1(M), an arbitrarily small
neighborhood (which we still call U) of Λf in M , and a residual subset R of V such that if g ∈ R
then the set Λg(U) = ∩i∈Zgi(U) ⊂ U is transitive and non-hyperbolic4.

3When we say that f is a “generic diffeomorphism”, we mean that f simultaneously satisfies all of the generic
properties listed in the remainder of the proof. So we are doing the proof backwards: a more formal proof would
begin with “Let R be the residual subset of Diff1(M) obtained by intersecting the residual sets R1,R2, . . . ,Rs of
diffeomorphisms having respectively the following properties...”.

4Theorem B of [Ab2] actually deals with attracting sets, but the same arguments yield the result in the case of
locally maximal transitive sets
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• Now, the transitive set Λg(U) of the generic diffeomorphism g is a relative homoclinic class in
U of some periodic point Pg ∈ U . By the relative homoclinic class H(Pg, g, U) in U we mean the
set of points of the homoclinic class H(Pg, g) whose full orbits are contained in U . This result is
stated in [BD2, Proposition 2.4] for robustly transitive sets, but the arguments can be carried out
in the same way for locally maximal transitive sets of generic diffeomorphisms.

• We also have that for generic g the set Λg(U) contains two saddles Pg and Qg of consecutive
indices and having only real positive multipliers of multiplicity one. This is just a reformulation
of [BDPR, Theorem A] for the generic case (in fact, the proof is the same as in the robust case).
Theorem 2.9 formulates this result in the special case of robustly transitive diffeomorphisms.

• Now, using the Connecting Lemma (Lemma 2.2), we create a cycle associated to these saddles.
Unfolding the cycle and using Lemma 3.6, we get h ∈ V arbitrarily close to g having a saddle-node
in Λh(U) (a priori h might not belong to R).

• Exactly as in the proof of Theorem 2, we unfold the saddle-node to obtain (after an arbitrarily
small C1 perturbation) ℓ ∈ V having two saddles (with different indices) Aℓ and Bℓ bounding a
(normally hyperbolic) periodic segment γℓ such that its (finite) orbit is contained in Λℓ(U). Now,
since this configuration is robust under C1 perturbations, we can after another small perturbation
assume that ℓ ∈ R.

• We now use the transitivity of Λℓ(U) and the Connecting Lemma to get a dominated heterodi-
mensional cycle associated to Ah and Bh. We then proceed exactly as in the proof of Theorem 2.

• Once this is done, we have achieved the following: arbitrarily near the generic diffeomorphism
f we have created an open subset W of Diff1(M) such that every g ∈ W exhibits arbitrarily fine
pseudo-orbits inside U (because the pseudo-orbits occur arbitrarily near the dominated heterodi-
mensional cycle, which is contained in U) which cannot be shadowed by actual orbits. Simple
generic arguments (see for instance the proof of Theorem A in [Ab2]) now allow us to show that
given a generic diffeomorphism f with a non-hyperbolic locally maximal transitive set Λ, then f

is contained in some neighborhood W as above, that is, in a neighborhood consisting of diffeomor-
phisms g which exhibit non-shadowable pseudo-orbits arbitrarily near Λ.

This completes the sketch of the proof of Theorem 3.
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heterodimensional cycles, Astérisque, 286, 187-222, (2003).

[BDT] Ch. Bonatti, L. J. D́ıaz, and G. Turcat, Pas de Shadowing Lemma pour les dynamiques
partiellment hyperboliques, C. R. Acad. Sci. Paris Sér. I Math., 330(7), 587-592, (2000).

[BDV] Ch. Bonatti, L. J. D́ıaz, and M. Viana, Dynamics beyond uniform hyperbolicity , En-
cyclopaedia of Mathematical Sciences (Mathematical Phisics), 102, Springer Verlag,
(2004).

[BV] Ch. Bonatti and M. Viana, SRB measures for partially hyperbolic attractors: the con-
tracting case, Israel Journal of Math., 115, 157-193, (2000).

[Bo] R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics,
35, Amer. Math. Soc., Providence, R.I. (1978).
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