
FURSTENBERG’S THEOREM ON PRODUCTS OF I.I.D. 2 × 2 MATRICES

These notes follow [BL].
We deal with Lyapunov exponents of products of random i.i.d. matrices. For

simplicity we shall consider only the 2× 2 case. It is no real restriction to assume
that matrices are in SL(2,R) (i.e., have determinant ±1).

Let µ be a probability measure in SL(2,R) which satisfies the integrability
condition1 ∫

SL(2,R)
log ‖M‖ dµ(M) < ∞.

If Y1, Y2, . . . are random independent matrices with distribution µ, then the
limit

γ = lim
n→∞

1
n

log ‖Yn · · ·Y1‖

(the upper Lyapunov exponent) exists a.s. and is constant, by the subadditive
ergodic theorem. We have γ ≥ 0.

The Furstenberg theorem says that γ > 0 for “most” choices of µ. Let us see
some examples where γ = 0:

(1) If µ is supported in the group of rotations SO(2,R) then γ = 0.
(2) If µ is supported in the abelian subgroup{(

t 0
0 t−1

)
; t ∈ R \ {0}

}
then γ =

∣∣∣∫ log |t| dµ(M)
∣∣∣, which may be zero.

(3) Assume that only two matrices occur:(
2 0
0 1/2

)
and Rπ/2 =

(
0 1
−1 0

)
.

Then it is a simple exercise to show that γ = 0.
Furstenberg’s theorem says that the list above essentially covers all possibilities

where the exponent vanishes:

Theorem. Let µ be as above, and let Gµ be the smallest closed subgroup which contains
the support of µ. Assume that:

(i) Gµ is not compact.
(ii) There is no finite set ∅ , L ⊂ P1 such that M(L) = L for all M ∈ Gµ.

Then γ > 0.

Remark. Under the assumption (i), condition (ii) is equivalent to
(ii’) There is no set L ⊂ P1 with #L = 1 or 2 and such that M(L) = L for all

M ∈ Gµ.

1Note that ‖M‖ = ‖M−1
‖ ≥ 1 if M ∈ SL(2,R).
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2 FURSTENBERG’S THEOREM

(This follows from the fact that if M ∈ SL(2,R) fixes three different directions then
M = I.)

N-   P1

Let M(P1) be the space of probability Borel measures in P1. A measure ν ∈
M(P1) is called non-atomic if ν({x}) = 0 for all x ∈ P1.

We collect some simple facts for later use.
If A ∈ GL(2,R) then we also denote by A the induced map A : P1

→ P1. If A in
not invertible but A , 0 then there is only one direction x ∈ P1 for which Ax is not
defined. In this case, it makes sense to consider the push-forward Aν ∈ M(P1), if
ν ∈ M(P1) is non-atomic.

Lemma 1. If ν ∈ M(P1) is non-atomic and An is a sequence of non-zero matrices
converging to A , 0, then Anν→ Aν (weakly).

The proof is easy.

Lemma 2. If ν ∈ M(P1) is non-atomic then

Hν = {M ∈ SL(2,R); Mν = ν}

is a compact subgroup of SL(2,R).

Proof. Assume that there exists a sequence Mn in Hν with ‖Mn‖ → ∞. Up to
taking a subsequence, we may assume that the sequence (of norm 1 matrices)
‖Mn‖

−1Mn converges to a matrix C. Since C , 0, lemma 1 gives Cν = ν. On the
other hand,

det C = lim
1

‖Mn‖2
= 0.

Thus C has rank one and ν = Cνmust be a Dirac measure, contradiction. �

µ-   P1

If ν ∈ M(P1), let the convolution µ ∗ ν ∈ M(P1) is the push-forward of the
measure µ × ν by the natural map ev: SL(2,R) × P1

→ P1. If µ ∗ ν = ν then ν
is called µ-invariant. By a Krylov-Bogolioubov argument, µ-invariant measures
always exist.

Lemma 3. If µ satisfies the assumptions of Furstenberg’s theorem then every µ-invariant
ν ∈ M(P1) is non-atomic.

Proof. Assume that
β = max

x∈X
µ({x}) > 0.

Let L = {x; µ({x}) = β}. If x0 ∈ L then

β = ν({x0}) = (µ ∗ ν)({x0}) =
"
χ{x0}(Mx) dµ(M) dν(x)

=

∫
ν({M−1(x0)}) dµ(M).
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But ν({M−1(x0)}) ≤ β for all M, so ν({M−1(x0)}) ≤ β for µ-a.e. M. We have proved
that M−1(L) ⊂ L for µ-a.e. M. This contradicts assumption (ii). �

From now on we assume that µ satisfies the assumptions of Furstenberg’s
theorem, and that ν is a (non-atomic) µ-invariant measure in P1.

ν  γ

The shift σ : SL(2,R)N ←↩ in the space of sequences ω = (Y1,Y2, . . .) has the
ergodic invariant measure µN.

The skew-product map T : SL(2,R)N × P1
←↩, T(ω, x) = (σ(ω),Y1(ω)x) leaves

invariant the measure µ × ν . Consider f : SL(2,R)N × P1
→ R given by

f (ω, x) = log
‖Y1(ω)x‖
‖x‖

.

(The notation is obvious). Then

1
n

n∑
j=0

f (T j(ω, x)) =
1
n

log
‖Yn(ω) · · ·Y1(ω)x‖

‖x‖
.

by Oseledets’ theorem, for a.e. ω and for all x ∈ P1
\ {E−(x)}, 2 the quantity on

the right hand side tends to γ as n→∞. In particular, this convergence holds for
µN × ν-a.e. (ω, x). We conclude that

(1) γ =

"
f dµN dν =

"
log
‖Mx‖
‖x‖

dµ(M) dν(x).

C  - 

Let Sn(ω) = Y1(ω) · · ·Yn(ω).

Lemma 4. For µN-a.e. ω, there exists νω ∈ M(P1) such that

Sn(ω)ν→ νω.

Proof. Fix f ∈ C(P1). Associate to f the function F : SL(2,R)→ R given by

F(M) =
∫

f (Mx) dν(x).

Let Fn be the σ-algebra of SL(2,R)N formed by the cylinders of length n; then
Sn(·) is Fn-measurable. Also

E(F(Sn+1) | Fn) =
∫

F(SnM) dµ(M)

=

"
f (SnMx) dµ(M) dν(x)

=

∫
f (Sny) dν(y) = Sn (since µ ∗ ν = µ).

2E−(x) is the direction associated to the exponent −γ, if γ > 0.
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This shows that the sequence of functionsω 7→ F(Sn(ω)) is a martingale. Therefore
the limit

Γ f (ω) = lim
n→∞

F(Sn(ω))

exists for a.e. ω.
Now let fk; k ∈N be a countable dense subset of C(P1). Take ω in the full-

measure set where Γ fk(ω) exists for all k. Let νω be a (weak) limit point of the
sequence of measures Sn(ω)ν. Then∫

fk dνω = lim
n→∞

∫
fk d(Snν) = lim

n→∞

∫
f ◦ Sn ddν = Γ fk(ω).

Since the limit is the same for all subsequences, we have in fact that Sn(ω)ν →
νω. �

Let’s explore the construction of the measures to obtain more information
about them:

Lemma 5. The measures νω from lemma 4 satisfy

Sn(ω)Mν→ νω for µ-a.e. M.

Proof. The proof is tricky. We have to show that, for any fixed f ∈ C(P1), that3

(2) limE(F(SnM)) = Γ f = limE(F(Sn)) for µ-a.e. M ∈ SL(2,R).

We are going to show that

(3) lim
n→∞
E

(
(F(Sn+1) − F(Sn))2

)
= 0.

This is sufficient, because

E
(
(F(Sn+1) − F(Sn))2

)
= E

(" ( f (SnMx) − f (Snx)) dν(x) dµ(M)
)2 .

So (3) gives that, for a.e. ω,

lim
n→∞

∫
(F(SnM) − F(Sn)) dµ(M) = lim

n→∞

"
( f (SnMx) − f (Snx)) dν(x) dµ(M) = 0.

This implies (2).
We have

E
(
(F(Sn+1) − F(Sn))2

)
= E(F(Sn+1)2) + E(F(Sn)2) − 2E(F(Sn+1)F(Sn)).

But

E(F(Sn+1)F(Sn)) = E
(∫

f ◦ Sn+1 dν ·
∫

f ◦ Sn dν
)
=

E

("
f (SnMx) dν(x) dµ(M) ·

∫
f ◦ Sn dν

)
=

E

(∫ f ◦ Sn dν
)2 = E(F(Sn)2).

3E is integration on ω.
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So
E

(
(F(Sn+1) − F(Sn))2

)
= E(F(Sn+1)2) − E(F(Sn)2).

Hence, by cancellation, for any p,
p∑

n=1

E
(
(F(Sn+1) − F(Sn))2

)
= E(F(Sp+1)2) − E(F(S1)2) ≤ ‖ f ‖2∞.

Therefore
∑p

n=1E
(
(F(Sn+1) − F(Sn))2

)
< ∞ and (3) follows. �

T    D

Lemma 6. For µN-a.e. ω, there exists Z(ω) ∈ P1 such that νω = δZ(ω).

Proof. Fix ω. We have, for µ-a.e. M,

lim Snν = lim SnMν.

Let B be a limit point of the sequence of norm 1 matrices ‖Sn‖
−1Sn. Since ‖B‖ = 1,

we can apply lemma 1:
Bν = BMν.

If B were invertible, this would imply ν = Mν. That is, a.e. M belongs to the
compact group Hν (see lemma 2) and therefore Gν ⊂ Hν, contradicting hypothe-
sis (i). So B is non-invertible. Since Bν = νω, we conclude that νω is Dirac. �

C  D   

Lemma 7. Let m ∈ M(P1) be non-atomic and let let (An) be a sequence in SL(2,R) such
that Anm→ δz, where z ∈ P1. Then

‖An‖ → ∞.

Moreover, for all v ∈ R2,
‖A∗n(v)‖
‖An‖

→ |〈v, z〉|.

Proof. We may assume that the sequence An/‖An‖ converges to some B. Since
‖B‖ = 1, we can apply lemma 1 to conclude that Bm = δz. If B were invertible
then we would have that m = δB−1z would be atomic. Therefore det B = 0 and

1
‖An‖2

=

∣∣∣∣∣det
An

‖An‖

∣∣∣∣∣→ |det B| = 0.

So ‖An‖ → ∞.
Notice that the range of B must be the z direction.
Let vn, un be unit vectors such that Anvn = ‖An‖un. Then

un =
An(vn)
‖An‖

.

Since An/‖An‖ → B and ‖B‖ = 1, we must have un → z (up to changing signs).
Moreover, un is the direction which is most expanded by A∗n. The assertion
follows. (For a more elegant proof, see [BL, p. 25].) �
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C ∞     

We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let T : (X,m) ←↩ be a measure preserving transformation of a probability
space (X,m). If f ∈ L1(m) is such that

n−1∑
j=0

f (T jx) = +∞ for m-almost every x,

then
∫

f dµ > 0.

Proof. 4 Let ·̃ denote limit of Birkhoff averages. Then f̃ ≥ 0. Assume, by contra-
diction, that

∫
f = 0. Then f̃ = 0 a.e.

Let sn =
∑n−1

j=0 f ◦ T j. For ε > 0, let

Aε = {x ∈ X; sn(x) ≥ ε ∀n ≥ 1} and Bε =
⋃
k≥0

T−k(Aε).

Fix ε > 0 and let x ∈ Bε. Let k = k(x) ≥ 0 be the least integer such that Tkx ∈ Aε.
We compare the Birkhoff sums of f and χAε :

n−1∑
j=0

f (T jx) ≥
k−1∑
j=0

f (T jx) +
n−1∑
j=k

εχAε(T
jx) ∀n ≥ 1.

Dividing by n and making n→∞we get

0 = f̃ (x) ≥ εχ̃Aε(x)

Therefore

µ(Aε) =
∫
χ̃Aε =

∫
Bε
χ̃Aε = 0.

Thus µ(Bε) = 0 for every ε > 0 as well.
On the other hand, if sn(x) → ∞ then x ∈

⋃
ε>0 Bε. We have obtained a

contradiction. �

End of the proof of the theorem. Replace everywhere Yi by Y∗i . Note that µ∗ also
satisfies the hypothesis of the theorem if µ does.5

Let T and f be as in page 3. By lemmas 6 and 7 we have
n∑

j=0

f (T j(ω, x)) = log
‖S∗n(ω)x‖
‖x‖

→ ∞

for a.e. ω and all x ∈ P1
\ {Z(ω)⊥}. In particular, convergence holds µN × ν-a.e. By

lemma 8, this implies
∫

f > 0. Then, by (1), γ > 0. �

4This proof is a bit simpler than that in [BL].
5Because A(v) = w⇒ A∗(w⊥) = v⊥.
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