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Abstract. We prove that non-trivial homoclinic classes of Cr-generic flows are topo-

logically mixing. This implies that given Λ a non-trivial C1-robustly transitive set of

a vector field X, there is a C1-perturbation Y of X such that the continuation ΛY of
Λ is a topologically mixing set for Y . In particular, robustly transitive flows become

topologically mixing after C1-perturbations. These results generalize a theorem by
Bowen on the basic sets of generic Axiom A flows. We also show that the set of flows

whose non-trivial homoclinic classes are topologically mixing is not open and dense,

in general.

2000 Mathematics Subject Classification: 37C20.

Key words: generic properties of flows, homoclinic classes, topological mixing.

1. Statement of the Results

Throughout this paper M denotes a compact d-dimensional boundaryless manifold,
d ≥ 3, and Xr(M) is the space of Cr vector fields on M endowed with the usual Cr

topology, where r ≥ 1 . We shall prove that, generically (residually) in Xr(M), nontrivial
homoclinic classes are topologically mixing. As a consequence, nontrivial C1-robustly
transitive sets (and C1-robustly transitive flows in particular) become topologically mixing
after arbitrarily small C1-perturbations of the flow.

These results generalize the following theorem by Bowen [B]: non-trivial basic sets of
Cr-generic Axiom A flows are topologically mixing. Note that C1-robustly transitive sets
are a natural generalization of hyperbolic basic sets; they are the subject of several recent
papers, such as [BD1] and [BDP].

In order to announce precisely our results, let us introduce some notations and defini-
tions.

Given t ∈ R and X ∈ Xr(M), we shall denote by Xt the induced time t map. A subset
R of Xr(M) is residual if it contains the intersection of a countable number of open dense
subsets of Xr(M). Residual subsets of Xr(M) are dense. Given an open subset U of
Xr(M), then property (P) is generic in U if it holds for all flows in a residual subset R of
U ; (P) is generic if it is generic in all of Xr(M).

A compact invariant set for X is non-trivial if it is neither a periodic orbit nor a single
point. A compact invariant set Λ of X is transitive if it there is some point x ∈ Λ such
that the future orbit {Xt(x) : t > 0} of x is dense in Λ; Λ is topologically mixing for X
if given any nonempty open subsets U and V of Λ then there is some t0 > 0 such that
Xt(U) ∩ V 6= ∅ for all t ≥ t0. A non-trivial X-invariant transitive set Λ is Ω-isolated if
there is some open neighborhood U of Λ such that U ∩ Ω(X) = Λ. Furthermore, Λ is
isolated if there is a neighborhood U of Λ (called an isolating block) such that

Λ =
⋂
t∈R

Xt(U).
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Given a hyperbolic closed orbit γ of X, the homoclinic class of γ relative to X is given
by

HX(γ) = W s(γ) tWu(γ),
where t denotes points of transverse intersection of the invariant manifolds. HX(γ)
is a transitive compact X-invariant subset of the non-wandering set Ω(X). Moreover,
if γ is a closed orbit of index i, then the set Pi(HX(γ)) ≡ {p ∈ HX(γ) ∩ Per(X) :
p is hyperbolic with index i} is dense in HX(γ). (See [BDP]). HX(γ) is not necessarily
hyperbolic, but if X is Axiom A then its basic sets are hyperbolic homoclinic classes. In
the absence of ambiguity, we may write H(γ) for HX(γ).

An attractor is a transitive set Λ of X that admits a neighborhood U such that

Xt(U) ⊂ U for all t > 0, and
⋂
t∈R

Xt(U) = Λ.

A repeller is an attractor for −X. Clearly any attractor or repeller is Ω-isolated.
An isolated X-invariant compact set Λ is C1-robustly transitive if there is some open

neighborhood V of X in X1(M) and some isolating block U of Λ such that given any
Y ∈ V, then

ΛY ≡
⋂
t∈R

Yt(U)

is a compact transitive non-trivial set of Y .
Finally, a flow X is C1-robustly transitive if there is some open neighborhood W of X

in X1(M) such that given any Y ∈ W then Y is transitive.

Our main result is the following:

Theorem A. There is a residual subset R of X1(M) such that if Λ is an isolated non-
trivial transitive set of X ∈ R, then Λ is topologically mixing for X.

Theorem A has the following immediate consequence for robustly transitive sets or
flows:

Corollary A’. Let Λ be a non-trivial robustly transitive set, with V and U as in the
definition above. Then there is some residual subset R of V such that if Y ∈ R then ΛY
is topologically mixing for Y . In particular, given an open set W ⊂ X1(M) of transitive
flows, then there is some residual subset R of W such that any Y ∈ R is topologically
mixing.

Theorem A is very much a nonhyperbolic, C1 version of Bowen’s aforementioned result.
It is actually a consequence of the proof of the following result:

Theorem B. Given any r ∈ N, there is a residual subset R of Xr(M) such that if Y ∈ R
and H(γ) is a non-trivial homoclinic class of Y , then H(γ) is topologically mixing for Y .

Theorem B follows from general properties of homoclinic classes combined with simple
topological arguments. All of the arguments in the proof of Theorem B hold in any Cr

topology with r ≥ 1, whereas Theorem A requires the use of C1-generic properties which
are not known in finer topologies.

Pugh’s General Density Theorem [Pu] and Theorem B of [BD2] (which is stated for
diffeomorphisms but holds for flows via the same arguments) imply that C1-generically
any Ω-isolated transitive set coincides with some homoclinic class. Therefore Theorem B
implies the following corollary:

Corollary B’. There is a residual subset R of X1(M) such that if Y ∈ R and Λ is a non-
trivial transitive Ω-isolated set of Y , then Λ is topologically mixing for Y . In particular,
C1-generically any non-trivial attractor/repeller is topologically mixing.
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Note that Corollary B’ generalizes the “mixing” aspect of [MP]. We remark that
the dependence of our proofs on the (C1) Closing and Connecting Lemmas means that
extending our results (with the exception of Theorem B) to finer topologies is probably
very difficult.

Of course, in general not every non-trivial homoclinic class is topologically mixing: the
basic sets of suspensions of Axiom A diffeomorphisms, for example, are not mixing. One
may therefore ask how large is the set of the flows that have a non-trivial homoclinic class
which is not mixing. A partial answer to this question is given by:

Theorem C. There exists a 4-manifold M and an open set U ⊂ X1(M) such that each
flow X in a dense subset D ⊂ U has a non-trivial homoclinic class which is not topologi-
cally mixing for X.

Theorem C shows that the residual set R of Theorem B is, in general, not open. The
construction in Theorem C relies on the wild diffeomorphisms from [BD2] and [BD3].

On the other hand, robustly transitive flows have relatively tame dynamics. We pose
the following:

Question. Is the set of (C1-)robustly topologically mixing flows dense in the set of ro-
bustly transitive flows?

In [AA] the first two authors prove analogues of Theorems A, B, and C for diffeomor-
phisms. In addition, a robustly transitive but non-mixing diffeomorphism is constructed.

The next section first lists some definitions and properties needed for the proofs and
then sets out the proofs themselves.

2. The Proofs

Given a hyperbolic periodic point p, let γ = γ(p) be its orbit and ΠX(p) = ΠX(γ) be
its period. Set also

W s(p) = {x ∈M : d(Xt(x), γ(p))→ 0 as t→ +∞},
W ss(p) = {x ∈M : d(Xt(x), Xt(p))→ 0 as t→ +∞}.

We define Wu(p) and Wuu(p) as the corresponding sets for −X. Note that the set W s(p)
is Xt-invariant for all t ∈ R, whereas W ss(p) is Xt-invariant only for t ∈ ΠX(p) · Z. The
index of γ is the dimension of the stable manifold W s(γ) = W s(p).

Lemma 1. Given any r ∈ N, there exists a residual subset R1 of Xr(M) such that if
X ∈ R1 then given any distinct closed orbits γ, γ′, we have that

ΠX(γ)
ΠX(γ′)

∈ R \Q.

Proof. For N ∈ N, let AN ⊂ Xr(M) be the set of vector fields X such that all singularities
of X are hyperbolic and all closed orbits with periods less than N are hyperbolic. It follows
from the standard proof of the Kupka–Smale theorem that the set AN is open and dense
in Xr(M).

Now let a1, a2, . . . be an enumeration of the positive rational numbers and let BN ⊂
Xr(M) be the set of vector fields X ∈ AN such that if γ, γ′ are distinct closed orbits with
periods less than N then ΠX(γ)/ΠX(γ′) does not belong to {a1, . . . , aN}.

If X ∈ AN then the number of orbits with periods less that N is finite. Moreover, each
of these orbits has a continuation and the period varies continuously. It follows that the
set BN is open.

Let us show that BN is also dense, so we can define R1 = ∩NBN . Given any X0 ∈
X1(M), first approximate it by X1 ∈ AN . Let γ1, . . . , γk be the X1-orbits with periods
less than N . Let δ > 0 be small enough such that the neighborhoods B(γi, δ) are disjoint.
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Take Cr functions ψi : M → [0, 1] such that ψi equals 1 in γi and equals 0 outside B(γi, δ).
For s ∈ Rk+ close to 0, let

Ys =

(
k∏
i=1

(1 + siψi)−1

)
X1

Then Ys has the same orbits as X1 and Ys converges to X1 in the Cr topology as s→ 0.
Moreover,

ΠYs(γi) = (1 + si)ΠX1(γi),
so we can find s ∈ Rk+ close to 0 such that Ys ∈ AN and the quotients ΠYs(γi)/ΠYs(γj),
i 6= j, do not intersect {a1, . . . , aN}. If γ is another closed orbit of Ys, then ΠYs(γ) ≥
ΠX1(γ) ≥ N . This proves that Ys ∈ BN .

We shall use the following simple fact, whose proof is omitted (it follows easily from
the transitivity of the future orbits of irrational rotations of the circle):

Lemma 2. Given numbers a > 0, b > 0 and ε > 0, with a/b irrational, the set{
ma+ nb+ s : m,n ∈ N, |s| < ε

}
contains an interval of the form [T,+∞).

We may now prove Theorem B:

Proof of Theorem B. Let R1 ⊂ Xr(M) be the residual set given by Lemma 1, and let
H = HX(γ0) be a non-trivial homoclinic class of some f ∈ R1. Take two nonempty open
sets U , V intersecting H. We shall prove that there exists t0 > 0 such that Xt(U)∩V 6= ∅

for every t ≥ t0.
Let γ and γ′ be distinct periodic orbits in H with same index, such that γ ∩ U 6= ∅

and γ′ ∩ V 6= ∅. In order to simplify the notation, let a = ΠX(γ) and b = ΠX(γ′). Recall
that a/b ∈ R \Q.

Take p ∈ γ∩U and q ∈ γ′∩V . Notice that Wu(p)∩W s(q) is non-empty. Fix a point y
in this intersection. There exists τ1 > 0 such that X−τ1(y) ∈ Wuu(p) and, consequently,
the sequence {X(−τ1−ma)(y)}m∈N is contained in Wuu(p) and converges to p. Therefore
we can find t1 > 0 such that

X(−t1−ma)(y) ∈ U for every m ∈ N.

Analogously, there exist t2 > 0 and ε > 0 such that

X(t2+nb+s)(y) ∈ V for every m ∈ N and |s| < ε.

Let T > 0, depending on a, b and ε, be given by Lemma 2. Set t0 = t1 + t2 +T . Then, for
any t ≥ t0, there exist numbers m, n ∈ N and |s| < ε such that t = t1 + t2 +ma+ nb+ s.
So Xt(U) ∩ V contains the point X(t2+nb+s)(y). This concludes the proof.

Now we explain how Theorem A follows from Theorem B. We first need a couple of
definitions:

Definition 1. Let Λ be a compact invariant set of X ∈ X1(M). Then we set Pi(Λ) ≡
{p ∈ Λ : p is a hyperbolic periodic point of X with index i}.

The next definition comes from [BDP]:

Definition 2. Let p be a periodic point of a flow X ∈ X1(M) and U be a neighborhood
of p in M . Then the homoclinic class of p relative to U is given by

HRX(p, U) ≡ cl {q ∈ HX(p) ∩ Per(X) : the orbit γ(q) is contained in U}.
It is easily seen that HRX(p, U) is a compact transitive invariant set. Moreover, if ind(p) =
i, then Pi(HRX(p, U)) is dense in HRX(p, U).
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We need the following lemma, which is a consequence of a theorem by Arnaud [Ar]
together with an argument from [BDP]:

Lemma 3. There is a residual subset R of X1(M) such that if Λ is an isolated transitive
set of X ∈ R, then Λ = HRX(p, U) for some periodic point p ∈ Λ.

Proof. Let R2 be as in Theorem 1 of [Ar] and let R3 be as in Theorem B of [BD2], and
set R ≡ R2 ∩R3. Let Λ be an isolated transitive set of X ∈ R, with U an isolating block
of Λ .

By Theorem 1 of [Ar], there is a sequence of periodic orbits γk which converge to Λ in
the Hausdorff topology. The orbit γk is contained in U for k sufficiently large. Since Λ
is the maximal invariant set of U , it follows that for large k the orbit γk is contained in
Λ. Since the sequence {γk} converges to Λ in the Hausdorff topology, the set of periodic
points contained in Λ must be a dense subset of Λ.

Now, since Λ is transitive and has a dense subset of periodic points, we apply an
argument from [BDP] which uses Theorem B of [BD2] to conclude that given any periodic
point p ∈ Λ then

Λ = HRX(p, U).

We are now ready to prove Theorem A:

Proof of Theorem A. It is easy to see that the proof of Theorem B actually implies the
following result:

Theorem D. There is a residual subset R of X1(M) such that if Y ∈ R and Λ is a
non-trivial transitive set of Y such that for some i ∈ {1, . . . , d− 1} the set Pi(Λ) is dense
in Λ, then Λ is topologically mixing for Y .

Now by Lemma 3 above we have that Λ coincides with some relative homoclinic class
HRX(p, U). Let i be the index of the periodic point p. Since Pi(HRX(p, U)) is dense
in HRX(p, U), we conclude that Λ satisfies the hypotheses of Theorem D above, and
therefore that Λ is a mixing set for X.

At last, we give the:

Proof of Theorem C. Let S be a compact 3-manifold and let Diff1(S) be the set of C1

diffeomorphisms of S endowed with the C1-topology. The key of the construction is the
following result of Bonatti and Dı́az ([BD3, Theorem 3.2]): There exist an open set
U0 ⊂ Diff1(S) and a dense subset D0 ⊂ U0 such that for every f ∈ D0 there are an open
set B ⊂ S and an integer n ∈ N such that every x ∈ B is a periodic point of f of (prime)
period n.

Let f0 : S → S be a diffeomorphism from the set D0 above. Let Xt
0 : M → M be the

suspension flow. As usual, M is the 4-manifold obtained from S × [0, 1] by gluing points
(x, 1) and (f0(x), 0). We will identify S with the submanifold {(x, 0) ∈M ; x ∈ S} of M .

Let U ⊂ X1(M) be a small neighborhood of X0 such that every vector field X ∈ U
is transverse to S and, moreover, the first-return map fX ∈ Diff1(S) belongs to U0. For
X ∈ U , we let τX : S → R+ be the return-time map, which is a C1-smooth function
depending continuously (in the C1 topology) on X ∈ U .

We will omit the proof of the following:

Lemma 4. For every X ∈ U and every neighborhood V 3 X, if f̃ is a small perturbation
of fX and τ̃ is a small perturbation of τX then there is X̃ ∈ V such that fX̃ = f̃ and
τX̃ = τ̃ .
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Now let X1 ∈ U . We shall prove that there exists X4 arbitrarily close to X1 which has
a non-trivial homoclinic class which is not topologically mixing.

Let f1 = fX1 , and τ1 = τX1 . Take f2 ∈ D0 close to f1. Since f2 ∈ D0, there is a
ball B ⊂ S of points that are f2-periodic, of period n. Let τn1 : S → R+ be defined by
τn1 =

∑n−1
j=0 τ1 ◦ f

j
1 .

Using a chart, we identify B with a ball B(0, r) ⊂ R3, in such a way that the kernel of
the differential Dτn1 (0) contains the plane xy.

Let f3 ∈ Diff1(S) be a perturbation of f2 such that:
• f3 equals f2 outside ∪n−1

j=0 f
j
2 (B);

• there exists a ball B1 = B(0, r1), with 0 < r1 < r, such that fn3 (B1) = B1;
• fn3 restricted to B1 is a orthogonal rotation (indicated by R) of angle 2π/m, where
m ∈ N, along the axis y.

It is easy to construct a map τ3 : S → R C1 close to τ1, such that τn3 =
∑n−1
j=0 τ3 ◦ f

j
3

is an affine map in a smaller ball B2 around 0 and such that Dτn3 (0) = Dτn1 (0). That is,
if x ∈ B2 then τn3 (x) = τn3 (0) +Dτn3 (0) · x.

Using Lemma 4, we find a flow X3 close to X1 and such that fX3 = f3 and τX3 = τ3.
Let x ∈ B2\{0}. Its successive returns to B1 under the flow X3 are R(x), . . . ,Rm−1(x),

Rm(x) = x. In particular, x is a periodic point. Summing the respective return times we
get that the period of x is

∑m−1
j=0 τn3 (Rj(x)) = mτn3 (0), since

∑m−1
j=0 Rj(x) belongs to the

y axis. That is, all points in B2 \ {0} are periodic under X3 of (prime) period mτn3 (0).
Let B3 ⊂ B2 be a ball (not centered in 0) such that clB3, clR(B3), . . . , clRm−1(B3)

are pairwise disjoint.
Choose now some f4 : S → S which is C1 close to f3 and such that:
• f4 equals f3 outside B3;
• fnm4 restricted to B3 has a non-trivial homoclinic class (say, a solenoid attractor).
Let also τ4 : S → R+ be given by τ4 = τ3 ◦ f−1

3 ◦ f4. Then τ4 is C1 close to τ3. Using
Lemma 4 again, we obtain X4 C

1 close to X3 such that fX4 = f4 and τX4 = τ4. The
return time of a point x ∈ B3 to B3 under X4 is τnm4 (x) = τnm3 (f−1

3 ◦ f4(x)), which
independs of x (where, as usual, we let τnm4 =

∑nm−1
j=0 τ4 ◦ f j4 and τnm3 =

∑nm−1
j=0 τ3 ◦ f j3 ).

Therefore Xt
4 has a non-trivial homoclinic class which is not topologically mixing.
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