FURSTENBERG’S THEOREM ON PRODUCTS OF LID. 2 x 2 MATRICES

These notes follow [BL].

We deal with Lyapunov exponents of products of random i.i.d. matrices. For
simplicity we shall consider only the 2 X 2 case. It is no real restriction to assume
that matrices are in SL(2, R) (i.e., have determinant +1).

Let u be a probability measure in SL(2, R) which satisfies the integrability
condition'

f log M| du(M) < oo.
SL(2,R)

If Y1, Yy, ...are random independent matrices with distribution y, then the
limit .
y = lim —logl[Yy--- Y1l
(the upper Lyapunov exponent) exists a.s. and is constant, by the subadditive
ergodic theorem. We have y > 0.

The Furstenberg theorem says that y > 0 for “most” choices of u. Let us see
some examples where y = 0:

(1) If u is supported in the group of rotations SO(2, R) then y = 0.
(2) If u is supported in the abelian subgroup

{(f) ﬂl); FER)\ {0}}

theny = |f10g |t| d(M)|, which may be zero.
(3) Assume that only two matrices occur:

2 0 0 1
(0 1/2) and Rn/zz(_l O)'

Then it is a simple exercise to show that y = 0.

Furstenberg’s theorem says that the list above essentially covers all possibilities
where the exponent vanishes:

Theorem. Let u be as above, and let G, be the smallest closed subgroup which contains
the support of . Assume that:

(i) Gy is not compact.
(ii) There is no finite set @ # L C P such that M(L) = L for all M € Gy.
Then y > 0.

Remark. Under the assumption (i), condition (ii) is equivalent to

(ii’) There is no set L C P! with #L = 1 or 2 and such that M(L) = L for all
M e G,.

INote that [M]| = [M~!|| > 1if M € SL(2, R).
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(This follows from the fact that if M € SL(2, R) fixes three different directions then
M=1)

NON-ATOMIC MEASURES IN P!

Let M(IP!) be the space of probability Borel measures in P!. A measure v €
M(IP) is called non-atomic if v({x}) = 0 for all x € P!,

We collect some simple facts for later use.

If A € GL(2, R) then we also denote by A the induced map A: P! — PL. If A in
not invertible but A # 0 then there is only one direction x € P! for which Ax is not
defined. In this case, it makes sense to consider the push-forward Av € M(IP!), if
v € M(P!) is non-atomic.

Lemma 1. If v € M(P') is non-atomic and A, is a sequence of non-zero matrices
converging to A # 0, then A,v — Av (weakly).

The proof is easy.

Lemma 2. Ifv € M(IP') is non-atomic then
H, ={M e SL(2,R); Mv =v}
is a compact subgroup of SL(2, R).
Proof. Assume that there exists a sequence M, in H, with |[M,|| — . Up to
taking a subsequence, we may assume that the sequence (of norm 1 matrices)

(IM, |71 M,, converges to a matrix C. Since C # 0, lemma 1 gives Cv = v. On the
other hand,

1
detC = 1lim =
(IM,,]I?

Thus C has rank one and v = Cv must be a Dirac measure, contradiction. m|

H-INVARIANT MEASURES IN IPl

If v € M(IPY), let the convolution u*v € M(P!) is the push-forward of the
measure y X v by the natural map ev: SL(2, R) x P! — P If y*v = v then v
is called p-invariant. By a Krylov-Bogolioubov argument, u-invariant measures
always exist.

Lemma 3. If u satisfies the assumptions of Furstenberg’s theorem then every p-invariant
v € M(IPY) is non-atomic.

Proof. Assume that
B = max u({x}) > 0.
xeX

Let L = {x; u({x}) = p}. If xg € L then
B = v({x0)) = (u* v) (o)) = f f Xy (V) dia(M) v ()
- f V(M () du(M).
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But v({M~(xo)}) < B for all M, so v({M~1(xo)}) < B for u-a.e. M. We have proved
that M~(L) c L for p-a.e. M. This contradicts assumption (ii). m|

From now on we assume that u satisfies the assumptions of Furstenberg’s
theorem, and that v is a (non-atomic) u-invariant measure in P,

V AND )Y

The shift o: SL(2, R)N « in the space of sequences w = (Y1,Y>,...) has the
ergodic invariant measure yN.

The skew-product map T: SL(2, R)N x P! <, T(w,x) = (0(w), Y1(w)x) leaves
invariant the measure p X v . Consider f: SL(2, R)N x P! — R given by
Y
fiw,2) = tog THH.

(The notation is obvious). Then

1Yn(w) - - - Ye(w)x]|
]l

LY AT, ) = - log
=0

by Oseledets’ theorem, for a.e. @ and for all x € P! \ {E~(x)}, 2 the quantity on
the right hand side tends to y as n — oco. In particular, this convergence holds for
yN X v-a.e. (w, x). We conclude that

(1) y = fffdyN dv = fflog ”ﬂﬁﬁ” du(M) dv(x).

CONVERGENCE OF PUSH-FORWARD MEASURES

Let S;(w) = Yi(w) - - - Yy (w).

Lemma 4. For uN-a.e. w, there exists v,, € M(IP') such that
Sp(w)v = vg.

Proof. Fix f € C(P'). Associate to f the function F: SL(2, R) — R given by

F(M) = f F(Mx) dv(x).

Let 7, be the o-algebra of SL(2, R)N formed by the cylinders of length 1; then
Su(+) is F,-measurable. Also

E(E(Sy1) 1 72) = [ FS:M)du)
- [[ s auen vy
= ff(Sny) av(y) = Sy (since u*v =p).

2E~(x) is the direction associated to the exponent —y, if y > 0.
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This shows that the sequence of functions w = F(S,(w)) is a martingale. Therefore
the limit
[f(@) = lim F(S,(w)
exists for a.e. w.
Now let f;; k € N be a countable dense subset of C(IP!). Take w in the full-
measure set where I fi(w) exists for all k. Let v, be a (weak) limit point of the
sequence of measures S,(w)v. Then

f fedvy = lim f fed(S,v) = lim f f o Syddv =T fi(w)

Since the limit is the same for all subsequences, we have in fact that S, (w)v —
Ve ]

Let’s explore the construction of the measures to obtain more information
about them:

Lemma 5. The measures v, from lemma 4 satisfy
Sp(@)Mv — v,  for u-a.e. M.
Proof. The proof is tricky. We have to show that, for any fixed f € C(P!), that’

(2) lim E(F(S,M)) =T'f = im E(F(S,)) for u-a.e. M € SL(2, R).
We are going to show that
3 lim E ((F(Sus1) = F(S))?) =

This is sufficient, because

E ((F(Sus1) ~ F(S)) = (( f (F(Subx) - f<snx>>dv<x>du<M>))
So (3) gives that, for a.e. w,

tim, [ (8. - FS,) ) = fim, [ [[(7(5,3) = 1(5,00) dvto) dca) =

This implies (2).
We have

E((F(Su+1) = F(S1)?) = E(F(Sy1)?) + E(F(Su)?) = 2E(F(Sus1)F(Su).
But

E(F(Sn+1)F(Sy)) = (ffosn+1 av - ffOS dv)

]E(ff F(SuMx) dv(x) dp(M) - f foS, dv):
[( f foS, dv)) E(F(S,)%).

3Eis integration on w.



FURSTENBERG’S THEOREM 5

So
E ((F(Sus1) = F(Su))?) = E(F(Sus1)?) — E(F(Sn)?)-
Hence, by cancellation, for any p,

4
Y E((F(Su1) - FS)) = E(F(Sp:1)?) - E(F(S1)?) < IfI2
n=1

Therefore Zzzl E ((F(Sn+1) - F(Sn))z) < oo and (3) follows. O

THE LIMIT MEASURES ARE DIRAC
Lemma 6. For y]N-a.e. w, there exists Z(w) € P such that v,, = 07(w)-
Proof. Fix w. We have, for u-a.e. M,
lim S,v = lim S, Mv.

Let B be a limit point of the sequence of norm 1 matrices ||S,||™'S,. Since ||B|| = 1,
we can apply lemma 1:
Bv = BMv.

If B were invertible, this would imply v = Mv. That is, a.e. M belongs to the
compact group H, (see lemma 2) and therefore G, C H,, contradicting hypothe-
sis (i). So B is non-invertible. Since Bv = v,, we conclude that v, is Dirac. m]

CONVERGENCE TO DIRAC IMPLIES NORM GROWTH

Lemma 7. Let m € M(IP') be non-atomic and let let (A,,) be a sequence in SL(2, R) such
that A,m — 0, where z € PL. Then

|Au|l — oo.
Moreover, for all v € R?,
IA )l
— [, 2)l.
(1Al

Proof. We may assume that the sequence A, /||A,|| converges to some B. Since
IIBIl = 1, we can apply lemma 1 to conclude that Bm = §,. If B were invertible
then we would have that m = 03-1, would be atomic. Therefore det B = 0 and

1

1AII?

n

1A

= ‘det

— |detB| = 0.

So [|Aull — oo.

Notice that the range of B must be the z direction.

Let v, u;,, be unit vectors such that A, v, = ||A,||lu,. Then

Uy = A"(v").
[

Since A, /||Axll — B and ||B|| = 1, we must have u, — z (up to changing signs).
Moreover, u, is the direction which is most expanded by A;. The assertion
follows. (For a more elegant proof, see [BL, p. 25].) m|
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CONVERGENCE TO 00 CANNOT BE SLOWER THAN EXPONENTIAL
We shall use the following abstract lemma from ergodic theory:

Lemma 8. Let T: (X,m) <= be a measure preserving transformation of a probability
space (X, m). If f € LY(m) is such that

n—

>_\

f(T/x) = +o0  for m-almost every x,

I
S

then ffdy > 0.

Proof. * Let * denote limit of Birkhoff averages. Then f > 0. Assume, by contra-
diction, that ff =0. Then f =0 a.e.
Lets, = Z']Colf oTi. For e > 0, let

Ac={xe€X; sp(x)>e¥n>1} and BS=UT"‘
k>0

Fix ¢ > 0 and let x € B,. Let k = k(x) > 0 be the least integer such that TFx € A,.
We compare the Birkhoff sums of f and x4,:

n—1 k-1 n—1
F(Tlx) > Z F(Tix) + Z exa(Tx) ¥n>1.
j=0 j=0 j=k

Dividing by n and making n — oo we get

0= f(x) > exa, (x)

u(Aa:f)at:fBzat:a

Thus u(B,) = 0 for every € > 0 as well.
On the other hand, if s,(x) — oo then x € |J,.0B.. We have obtained a
contradiction. O

Therefore

End of the proof of the theorem. Replace everywhere Y; by Y;. Note that u* also

satisfies the hypothesis of the theorem if u does.”
Let T and f be as in page 3. By lemmas 6 and 7 we have

Zf (TH(w,x)) = ”S*Il(al)l)x“ > o0

for a.e. w and all x € IP* \ {Z(w)*}. In particular, convergence holds u™N x v-a.e. By
lemma 8, this implies f f > 0. Then, by (1), y > 0. m]

This proof is a bit simpler than that in [BL].
5Because A) =w = A*(w*) = vt.
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